首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acquired thermotolerance of first-year seedlings of jack pine (Pinus banksiana Lamb.) hardened at 36, 38, 40 or 42 degrees C for 90, 180 or 360 minutes and of black spruce (Picea mariana (Mill.) B.S.P.) hardened at 34, 36, 38 or 40 degrees C for 30, 90, 180 or 360 minutes was determined by comparison of needle damage to that of non-hardened seedlings (25 degrees C) following exposure to temperatures of 49 and 47.5 degrees C, respectively. Compared to seedlings kept at 25 degrees C, heat injury sustained from exposure to high temperatures was markedly reduced following hardening for 180 minutes at 36 and 38 degrees C in jack pine and black spruce, respectively. Increasing the exposure time at 36 degrees C in jack pine, and at 36 to 40 degrees C in black spruce, also reduced needle damage. The duration of increased thermotolerance was investigated in jack pine, black spruce and white spruce (Picea glauca (Moench) Voss) by comparing heat injury from high temperatures in non-hardened seedlings and in seedlings hardened at 38 degrees C for 180 minutes a day for either 1, 3 or 6 days. In all three species, the duration of acquired thermotolerance increased with the number of days of heat hardening. For jack pine and white spruce seedlings hardened at 38 degrees C for 6 days, increased thermotolerance persisted for at least 14 and 10 days, respectively, after the end of the hardening treatment. In contrast, the thermotolerance of black spruce seedlings hardened at 38 degrees C for 6 days remained elevated for only 4 days.  相似文献   

2.
This study investigated the effects of holding 1+0 PSB313a white spruce (Picea glauca (Moench.) Voss) seedlings in storage boxes at air temperatures of 5, 10, 20, 30 and 40°C for 12, 24, 48, 72 and 96 h before planting. The ability to detect physiological damage to seedlings as a result of such treatment, before planting, was also examined. After one growing season, no needle damage or mortality >8% was found for temperature treatments up to 20°C for 4 days. At 30°C and above, seedling damage and mortality increased, while bud flush, shoot height, stem diameter and shoot dry weight decreased with increasing temperature and duration of treatment. Seedling mortality in the field was 100% after the 40°C treatment exposure for 72 h or longer. Pre-planting needle electrolyte leakage was indicative of visible needle damage 14 days after planting, whereas stem electrolyte leakage and root growth potential were more closely related to end of season plantation mortality. Despite the lack of damage observed at 20°C or below, preplanting exposure of white spruce seedlings to temperatures above 5°C, during transportation and field storage, is not recommended.  相似文献   

3.
Detached needles from 20-week-old black spruce (Picea mariana (Mill.) B.S.P.) seedlings root-drenched with 60 mg of paclobutrazol were exposed to two temperatures (22 and 50 degrees C) and two light treatments (100 and 1900 &mgr;mol m(-2) s(-1) PAR) in a factorial combination for 4 h in vitro. Mean dry weights of individual needles from paclobutrazol-treated plants were approximately 1.9 times heavier than that of needles from untreated controls at 22 degrees C, but no differences were observed following incubation at 50 degrees C. Numbers of cells per needle remained constant in all treatments. Chlorophyll and carotenoid contents per needle were higher in seedlings treated with paclobutrazol than in untreated control seedlings, and the differences were most pronounced in the high temperature plus high light treatment. In low light at 50 degrees C, quantum efficiency of photosystem II was 45% higher in needles of paclobutrazol-treated seedlings than in needles of untreated control seedlings, but quantum efficiency of needles from treated seedlings declined when needles were exposed to high light at either temperature. Peroxidase and superoxide dismutase activities were up-regulated by paclobutrazol, whereas catalase activities were depressed and no significant differences were observed between treated and control needles at 50 degrees C in either light treatment. Paclobutrazol treatment did not moderate the depressive effects of high temperature on total soluble protein or on the activity of ribulose-1,5-bisphosphate carboxylase. In contrast, high activities of phosphoenolpyruvate carboxylase were maintained in paclobutrazol-treated needles under all stress conditions, whereas large losses in activity were recorded in untreated needles at 50 degrees C. Collectively, these observations suggest that paclobutrazol treatment may convey resistance to excessive light and high temperatures by increasing the potential of conifers to limit damage caused by oxidative stress.  相似文献   

