共查询到20条相似文献,搜索用时 15 毫秒
1.
Diurnal changes in gas exchange and chlorophyll fluorescence were measured in the top canopy leaves of the tropical rainforest tree species, Macaranga conifera (Zoll.) Muell. Arg. during a drought year. Maximum values of net photosynthetic rate (P(n), 10 &mgr;mol m(-2) s(-1)) and stomatal conductance (g(s), 0.2 mol m(-2) s(-1)) were found in east-facing leaves in early morning. After 1000 h, both P(n) and g(s) decreased. Minimum daytime values of P(n), g(s), and photosystem II (PSII) quantum yield (DeltaF/F(m)') were found in horizontally fixed leaves. At a given electron transport rate through PSII (ETR), P(n) was higher in early morning than at midday, suggesting a high rate of photorespiration at midday. We tested the hypothesis that the effect of low leaf temperature (T(leaf)) on P(n) is significant in the early morning, whereas the effect of low g(s) on P(n) predominates at midday. In the early morning, when T(leaf) was increased from 32 to 38 degrees C by artificial heating, P(n) at a given ETR decreased 29%, suggesting that the low T(leaf) was associated with a high P(n). When T(leaf) at midday was decreased from 37 to 32 degrees C by artificial cooling, P(n) increased 22%, but P(n) at a given ETR was higher in early morning than at midday, even at the same low T(leaf) (32 degrees C). This suggests that the rate of photorespiration was higher at midday than in early morning because low g(s) at midday caused a reduction in leaf intercellular CO(2) concentration. We conclude that low P(n) at midday was the result of both a reduction in the photochemical process and an increase in stomatal limitation. 相似文献
2.
Diurnal courses of gas exchange were measured over a 1-year period in fully expanded current-year leaves in the upper (sun-exposed, 18 m above ground) and the lower (shaded, 12 m above ground) canopy of Laurus azorica (Seub.) Franco, a major canopy species of the Canarian laurel forest in Tenerife, Canary Islands, Spain. Laurus azorica exhibited high leaf plasticity in gas exchange characteristics, with a maximum carbon assimilation rate (Amax) of shade leaves about 50% that of sun leaves. This difference reflects the high leaf area index (LAI) of the stand and the correspondingly sharp light attenuation with increasing canopy depth. In sun leaves, Amax peaked at about 11 micromol m-2 s-1 and maximum transpiration (E) was about 8 mmol m-2 s-1, which corresponded with a maximum stomatal conductance (gs) of about 650 mmol m-2 s-1. Mean maximum instantaneous water-use efficiency (WUE) was 1.5 mmol mol-1 and the mean maximum A/gs was 20-35 micromol mol-1. Mean minimum internal CO2 concentration (Ci) was 225 micromol mol-1. Although high air vapor pressure deficit (VPD) caused a small decrease in gs, it remained high enough to maintain relatively high A and E. These gas exchange characteristics indicate a non-conservative use of water, which is appropriate for a species subject to droughts that are mild or of short duration. In this respect, Laurus azorica differs from its congener, L. nobilis L., of the Mediterranean region and other shrubs growing in Mediterranean-type climates in California and Chile that have to withstand more severe or more prolonged droughts. 相似文献
3.
Schinus terebinthifolius Raddi (Anacardiaceae) and Rapanea ferruginea (Ruiz & Pavon) Mez (Myrsinaceae) are two neotropical pioneer trees with wide geographical distribution in South America, highly degree of adaptation to different soil conditions and intense regeneration in areas with anthropic activities. With the aim to recommend the use Schinus and Rapanea in gallery forest restoration programs, we conducted an experiment with the objective to analyze the capacity of these two pioneer trees to tolerate soil flooding, mainly by accessing the effects of flooding on leaf gas exchange, growth and dry matter partitioning. Seedling survival throughout the 56-day flooding period were 100 and 90% for Schinus and Rapanea, respectively. The mean values of stomatal conductance (gs) and net photosynthesis (A) observed in the control seedlings were, respectively, 0.4 mol m–2s–1 and 14 mmolm–2s–1, for Schinus, and 0.5 mol m–2s–1 and 14 mmolm–2s–1, for Rapanea. On day 20 flooding reduced gs and A by 36 and 29% in Schinus, and 81 and 61% in Rapanea. At the end of the experiment, significant decreases were also observed for root and whole plant biomass, in both species. Based on the results, we concluded that seedlings of Schinus and Rapanea can survive and grow throughout a medium period of soil waterlogging, in spite of the alterations observed in their physiological behavior, such as the decreases in stomatal conductance and in whole plant biomass. 相似文献
4.
