首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pruning of agroforestry trees, while reducing shade of the crops, usually reduces both biomass production and nitrogen fixation. Short pruning cycles are often not sustainable on the long run, because tree production declines over subsequent pruning cycles. We compared biomass and labile carbohydrate dynamics of Erythrina lanceolata Standley (Papilionaceae) shade trees under total and partial pruning regimes in a vanilla (Vanilla planifolia L.) plantation in South-western Costa Rica. The highest biomass production was measured in the unpruned control, followed by trees with 50% of the leaf pruned every three months, while total pruning every six months resulted in the lowest biomass pruduction. In the more productive treatments, a higher proportion of the production was in branches. Because, the N content of woody branches was high, they were important for nitrogen cycling. In the partial pruning treatment more nitrogen was returned to the soil from litter and woody branches than from pruned leaf. Sugar concentrations were not different between treatments and the dynamics of non-structural carbohydrates (sugar and starch) seems to depend more on plant phenology than pruning treatment. However, the starch concentrations in the total pruning were lower than in the other treatments.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Green pruning of Eucalyptus nitens (Deane and Maiden) Maiden increases instantaneous rates of light-saturated CO(2) assimilation (A), and changes patterns of total leaf area and foliage distribution. We investigated the importance of such changes on the rate of recovery of growth following pruning. A simple process-based model was developed to estimate daily net biomass production (G(d)) of three-year-old plantation-grown trees over a 20-month period. The trees had been pruned by removal of 0, 50 or 70% of the length of green crown, equivalent to removal of 0, 55 or 88% of leaf area, respectively, when the plantation verged on canopy closure. Total G(d) was reduced by only 20% immediately following the 50%-pruning treatment, as a result of both the high leaf dark respiration and low A in the portion of the crown removed compared to the top of the crown. Pruning at the time of canopy closure preempted a natural and rapid decline in G(d) of the lower crown. Although leaf area index (L) was approximately 6.0 at the time of pruning, high light interception (95%) occurred with an L of 4.0. The 50%-pruning treatment reduced L to 3.5, but the physiological responses to pruning were sufficient to compensate fully for the reduction in intercepted radiation within 110 days of pruning. The 70%-pruning treatment reduced L to 1.9, and reduced G(d) by 77%, reflecting the removal of branches with high A in the mid and upper crown. Physiological responses to the 70%-pruning treatment were insufficient to increase G(d) to the value of unpruned trees during the study. Model sensitivity analysis showed that increases in A following pruning increased G(d) by 20 and 25% in the 50- and 70%-pruned trees, respectively, 20 months after pruning. Changes in leaf area/foliage distribution had a greater effect on G(d) of 50%-pruned trees (47% increase) than did changes in A. However, the reduction in photosynthetic potential associated with the 70%-pruning treatment resulted in only small changes in leaf area/foliage distribution, which consequently had little effect on G(d). The effects of physiological processes occurring within the crown and in response to green pruning on G(d) are discussed with respect to pruning of plantations.  相似文献   

3.
In a five-year-old Pinus radiata stand, trees were pruned to remove 50%, 40% or 25% of the crown and pruning stubs inoculated with Diplodia pinea. Infection occurred in 65–68% of the intensely pruned trees some of which also developed crown wilting and died, but in lightly pruned trees (25% crown removal) only 8% of the trees were infected and no mortality occurred. Pruning and inoculation every two weeks for a whole year cycle showed an infection peak in summer, but extremely low infection level during the rest of the year. A vertical gradient of resistance of infection was apparent along the stem with the basal part being extremely resistant, becoming more susceptible towards the top. Within limits infection also increased with increasing stub diameter.  相似文献   

4.
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments.