4.
Effects of artificial frosts on light-saturated photosynthesis (A(max)) and ground, maximal and variable fluorescence variables (F(o), F(m), and F(v) and F(v)/F(m)) were monitored on 1-year-old foliage of black spruce seedlings (Picea mariana (Mill.) BSP) grown at high (25 degrees C), moderate (15 degrees C) and low (5 degrees C) temperatures and moderate (240 &mgr;mol m(-2) s(-1)) and low (80 &mgr;mol m(-2) s(-1)) irradiances. Photoinhibition of 1-year-old foliage was greater in seedlings grown in moderate light than in seedlings grown in low light. Photoinhibition increased with decreasing growth chamber temperature at both irradiances. Most changes in F(v)/F(m) were caused by changes in F(v). Exposure to -4 degrees C decreased both F(v)/F(m) and A(max) compared with control values. The effect of the -4 degrees C frost treatment was greater in seedlings grown in low light than in seedlings grown in moderate light, probably because seedlings grown in moderate light were already partially photoinhibited before the frost treatment. Following -4 degrees C treatment, neither F(v)/F(m) nor A(max) recovered in seedlings grown in low light. Light-saturated photosynthesis decreased with decreasing growth chamber temperature. Light-saturated photosynthesis was more sensitive to the -3 and -4 degrees C frost treatments in seedlings grown at 25 degrees C than in seedlings grown at 15 and 5 degrees C. The A(max) of seedlings grown at 15 degrees C was sensitive only to the -4 degrees C frost treatment, whereas A(max) of seedlings grown at 5 degrees C was not sensitive to any of the frost treatments. Recovery of A(max) following frost took longer in seedlings grown at high temperatures than in seedlings grown at low temperatures. For seedlings grown at the same temperature but under different irradiances, both A(max) and F(v)/F(m) reflected damage to the photosynthetic system following a moderate frost. However, for seedlings grown at the same irradiance but different temperatures, A(max) provided a more sensitive indicator of frost damage to the photosynthetic system than F(v)/F(m) ratio.  相似文献   

5.
Bareroot jack pine (Pinus banksiana Lamb.) seedlings (2 + 0) and bareroot white spruce (Picea glauca (Moench) Voss) transplants (1 1/2 + 1 1/2) were taken from cold storage and planted on a clearcut forest site in northeastern Ontario on several dates between May 6 and June 5 during which period soil temperature at 15 cm depth increased from 0 to 18 degrees C. Additional cold-stored trees were transferred to a greenhouse where they were grown in pots for 0, 7 or 28 days and then placed with their roots in aerated water maintained at one of a range of constant temperatures between 0 and 22 degrees C. In both species, daytime xylem pressure potentials (Psi(x)) and needle conductances (g(wv)) decreased with decreasing soil or water temperature. At all root temperatures, g(wv) was lower, and Psi(x) higher, in jack pine than in white spruce. After 28 days in the greenhouse, g(wv) of jack pine seedlings, and Psi(x) of white spruce, was higher than in plants just removed from cold storage. In both species, water-flow resistance through the soil-plant-atmosphere continuum (RSPAC) increased as root temperature decreased. At all root temperatures, RSPAC was higher in plants just removed from cold storage than in plants grown in the greenhouse for 28 days, during which time many new unsuberized roots were formed. At root temperatures above 10 degrees C, RSPAC of both species was higher in trees newly planted in mineral soil than in trees with roots in aerated water; presumably because the roots of planted trees had limited hydraulic contact with the soil. On the day following removal from cold storage, relative plant water flow resistance increased, in both species, more rapidly with declining root temperature than could be accounted for by the change with temperature in the viscosity of water, thus indicating an effect of temperature on root permeability. The same effect was evident in jack pine seedlings, but not white spruce transplants, that had been grown for 28 days in the greenhouse after removal from cold storage.  相似文献   