In a field study, we compared anatomy and diurnal gas exchange and chlorophyll fluorescence in sunlit mature leaves of Macaranga gigantea (Reichb. f. and Zoll.) Muell. seedlings, saplings, an adult tree and suckers originating from stumps. We tested the hypothesis that the pattern of resource use shifts across various life stages with ontogenetic changes in leaf anatomy and physiology. Among leaves of different developmental stages, seedling leaves were the smallest and thinnest, whereas adult tree leaves were the largest and thickest, and the air space within the lamina was largest in seedling leaves and smallest in adult tree leaves. Photosynthetic nitrogen-use efficiency (PNUE) was higher in seedling and sapling leaves than in adult tree leaves. Mean PNUE in seedling leaves was 1.6 times that in adult tree leaves. Nevertheless, among the developmental stages, net photosynthetic rate (Pn) per unit leaf area was lowest in seedling leaves because they have the lowest nitrogen (N) content per unit leaf area. In situ water vapor stomatal conductance (g(s) at a given leaf-to-air vapor pressure deficit was highest in sapling leaves, suggesting that they have a high hydraulic efficiency per unit leaf area. Among developmental stages, intrinsic water-use efficiency (Pn/g(s)) and photochemical capacity of photosystem II were lowest in seedling leaves. Sapling leaves had the highest N concentration and Pn per unit dry mass and the highest g(s), indicating that the gradual transition from the seedling stage to the sapling stage is accompanied by an accumulation of N in plant bodies and the development of hydraulic systems to counteract unfavorable environmental stresses. The properties of adult tree leaves (low PNUE, high carbon:N ratio, small and dense cells and thick lamina) indicate that, during the transition from the sapling stage to the adult tree stage, the priority of resource use in leaves gradually shifts from enhancement of photosynthetic performance to defense against herbivory and mechanical damage. Leaf morphology and physiology were coordinated with the differences in resource use at each life stage. 相似文献
5.
Twelve poplar (Populus) genotypes, belonging to different taxa and to the sections Aigeiros and Tacamahaca, were studied during the third growing season of the second rotation of a high density coppice culture. With the objective to highlight the relationships between leaf traits, biomass production and taxon as well as the influence of canopy position, anatomical and morphological leaf characteristics (i.e. thickness of epidermis, of palisade and spongy parenchyma layers, density and length of stomata, leaf area, specific leaf area (SLA) and nitrogen concentration) were examined for mature leaves from all genotypes and at two canopy positions (upper and lower canopy). Above ground biomass production, anatomical traits, stomatal and morphological leaf characteristics varied significantly among genotypes and between canopy positions. The spongy parenchyma layer was thicker than the palisade parenchyma layer for all genotypes and irrespective of canopy position, except for genotypes belonging to the P. deltoides × P. nigra taxon (section Aigeiros). Leaves at the upper canopy position had higher stomatal density and thicker anatomical layers than leaves at the lower canopy position. Leaf area and nitrogen concentration increased from the bottom to the top of the canopy, while SLA decreased. Positive correlations between biomass production and abaxial stomatal density, as well as between biomass production and nitrogen concentration were found. A principal component analysis (PCA) showed that genotypes belonging to the same taxon had similar anatomical characteristics, and genotypes of the same section also showed common leaf characteristics. However, Wolterson (P. nigra) differed in anatomical leaf characteristics from other genotypes belonging to the same section (section Aigeiros). Hybrids between the two sections (Aigeiros × Tacamahaca) expressed leaf characteristics intermediate between both sections, while their biomass production was low. 相似文献
6.
Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves. 相似文献
7.