In the unthinned treatment, upper crown needles were heavier and had more leaf area than lower crown needles. Branch- and crown-level leaf area of the thinned trees increased 91 and 109%, respectively, and whole-crown foliage biomass doubled. The increased crown leaf area was a result of more live branches and foliated shoots and larger branch sizes in the thinned treatment. Branch leaf area increased with increasing crown depth from the top to the mid-crown and decreased towards the base of the crown. Thinning stimulated foliage growth chiefly in the lower crown. At the same crown depth in the lower crown, branch leaf area was greater in the thinned treatment than in the unthinned treatment. Maximum leaf area per branch was located nearly 3–4 m below the top of the crown in the unthinned treatment and 4–5 m in the thinned treatment. Leaf area of the thinned-treatment trees increased 70% in the upper crown and 130% in the lower crown. Fertilization enhanced needle size and leaf area in the upper crown, but had no effect on leaf area and other variables at the shoot, branch and crown level. We conclude that the thinning-induced increase in light penetration within the canopy leads to increased branch size and crown leaf area. However, the branch and crown attributes have little response to fertilization and its interaction with thinning.  相似文献   


5.
In August, eight 4-m tall citrus trees were pruned by removing the top third of their canopy. Eight unpruned trees served as controls. Root growth, which was examined nondestructively with minirhizotrons over a four-month period, tended to be less in the pruned than unpruned trees seven days after pruning and this difference was significant (P < 0.05) from 14 to 49 days after pruning. Total reducing and ketone sugars (includes free fructose, sucrose and fructans) in the fine roots were less in pruned than unpruned trees 20 days after pruning, but not thereafter. By 30 days after pruning, at least 20% of the roots of the pruned trees at a soil depth of 9 to 35 cm apparently died. By 63 days after pruning, root length density had recovered to that of the unpruned trees, although starch reserves were 18% less in the fine roots of pruned than unpruned trees at this time. Nine to eleven months after pruning (May to July), total biomass of leaves and fine roots to a depth of 1 m were similar in pruned and unpruned trees. However, fruit biomass harvested in April from pruned trees was only 24% of that in the unpruned trees. In May, nonstructural carbohydrates in the fine and coarse roots of pruned trees were generally greater than in unpruned trees, possibly reflecting previous differences in fruit production.  相似文献   

6.
Semi-natural cork oak woodlands are a biodiversity rich agro-silvo-pastoral system covering large areas in the Mediterranean. Canopies of adult oaks are often pruned, but nothing is known about the consequences of this treatment on biodiversity. We evaluated the impact of pruning on birds that forage in cork oak canopies in an area of southern Portugal. We characterized the use of trees by foraging birds with focal observations, and analysed the effects of pruning on density with point counts on pruned and control areas. As pruning reduces the foraging substrate for foliage gleaners, we predicted that these species would have lower densities in pruned areas. Pruning did not substantially affect overall bird density or species richness. However, as predicted, the density of species that foraged mostly by gleaning in the canopy tended to be lower in pruned areas, especially in winter when differences were statistically significant. In this season the combined density of foliage gleaners in the pruned stations was only half of that in controls. Pruning is also common in other managed Mediterranean woodlands that are important for birds, such as holm oak woodlands and olive groves, and foliage gleaners are likely to be affected in those too. The cumulative effects of pruning on all these habitats need to be assessed, but our results already indicate that pruning has negative consequences that should be properly considered in management decisions.  相似文献   