6.
Significant reductions in needle water content were observed in white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill) B.S.P.), and jack pine (Pinus banksiana Lamb.) seedlings in response to a 10-day drought, although turgor was apparently maintained. When the seedlings were re-watered after the drought, jack pine needles regained their original saturated volume, whereas white spruce and black spruce needles did not. Significant drought-induced reductions in turgor-loss volume (i.e., tissue volume at the point of turgor loss) were observed in shoots of all three species, especially jack pine. Repeated exposure to 7 days of drought or treatment with the cytochrome P(450) inhibitor, paclobutrazol ((2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pentan-3-ol), reduced seedling height relative to that of untreated controls in all three species. The reductions in saturated and turgor-loss needle volumes in the paclobutrazol-treated seedlings were comparable with those of seedlings subjected to a 10-day drought. The treatment-induced reductions in shoot and needle water contents enabled seedlings to maintain turgor with tissue volumes close to, or below, the turgor-loss volume of untreated seedlings. Paclobutrazol-treated seedlings subsequently survived drought treatments that were lethal to untreated seedlings.  相似文献   

7.
The heat tolerance of actively growing 13-15-week-old black spruce (Picea mariana (Mill.) B.S.P.) was determined by exposing seedlings to temperatures of 40 to 60 degrees C for durations of 5 seconds to 3 hours by direct immersion in a hot water bath. Direct and indirect heat damage to needles were differentiated by assessing damage 5 minutes (direct) and 3 weeks (indirect) after exposure to high temperature. Both direct and indirect damage increased exponentially with the duration of exposure to high temperatures. However, indirect damage occurred at lower temperatures and with shorter periods of exposure than direct damage. Arrhenius plots of length of exposure versus exposure temperature revealed that the energy of activation for indirect damage was 384 kJ mol(-1), 36% higher than for direct damage. Both direct and indirect damage were less in seedlings preconditioned by a heat shock treatment (3 hours of exposure to an air temperature of 38 degrees C on each of 6 days prior to immersion in the water bath). Preconditioned seedlings withstood higher temperatures and longer durations of high temperature exposure than seedlings not preconditioned by heat shock.  相似文献   

8.
Roberts  J.J.  Zwiazek  J.J. 《New Forests》1999,18(3):301-314
Five week old white spruce [Picea glauca (Moench) Voss] seedlings were placed within controlled-temperature growth chambers, and subjected to one of four periodic, chilling treatments for approximately 16 weeks. The treatments differed in the frequency of 24 hour exposure to 5 °C the seedlings received, and ranged from no chilling (control), to once every two, three or four days. After 25 weeks of growth, the control seedlings were significantly taller than all chilling-exposed seedlings, but stem diameters were similar. Chilling did not affect either needle length or needle density compared to control seedlings. During a water deficit test, frequently chilling-exposed seedlings maintained significantly higher mid-day shoot water potentials under extreme water stress. Re-watering after the drought resulted in all chilling-treated seedlings recovering faster to pre-stress shoot water potential levels than the control seedlings. Measurements of new root growth after 21 days at 10 °C indicated that previous chilling exposure delayed or inhibited new root production.  相似文献   

9.
We examined changes in chlorophyll absorbency in red spruce (Picea rubens Sarg.) foliage in response to simulated freezing cycles. Current-year branch tips were collected from 16 trees on January 8, January 20, February 8 and February 26, 1996. Tissue was subjected to freezing cycle treatments with a minimum of -35 degrees C and a maximum of 3 degrees C for a one-cycle treatment, and -9, -6, -3, 0 or 3 degrees C for four-cycle treatments. Samples were frozen at a rate of 5 degrees C h(-1), and warmed at 12 to 15 degrees C h(-1). Controls were held at -9 degrees C. Temperatures during the three-day periods preceding each sample date averaged -18, 4.7, -9.6 and 3.7 degrees C, respectively. On January 8, treated trees showed no significant (P > 0.1) increase in the breakdown of chlorophyll, as measured by the ratio of chlorophyll a absorbency (435 nm) to phaeophytin a absorbency (415 nm), compared with control branch tips. On later sampling dates, seven trees consistently exhibited needle reddening and nine exhibited few symptoms (< 10% of total needle surface reddened) after four-cycle treatments. On February 26, chlorophyll degradation in trees with needle reddening differed (P < 0.05) from the control by 26, 26, 16, 14 and 15% for the 3, 0, -3, -6 and -9 degrees C maxima, respectively. No detectable chlorophyll degradation occurred after a one-cycle treatment in any trees on any sampling date. Freezing cycles with sub-zero maxima and a -35 degrees C minimum enhanced winter injury in red spruce after a midwinter thaw had rendered the trees susceptible to freezing damage.  相似文献   