Talita Miranda Teixeira Xavier José Eduardo Macedo Pezzopane Ricardo Miguel Penchel José Ricardo Macedo Pezzopane 《林业研究》2019,(1):57-64
This experiment was carried out in acclimatized greenhouses with seedlings of two hybrid clones of Eucalyptus urophylla×Eucalyptus grandis. A sunscreen protector consisting of 62.5% calcium carbonate was sprayed on the seedlings at weekly intervals. Water stress was induced by suspending irrigation until the soil reached 30% available water and water was then replaced so that it returned to field capacity. Gas exchange and leaf water status were measured after 50 days. The experiment was set up in a 4×2 factorial randomized block design in four distinct environments:(1) temperatures less than 21.2℃ and vapor pressure deficit of 0.15 kPa;(2) intermediate temperatures of 24.2℃ and vapor pressure deficit of 0.69 kPa;(3) high temperatures of 27.0℃ and high vapor pressure deficit of 1.4 kPa; and,(4) high temperature of 27.0℃ and vapor pressure deficit below 1.10 kPa. Two leaf sun protector treatments were used, with five replications each. High atmospheric demand acted as a stress factor for the seedlings during the initial growth phase.Applications of leaf sunscreen protector provided beneficial effects in maintaining optimum water status and gas exchanges of the plants under water stress. 相似文献
8.
J. Peters Á. M. González-Rodríguez M. S. Jiménez D. Morales G. Wieser 《European Journal of Forest Research》2008,127(4):293-299
We investigated the seasonal variation in the gas exchange of current and 1-year-old needles in the upper sun and lower shade
crown of adult Pinus canariensis trees. In general, current year needles displayed lower gas exchange rates than the 1-year-old needles. In both needle age
classes, gas exchange was significantly lower in the shade than in the sun crown. However irrespective of crown position and
needle age, maximum daily net photosynthesis, transpiration, and stomatal conductance for water vapour were generally higher
during the wet and cold winter as compared to the dry and hot summer. These higher gas exchange values obtained during the
cold and wet season can mainly be explained by higher soil-water availability and lower evaporative demand as compared to
the warm and dry seaon. In addition, we also observed a displacement in the temperature optimum of net photosynthesis towards
lower temperatures during the cold and wet season as compared to the warm and dry season. The observed gas exchange characteristics
indicate a conservative water saving strategy and thus allowing P. canariensis needles to maintain a positive carbon gain even at periods of high evaporative demand and low soil-water availability. 相似文献
9.
We examined the effects of artificially altering leaf angle of the tropical tree species Acacia crassicarpa (A. Cunn. ex Benth., Fabaceae) on light interception, leaf temperature and photosynthesis in the wet and dry seasons of tropical Australia. Reducing leaf angle from the natural near-vertical angle (90 degrees ) to 67.5, 45, 22.5 and 0 degrees greatly increased light interception and leaf temperature, and decreased photosynthetic activity. Compared with the 90 degrees phyllodes, net photosynthetic rates in the horizontal phyllodes decreased by 18 and 42% by the second day of leaf angle change in the wet and dry seasons, respectively. The corresponding values for Day 7 were 46 and 66%. Leaf angle reduction also altered the diurnal pattern of photosynthesis (from two peaks to one peak) and reduced daily CO2 fixation by 23-50% by Day 2 and by 50-75% by Day 7 in the dry season. In contrast, the xanthophyll cycle pool size in the phyllodes increased with leaf angle reduction. Thus, there are at least five major advantages to maintaining high leaf angle orientation in tropical tree species. First, it reduces excessive light interception. Second, it lowers leaf temperature. Third, it protects the photosynthetic apparatus against photodamage by excessive light. Fourth, it minimizes xanthophyll cycle activity and reduces the cost for xanthophyll biosynthesis. Finally, it enhances photosynthetic activity and helps to sustain high plant productivity. 相似文献
10.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species. 相似文献
11.
Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fraction. Leaf morphology described by leaf mass per unit leaf area (LMA), density and thickness, as well as area- and mass-based nitrogen (N) and carbon (C) concentrations, were recorded on the same leaves. Large interspecific variability was detected in photosynthetic capacity as well as in leaf structure and leaf N and C concentrations. No correlation was found between leaf thickness and density. The correlations between area- and mass-based leaf N concentration and photosynthetic capacity were poor. Conversely, the species differed greatly in relative N allocation to carboxylation and bioenergetics. Principal component analysis (PCA) revealed that, of the recorded traits, only the computed fraction of total leaf N invested in photosynthesis was tightly correlated to photosynthetic capacity. We also used PCA to test to what extent species with similar shade tolerances displayed converging leaf traits related to photosynthesis. No clear-cut ranking could be detected among the shade-tolerant groups, as confirmed by a one-way ANOVA. We conclude that the large interspecific diversity in photosynthetic capacity was mostly explained by differences in the relative allocation of N to photosynthesis and not by leaf N concentration, and that leaf traits related to photosynthetic capacity did not discriminate shade-tolerance ranking of these tropical tree species. 相似文献
12.