7.
Tree pruning is a common management practice in agroforestry for mulching and reducing competition between the annual and perennial crop. The below-ground effects of pruning, however, are poorly understood. Therefore, nutrient dynamics and root distribution were assessed in hedgerow plantings of Acacia saligna (Labill.) H.L. Wendl. after tree pruning. Pruning to a height of 1.5 m was carried out in March and September 1996. In July and October 1996, the fine root distribution (< 2 mm) and their carbohydrate contents were determined at three distances to the tree row by soil coring. At the same time, foliar nutrient contents were assessed, whereas nutrient leaching was measured continuously. The highest root length density (RLD) was always found in the topsoil (0–0.15 m) directly under the hedgerow (0–0.25 m distance to trees). Pruning diminished the RLD in the acacia plots at all depths and positions. The relative vertical distribution of total roots did not differ between trees with or without pruning, but live root abundance in the subsoil was comparatively lower when trees were pruned than without pruning. In the dry season, the proportion of dead roots of pruned acacias was higher than of unpruned ones, while the fine roots of unpruned trees contained more glucose than those of pruned trees. Pruning effectively reduced root development and may decrease potential below-ground competition with intercropped plants, but the reduction in subsoil roots also increased the danger of nutrient losses by leaching. Leaching losses of such mobile nutrients as NO3 were likely to occur especially in the alley between pruned hedgerows and tended to be higher after pruning. The reduced size of the root system of pruned acacias negatively affected their P and Mn nutrition. Pruning also reduced the function of the trees as a safety net against the leaching of nutrients for both NO3 and Mn, though not for other studied elements. If nutrient capture is an important aim of an agroforestry system, the concept of alley cropping with pruning should be revised for a more efficient nutrient recycling in the system described here.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Pruning loblolly pine trees is sometimes practiced to improve wood quality even though reduced growth following treatment may occur. Two experiments were established in February 2000 in the Piedmont region of Virginia, USA, to examine the impact of timing and intensity of pruning on subsequent growth of young loblolly pine trees. Results of one study indicated that there is a window of opportunity during the early portion of stand development where up to 50% of the live crown length can be removed without a significant loss of long-term height or diameter growth. Within a year following pruning at ages 3, 6 and 9 (all pruning treatments occurred prior to crown closure), crown mass had been restored and growth comparable to an unpruned control resumed. By age 11 there were no significant differences in cumulative height or dbh of any of the one-lift pruning treatments and the control. Findings from a second study planted at closer spacings where pruning treatments occurred at crown closure (age 6) showed that pruning some of the trees in a loblolly pine plantation does not result in a loss of long-term height or diameter growth or crown dominance for the pruned trees as compared to their unpruned neighbors. For both studies, growth reductions following pruning were small and transitory.  相似文献   

9.
Indole-3-acetic acid (IAA), carbohydrates, total nitrogen and amino acids in the cambial region and bark were measured at the top (10-year-old internode) and bottom (1.3 m) of the main stem of 50-year-old Pinus sylvestris L. trees, having different rates and longitudinal gradients of annual ring width formation. The trees were sampled during the most active period of wood production (June 23, July 15) and at the end of this period (August 23). Trees with a small crown and relatively slow growth rate (S-trees) were compared with trees in the same stand that had a large crown and fast growth rate (F-trees) as a result of thinning and fertilization. The effect of bottom pruning fast-growing trees (pruned F-trees) was also investigated. The F-trees had greater wood production than the S-trees at both the stem top and bottom. The difference was larger at the stem bottom, thus the relative decrease in ring width down the stem was steeper in the S-trees. The amount of sucrose and IAA per cm(2) in cambial region tissues was higher in F-trees than in S-trees. However, the differences in annual ring width between treatments and within trees were not reflected in the concentrations (expressed per gram fresh weight) of these substances, measured either in differentiating xylem, the cambium plus phloem, or in the cambial region as a whole. The concentrations of total nitrogen and amino acids were slightly higher in the F-trees than in the S-trees. Pruning the F-trees reduced wood production, particularly at the stem bottom, inhibited the springtime increase in starch, and decreased the amounts of sucrose and IAA per cm(2) in the cambial region. However, it was evident that the concentrations of sucrose, IAA, amino acid and nitrogen in the cambial region were not related to ring width. During June and July, the concentrations of these substances were generally higher at the stem bottom in the pruned F-trees than in the F-trees. The results provide evidence that it is the activity of the cambium rather than the availability of carbohydrates that determines the allocation of wood production along the tree stem. The results also indicate that tracheid production is not directly related to the IAA concentration in the cambial region.  相似文献   

10.
One-year-old peach trees (Prunus persica (L.) Batsch) were severely pruned in July by removing 60% of the shoots. Tree responses were analyzed in terms of architecture and nutritional status. Tree growth was recorded from July to September by nondestructive (leaf production, thickening and branching of the remaining secondary axes) and destructive measurements (biomass partitioning and concentrations of total nitrogen (N) and nonstructural carbohydrates (NC) in specific tissues). The dry weights of pruned trees were lower than those of control trees at the end of the growing season (i.e., 2.5 months after pruning), whereas shoot:root ratios were restored to the initial values. Tree response occurred in two stages. During the first 24 days following pruning, the growth components of the remaining secondary axes were similar to the control, and new secondary axes were produced. During the next 17 days, increases in both diameter and branching of secondary axes contributed to the maintenance of pruned tree growth rate (similar to that of control trees) and restoration of initial shoot:root ratios. No significant effect of pruning was observed on NC concentrations, whereas N concentrations increased in several organs of the pruned trees during the first growth period. The transient increase in internal N availability contributed to the initiation of new axes and the restoration of a more functional biomass partitioning between shoots and roots.  相似文献   