10.
We used photosynthetic light response curves to measure and model the responses of two provenances of 3-year-old black spruce (Picea mariana (Mill.) BSP) seedlings to severe artificial frost treatments applied at 2-week intervals during cold acclimation. Black spruce seedlings responded to cold acclimation with long-term suppression of photosynthetic capacity (Amax) and apparent quantum-use efficiency (alpha'). Short-term reductions in both photosynthetic parameters following frost treatments were dependent on the extent of cold acclimation of the seedlings and the severity of the frost treatments. Large reductions in Amax in response to the frost treatments were observed in seedlings that had undergone little cold acclimation and these reductions were associated with an irreversible reduction in alpha'. Such seedlings recovered only partially during the subsequent 23 days, whereas seedlings in most other treatments showed complete recovery of Amax after 13 days. The impact of frost treatments on Amax and alpha' did not vary with seedling provenance. We propose an algorithm that predicts the combined effects of cold acclimation and severe freezing temperatures on the extent of the suppression of A(max) during autumn. The algorithm is based on (1) the maximum Amax observed during the growing season, (2) the accumulation of cold degree-days, based on a minimum nocturnal temperature < 5 degrees C, and (3) the severity of freezing temperatures during autumn. The parameters developed in the algorithm showed that cold acclimation of black spruce seedlings had a greater impact on the reduction of Amax in autumn than did the severe frost treatments. Mean Amax of seedlings subjected to artificial frosts showed a strong correlation with values predicted by the algorithm (r2 = 0.91).  相似文献   

11.
In the context of climate change, an increased frequency of drought stresses might occur at a regional scale in boreal forests. To assess photosynthetic responses to drought treatment, seedlings of 12 open-pollinated families of white spruce (Picea glauca (Moench) Voss) differing in their growth performance were grown in a controlled environment. Gas exchange and chlorophyll fluorescence parameters as well as shoot xylem water potential (WP) were measured for 21 successive days after watering was stopped. Net photosynthesis decreased as stomatal conductance decreased. Net photosynthesis was not affected by drought until WP reached –2.0 MPa when stomata were closed. Initial fluorescence (F and basic fluorescence after induction (F00) were not affected by drought. A progressive decrease in maximal (Fm) and variable fluorescences (Fv), maximum photosystem II (PS II) efficiency (Fv = Fm), effective quantum yield of PS II (FII), photochemical efficiency of open PS II (Fp), and photochemical quenching (qP) was observed at WP < - 1.0 MPa, whereas non-photochemical quenching (qN) remained high throughout the drought treatment. White spruce families with inferior growth performance showed higher values of Fm, Fv, Fv = Fm, Fp, and qN at WP< - 2.0MPa. The results indicated that chlorophyll fluorescence variables can be used as drought markers in relation to present or predicted climate conditions. These could be used for selecting planting stock adapted to drought periods or dry environments. These markers showed that slow-growing genotypes are better adapted to drought conditions than intermediate or fast-growing genotypes in present and predicted drought conditions.  相似文献   

12.
We studied the effects of high temperature and drought on the survival, growth and water relations of seedlings of Pinus ponderosa (Dougl.) Lawson, one of few coniferous tree species that can successfully colonize drought-prone sites with high soil surface temperatures. Temperature profiles were measured with 0.07-mm thermocouples in a sparse ponderosa pine forest in northern Idaho. The soil surface and the adjacent 5 mm of air reached maximum temperatures exceeding 75 degrees C, well above the lethal temperature threshold for most plants. Air temperatures 50 mm above the soil surface (seedling needle height) rarely exceeded 45 degrees C. Pinus ponderosa seedlings that survived maintained basal stem temperatures as much as 15 degrees C lower than the surrounding air. The apparent threshold temperature at the seedling stem surface resulting in death was approximately 63 degrees C for less than 1 min. No correlation between seedling mortality and needle temperature was found, although some needles reached temperatures as high as 60 degrees C for periods of 相似文献   

13.
Growth and gas exchange characteristics were studied in pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) seedlings grown in hydroponic culture in the presence of N (50 mg l(-1)) and transferred at the start of their second growing season to tap water at 5, 8, 12, 16 or 20 degrees C (air temperature between 18-20 degrees C) for 3 weeks (pine) or 5 weeks (spruce). Root growth of both species was completely inhibited at root temperatures of 5 and 8 degrees C, but increased almost exponentially as root temperature increased. Shoot growth was maximal at 12 degrees C in both pine and spruce and decreased at low root temperatures. In both species, CO(2) uptake was decreased at low root temperatures and appeared to be influenced by the pattern of nitrogen retranslocation. In pine seedlings, as root temperature increased, an increasing proportion of the total nitrogen pool was retranslocated to the new shoot, whereas in spruce seedlings nitrogen was retranslocated to the roots. Differences in the retranslocation of nitrogen in the two species were reflected in the amount of soluble protein in needles, which at the end of the experiment increased with increasing root temperature in pine, but decreased in spruce. Our data suggest that in spruce, but not pine, CO(2) uptake was limited by the amount of Rubisco.  相似文献   

14.
White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous component of the vegetation until after 60–80 years. To address what abiotic and/or biotic factors may explain the paucity of spruce in earlier stages of succession, we examined germination and growth of planted white spruce seedlings across an environmental gradient that included variation in soil physico-chemical properties in the presence and absence of mammal browsing. The effect of browsing pressure over the first four years after planting was most noticeable on the older terraces. Likewise, direct effects of hare browsing on spruce seedling mortality were only manifested at the oldest sites. Spruce germination and survival was inversely proportional to soil cation concentrations, which was largely controlled by temperature-driven evapotranspiration. High light intensities and high air temperatures significantly reduced seedling growth, whereas variation in soil moisture only explained a significant amount of variation in seedling survival. Temperatures within the needle clusters on terminal shoots reached values that adversely affect photosynthesis (>32 °C) on multiple occasions over the growing season. We conclude that the direct (temperature) and indirect (soil chemistry) effects of high insolation are major factors constraining spruce performance on early successional terraces, and that these effects can be significantly exacerbated by mammal browsing on associated deciduous vegetation.  相似文献   

15.
Man R  Lieffers VJ 《Tree physiology》1997,17(7):437-444
Photosynthetic light and temperature response curves were measured seasonally in seedlings of white spruce (Picea glauca (Moench.) Voss) grown for two years in the understory of aspen (Populus tremuloides Michx.) or in the open in central Alberta. Light-saturated rate of net photosynthesis, the optimum temperature for net photosynthesis, transpiration rate, photochemical efficiency, and stomatal and mesophyll conductances increased from spring to summer and declined thereafter, whereas dark respiration rate and compensation and saturation points were highest in spring. Depression of photosynthetic parameters was greater in open-grown seedlings than in understory seedlings during the periods in spring and autumn when night frosts were common. Net photosynthetic rates were similar in understory and open-grown seedlings in summer, but they were significantly lower in open-grown seedlings in spring and autumn. Significantly lower transpiration rates and stomatal conductances in open-grown seedlings than in understory seedlings were also observed at 15 and 25 degrees C in the autumn. Shoot and needle growth were less in open-grown seedlings than in understory seedlings. In summer, when irradiances were low in the aspen understory, understory white spruce seedlings maintained a positive carbon balance by decreasing their compensation and saturation points and increasing their photochemical efficiency compared to spring and autumn.  相似文献   