11.
The effects of decapitation at various levels, combined with heavy pruning of remaining branches, were examined for Caribbean pine. This treatment stimulated the development of shoots with long primary needles at all levels in the crown of trees aged one, four and eight years. Although a significant positive relationship between primary needle length and rooting was demonstrated, the very juvenile appearance of these shoots was not a reliable guide to rooting. There was an over-riding effect on rooting of the ortet age × level in crown × decapitation height treatment. Decapitated trees provided shoots of higher rooting capacity than intact trees for the one and four, but not the eight year old trees. Shoots developing in the lower crown in response to decapitation and heavy pruning of four year old trees displayed a high level of rooting-equivalent to that of shoots from the decapitated and pruned one year old trees.  相似文献   

12.
We investigated mature dwarf Abies mariesii trees growing in conifer thicket–meadow parklands on a snowy subalpine plateau, where these dwarf trees are buried in the accumulated snow in winter. We focused on structural variation in the needles, shoots, and branchlets within different crown positions (leader crown vs lower crown) of the dwarf trees. In the leader crown, which appears above the snow surface earlier than the lower crown, current-year shoots and branchlets had greater total biomass, and foliage was more closely packed along the stem axis than in the lower crown, whereas current-year shoots in the leader crown had a lower needle mass ratio than in the lower crown. These results suggest that current-year shoots and branchlets in the leader crown have a specific structure that allows them to harvest more light, although construction and maintenance costs would be higher. In contrast, the structural characteristics of current-year shoots and branchlets in the lower crown efficiently concentrate incoming light by avoiding mutual shading within foliage, thus leading to increased biomass of photosynthetic needles within shoot and branchlet biomass. Such within-crown variability at various hierarchical levels from needles to branches in mature, but very dwarf, A. mariesii trees maintains the crown and allows survival within conifer clumps in areas of subalpine parklands that receive heavy snowfall.  相似文献   

13.
To evaluate the effects of pruning on stem radial growth increment and leaf and twig biomass production, an experiment with four pruning intensities (0, 50, 75 and 90%) on ten locally important tree species (Ailanthus triphysa, Albizia odoratissima, Artocarpus hirsutus, Bombax malabarica, Bridelia crenulata, Erythrina indica, Grewia tiliifolia, Macaranga peltata, Terminalia paniculata and Xylia xylocarpa ), was carried out. The results did not support the contention that a certain level of pruning promotes stem growth in trees. Instead, all species have a level of pruning that reduces annual increment in stem diameter. In Ailanthus triphysa and Artocarpus hirsutus trees subjected to different pruning intensities showed a decline in the annual increment in stem diameter while in other species diameter increment reduced when the pruning intensity was 75% and 90%. Response to pruning in terms of biomass production also varied from species to species. In Erythrina indica, Macaranga peltata and Terminalia paniculata annual foliage and branch production in pruned trees was significantly more than that of the un-pruned trees. However, in Ailanthus triphysa, Albizia odoratissima, Artocarpus hirsutus, Bridelia crenulata, Grewia tiliifolia and Xylia xylocarpa pruned trees produced comparatively more amount of foliage and branches produced annually than that by the un-pruned trees when the pruning was carried out once in 2 years. Based on these observations it is recommended that trees of Erythrina indica, Macaranga peltata and Terminalia paniculata may be pruned at 50% level annually while the trees of Ailanthus triphysa, Albizia odoratissima, Artocarpus hirsutus, Bridelia crenulata, Grewia tiliifolia and Xylia xylocarpa may be pruned at the same pruning intensity once in 2 years.  相似文献   