16.
One-year old seedlings of trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.) were subject to seven soil temperatures (5, 10, 15, 20, 25, 30 and 35 °C) for 4 months. All aspen seedlings, about 40% of jack pine, 20% of white spruce and black spruce survived the 35 °C treatment. The seedlings were harvested at the end of the fourth month to determine biomass and biomass allocation. It was found that soil temperature, species and interactions between soil temperature and species significantly affected root biomass, foliage biomass, stem biomass and total mass of the seedling. The relationship between biomass and soil temperature was modeled using third-order polynomials. The model showed that the optimum soil temperature for total biomass was 22.4, 19.4, 16.0 and 13.7 °C, respectively, for jack pine, aspen, black spruce and white spruce. The optimum soil temperature was higher for leaf than for root in jack pine, aspen and black spruce, but the trend was the opposite for white spruce. Among the species, aspen was the most sensitive to soil temperature: the maximum total biomass for aspen was about 7 times of the minimum value while the corresponding values were only 2.2, 2.4 and 2.3 times, respectively, for black spruce, jack pine and white spruce. Soil temperature did not significantly affect the shoot/root (S/R) ratio, root mass ratio (RMR), leaf mass ratio (LMR), or stem mass ratio (SMR) (P>0.05) with the exception of black spruce which had much higher S/R ratios at low (5 °C) and high (30 °C) soil temperatures. There were significant differences between species in all the above ratios (P<0.05). Aspen and white spruce had the smallest S/R ratio but highest RMR while black spruce had the highest S/R but lowest RMR. Jack pine had the highest LMR but lowest SMR while aspen had the smallest LMR but highest SMR. Both LMR and SMR were significantly higher for black spruce than for white spruce.  相似文献   

17.
White spruce (Picea glauca (Moench.) Voss) and lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) seedlings previously held in dark, frozen storage (-2 degrees C) for 2.5 or 6 months, and nursery-grown white spruce seedlings lifted in summer were exposed to photon flux densities (PFDs) similar to those that might be encountered at planting. Photosynthetic gas exchange and chlorophyll a (chl a) fluorescence were examined in cold-stored and summer-lifted seedlings before and after a 9 h-exposure to artificial illumination of high PFD (2000 micro mol m(-2) s(-1)) or low PFD (ca. 500 micro mol m(-2) s(-1)), and during exposure to 400 micro mol m(-2) s(-1) for 4-9 days. In the 2.5-month-stored and summer-lifted seedlings, the high-PFD treatment caused a small decrease in carbon fixation and a large decrease in the ratio of variable to maximum fluorescence (F(v)/F(m)) relative to the effect of the low-PFD treatment. In contrast, in the 6-month-stored seedlings the high-PFD treatment caused a significant decrease in rate of light-saturated carbon fixation but little decrease in F(v)/F(m) relative to the effect of the low-PFD treatment, indicating that the mechanisms for maintaining integrity of the photochemical apparatus had changed during the storage interval.  相似文献   