14.
In alley cropping systems, fast growing leguminous trees are pruned to reduce competition with crops for light and to provide organic inputs for crop nutrition. Tree regrowth depends on non-structural carbohydrate reserves in the remaining tree parts. In this study, the dynamics of starch and soluble carbohydrates in roots and stems of completely pruned (all shoots removed), partially pruned (one branch retained on the pruned stump) and unpruned Erythrina poeppigiana (Walp.) O.F. Cook and Gliricidia sepium (Jacq.) Kunth ex Walp. trees were studied under humid tropical conditions in Turrialba, Costa Rica. Measurements on starch and soluble carbohydrates in roots and stems were made at 0, 2, 6 and 12 weeks after pruning during both a “rainy” and a “dry” season. In general, the dynamics of non-structural carbohydrates in roots and stems of pruned E. poeppigiana and G. sepium trees were similar. Starch concentration was highest in unpruned trees and higher in roots than in stems of pruned trees. The effect of pruning intensity was first observed in stems, and starch reserves were more depleted in stems than in roots, an effect more evident during the “dry” season. The critical tree regrowth stage for starch mobilisation was that of vigorous sprout development at six or four weeks after pruning particularly in completely pruned trees. At this time, fine root biomass and length and nodule biomass in pruned trees decreased. Survival of fine roots and nodules was greater in partially pruned than in completely pruned trees. Starch accumulation in roots recommenced at 12 weeks after pruning in G. sepium, and later than 12 weeks after pruning in E. poeppigiana roots. This study showed that E. poeppigiana responded better to pruning regimes than G. sepium. Recovery of trees after pruning is better when trees are partially pruned than when completely pruned.  相似文献   

15.
The research described in this paper was performed in the Niepolomice Forest (Southern Poland) in 2001 as part of the Forest Environmental Monitoring and Management System (FOREMMS; 5FP IST) project. The material for the present study consisted of the measurement results of the biomass of Scots pine shoots with needles and needles alone carried out on 113 felled sample trees. The purpose of this study was to construct empirical equations for estimating the foliage biomass of Scots pine from easy to measure parameters. To achieve this aim, the dependence of the foliage biomass of Scots pine on stem diameter, height, age, crown length, basal area increment of the trees was analyzed. Using the biometric characteristics such as: tree diameter at breast height (dbh), basal area increment, age, height, and crown length empirical equations for estimating the foliage biomass of Scots pine reasonably precisely have been established. The created empirical equation gives accurate foliage biomass estimates. The explained variability varies between 65 and 85%, it depends on the number of variables applied in the equation. The equations presented in this paper were created with a view to their possible use in ecological studies where biomass quantity may be used, for example, in modeling carbon circulation in the forest ecosystem. From the point of view of forestry practice, these equations may help to assess biomass production in Scots pine stands.  相似文献   

16.
Defoliation of conifers occasionally precedes bark beetle attacks, suggesting that a severe loss of foliage and ensuing reductions in carbohydrate availability may enhance host tree susceptibility. To shed light on this question, different degrees of defoliation on young Picea abies were simulated by removing whole whorls of branches from below, the trees retaining 100, 50, or 25% of their original crown biomass. After one week or one year, the trees were inoculated with Ophiostoma polonkum, a tree‐killing fungus transmitted by Ips typographus.

Fungal proliferation and tree mortality increased with increasing levels of pruning. Pruning reduced stem diameter growth, but not carbohydrate reserves in foliage and bark. Foliar N, P, and Ca increased with increasing pruning. The results lend support to the hypothesis that a reduction in the photosynthesis capacity increases host tree susceptibility to a beetle‐fungus attack, and that induced defence against infection depends on efficient translocation of assimilates to the sites of infection.  相似文献   

17.
Detailed studies have been undertaken to define pruning regimes for Eucalyptus nitens, but little is known of E. globulus responses to pruning although this is a more commonly planted species. This paper describes experiments that aimed to identify (a) levels of pruning that reduce E. globulus growth, (b) physiological processes contributing to those growth responses, (c) the incidence of decay and factors influencing decay incidence following pruning of E. globulus, and (d) comparative responses of E. nitens and E. globulus to live branch pruning. Results of a field experiment indicated that removal of between 30 and 50% of the crown length was appropriate for E. globulus plantations verging on canopy closure. The significant reduction in height growth associated with removal of 50 or 70% of crown length suggested pruning should remain below 50% of crown length if reduced stem growth of pruned trees was to be avoided. Stem volume was only significantly reduced over the period of the experiment by 70% pruning, but it was estimated that standing volume following removal of 50% of crown length would be reduced by 82 m3 ha−1 over a 20-year rotation if there were no other silvicultural interventions. The growth responses observed were probably related to large reductions in leaf area following 50 or 70% removal of crown length. Trees responded to pruning by changing patterns of biomass partitioning to favour stem growth at the expense of branch growth. A glasshouse study determined that light-saturated net CO2 uptake (Amax) increased following pruning. E. nitens seedlings had both a higher baseline Amax and higher Amax following pruning than did E. globulus, which could partially explain the greater effect of pruning on E. globulus growth than has been observed for E. nitens in other studies. This result, as well as apparently different patterns of foliage distribution through the crowns of E. globulus and E. nitens, suggested that models of pruning responses need to be parameterised for both species. In addition, a more conservative pruning regime may be appropriate for E. globulus than E. nitens. Pruning increased the frequency of branch traces with decay infection, and there was a trend towards increasing decay outbreaks with increasing pruning severity. Decay outbreaks were more likely to occur following pruning of high angle or larger diameter branches.  相似文献   

18.
大樱桃壮旺幼树不同修剪方法和促花技术试验   总被引:1,自引:0,他引:1  
为了研究整形修剪对大樱桃早期丰产的影响,通过稀植园和密植园大樱桃壮旺幼树的修剪试验,明确长放修剪方法可节省用工,有利于树体生育,成花早、株产高,尤其适用于密植园的大樱桃栽培。开始采用长放修剪的树龄,密植园大樱桃树宜在2~3年生,稀植园樱桃树宜在株问粗距1.5~2m时进行,截放修剪方法适用于即需扩冠又要较早结果的大樱桃壮旺幼树。短截修剪方法修剪量大,不利于大樱桃壮旺幼树的生长发育,结果晚,株产低,且费工,但对栽后缓苗期树或衰弱树还是适用的。刻芽枝条上叶丛皲数量明显增加,花束状果枝增加。摘心的长枝花枝率和后下部叶丛枝的花枝率明显增加。  相似文献   

19.
The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.  相似文献   

20.
Three browse species, Afzelia africana Sm., Khaya senegalensis (Desv.) A. Juss., and Pterocarpus erinaceus Poir. were investigated as agroforestry system components in a subhumid zone of West Africa. The foliation, flowering and fruiting of ten trees per species were recorded every 15 days for 2 years. The total foliage biomass at maximum availability was determined by complete pruning of 75 trees. The chemical composition of the foliage and the proportion of trees pruned on the pasture were determined. The phenological phases of the species began in the dry season and ended at the end of the rainy season. Afzelia africana and Pterocarpus erinaceus were totally defoliated during 2–6 weeks while K. senegalensis replaced the foliage progressively and earlier. The crude protein content was significantly different (123 g, 102 g and 92 g kg−1 dry matter (DM) for Afzelia africana, Pterocarpus erinaceus and K. senegalensis, respectively). The foliage biomass per tree of K. senegalensis, Pterocarpus erinaceus and Afzelia africana differed significantly (41 kg, 30 kg and 21 kg DM ha−1, respectively) while Pterocarpus erinaceus had the highest available foliage biomass per ha. The trees of Afzelia africana were intensively pruned. There was a significant relationship found between foliage biomass and circumference of the crown for Afzelia africana (R 2 = 82%) and Pterocarpus erinaceus (R 2 = 81%). Relationships were also found between circumference of the branches and foliage biomass. In conclusion, the trees are important potential fodder and nitrogen sources for animals in the agrosilvopastoral system and the phenological differences make the fodder available during a long period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号