18.
Impacts of nursery short-day treatments on the survival, growth and needle damage of about 5,000 1 + 0 container white spruce (Picea glauca [Moench] Voss) seedlings from a single seedlot were studied for two growing seasons following planting on July 22, 1999 at four boreal reforestation sites in Northern Alberta, Canada of varying soil texture, drainage, aspect, slope, and slope position. Each site was separated into two areas that were site-prepared by either ripping or mounding. When seedlings reached a height of about 20 cm under normal greenhouse growth conditions, the seedlings from different germination dates over a 7-week period were exposed to one of five different conditioning treatments (T), mainly through varying the duration of 12-h short-day exposure to 0 (T0), 3 (T3), 7 (T7), 10 (T10), or 15 (T15) days followed by different periods of reduced N supply. N-reduction produced few differences in needle nutrient concentrations and so was not considered a likely cause of differences in field performance. The treatments progressively (from T0 to T15) increased tolerance to drought and frost, and resulted in a similar seedling size for T3, T7 and T10 (planting height of 21 cm and ground diameter of 2.9 mm) although T0 seedlings were smaller (20 cm) and T15 taller (24 cm). The weather in 1999 was dry, particularly in the weeks immediately before and after planting, but relatively moist and favorable in 2000 and 2001 apart from one major frost event (−7°C) in May 2000. Survival, growth and needle damage varied substantially among sites and short-day treatments, and the treatment differences were largely consistent across the four sites. In general the growth was better on the ripped than on the mounded areas. Seedlings in T7 (intermediate tolerance) survived and grew best in the first year but T0 (actively growing) did best during the second year. After 2 years, no differences were observed among T0, T3 and T7 in mortality (18%) and total height growth (15 cm). However, T10 and T15 had higher mortality (24 and 43%), and lower height growth (12 and 10 cm, respectively). The percentage of seedlings showing very severe needle damage after 2 years increased from T0 through T15 (14–33%). New root egress in the field also differed significantly among treatments and was positively and highly correlated with survival rate and growth. These results suggest that a longer short-day regime, as in T10 or T15, may be counterproductive and a shorter regime may be more effective in improving the performance of summer-planted white spruce seedlings.  相似文献   

19.
Temperature effects on photosynthesis were studied in seedlings of evergreen Mediterranean cork oak (Quercus suber L.). Responses to changes in temperature and the temperature optima of maximal carboxylation rate (V(cmax)) and maximal light-driven electron flux (J(max)) were estimated from gas exchange measurements and a leaf-level photosynthesis model. The estimated temperature optima were approximately 34 and 33 degrees C for V(cmax) and J(max), respectively, which fall within the lower range of temperature optima previously observed in deciduous tree species. The thermostability of the photosynthetic apparatus was estimated according to the temperature at which basal chlorophyll a fluorescence begins to increase (T(c)). The T(c) was highly variable, increasing from 42 to 51 degrees C when ambient temperature rose from 10 to 40 degrees C, and increasing from 44 to 54 degrees C with decreasing soil water availability while net CO(2) assimilation rate dropped to almost zero. When a heat shock was imposed, an additional small increase in T(c) was observed in drought-stressed and control seedlings. Maximal T(c) values following heat shock were about 56 degrees C, which, to our knowledge, are the highest values that have been observed in tree species. In conclusion, the intrinsic temperature responses of cork oak did not differ from those of other species (similar T(c) under ambient temperature and water availability, and relatively low thermal optima for photosynthetic capacity in seedlings grown at cool temperatures). However, the large ability of cork oak to acclimate to drought and elevated temperature may be an important factor in the tolerance of this evergreen Mediterranean species to summer drought and high temperatures.  相似文献   

20.
Gilles  S.L.  Binder  W.D. 《New Forests》1997,13(1-3):91-104
Cold hardened, dehardened, and newly flushed foliage of one year old white spruce (Picea glauca [Moench.] Voss) seedlings were exposed to various sub-zero temperatures (--2 to --22.5°C) either in the dark or light. The freezing treatment had no significant effect on the variable fluorescence to maximal fluorescence ratio (Fv/Fm) of hardened seedlings, either in the light or dark. Also, no visible damage or increase in electrolyte leakage were evident in either the light or the dark treated seedlings. Both dehardened and newly flushed foliage were significantly affected by the freezing treatment, and light enhanced the effect. A decline in Fv/Fmincreased electrolyte leakage and visible damage were observed at warmer temperatures in newly flushed needles than in dehardened needles. Seedlings exposed to sub-zero treatments in the light also had lower Fv/Fm, increased electrolyte leakage and showed more visible damage than seedlings exposed to the same sub-zero treatments in the dark. The temperature where 50% of the needles were damaged (LT50) as estimated from visible damage data was --10.8°C in the light and --12.1°C in the dark for dehardened, one year old needles. The LT50in newly flushed needles was --4.8°C in the light and --6.2°C in the dark. Recovery of Fv/Fmvalues 3 days after freezing exposure was only evident in treatments where little visible damage was present. Both Fv/Fmand electrolyte leakage were strongly correlated with visible damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号