A conceptual model was tested for explaining environmental and physiological effects on leaf gas exchange in the deciduous dry tropical woodland tree Boswellia papyrifera (Del.) Hochst. For this species we aimed at (i) understanding diurnal patterns in leaf gas exchange, (ii) exploring cause-effect relationships among external environment, internal physiology and leaf gas exchange, and (iii) exploring site differences in leaf gas exchange in response to environmental variables. Diurnal courses in gas exchange, underlying physiological traits and environmental variables were measured for 90 trees on consecutive days at two contrasting areas, one at high and the other at low altitude. Assimilation was highest in the morning and slightly decreased during the day. In contrast, transpiration increased from early morning to midday, mainly in response to an increasing vapor pressure deficit (VPD) and gradual stomatal closure. The leaf water potential varied relatively little and did not influence gas exchange during the measurement period. Our results suggest that the same cause-effect relationships function at contrasting areas. However, leaves at the higher altitude had higher photosynthetic capacity, reflecting acclimation to higher light levels. Trees at both areas nevertheless achieved similar leaf assimilation rates since assimilation was down-regulated by stomatal closure due to the higher VPD at the higher altitude, while it became more light limited at the lower altitude. Gas exchange was thus limited by a high VPD or low light levels during the wet season, despite the ability of the species to acclimate to different conditions. 相似文献
13.
We compared leaf gas exchange and water potential among the dominant tree species and major size classes of trees in an upland, pine-oak forest in northern Arizona. The study included old-growth Gambel oak (Quercus gambelii Nutt.), and sapling, pole, and old-growth ponderosa pines (Pinus ponderosa var. scopulorum Dougl. ex Laws.). Old-growth oak had higher predawn leaf water potential (Psi(leaf)) than old-growth pine, indicating greater avoidance of soil water stress by oak. Old-growth oak had higher stomatal conductance (G(w)), net photosynthetic rate (P(n)), and leaf nitrogen concentration, and lower daytime Psi(leaf) than old-growth pine. Stomatal closure started at a daytime Psi(leaf) of about -1.9 MPa for pine, whereas old-growth oak showed no obvious reduction in G(w) at Psi(leaf) values greater than -2.5 MPa. In ponderosa pine, P(n) and G(w) were highly sensitive to seasonal and diurnal variations in vapor pressure deficit (VPD), with similar sensitivity for sapling, pole, and old-growth trees. In contrast, P(n) and G(w) were less sensitive to VPD in Gambel oak than in ponderosa pine, suggesting greater tolerance of oak to atmospheric water stress. Compared with sapling pine, old-growth pine had lower morning and afternoon P(n) and G(w), predawn Psi(leaf), daytime Psi(leaf), and soil-to-leaf hydraulic conductance (K(l)), and higher foliar nitrogen concentration. Pole pine values were intermediate between sapling and old-growth pine values for morning G(w) and daytime Psi(leaf), similar to sapling pine for predawn Psi(leaf), and similar to old-growth pine for morning and afternoon P(n), afternoon G(w), K(l), and foliar nitrogen concentration. For the pines, low predawn Psi(leaf), daytime Psi(leaf), and K(l) were associated with low P(n) and G(w). Our data suggest that hydraulic limitations are important in reducing P(n) in old-growth ponderosa pine in northern Arizona, and indicate greater avoidance of soil water stress and greater tolerance of atmospheric water stress by old-growth Gambel oak than by old-growth ponderosa pine. 相似文献
14.
Variable chlorophyll fluorescence (Fvar) was investigated as a tool in detection of distinct seasonal physiological changes in 1+0 intact white spruce seedlings. The loss of the characteristic Fvar peak (Fp) between 0.8 and 1.0 s after illumination of dark adapted seedlings is an indication of regulation of photosynthetic activity in August. The peak represents excess photochemical water-splitting of photosystem II. We interpret its loss as a physiological indicator of the process of dormancy induction. Three dimensional (i.e. X[0-300 s], Y[rfu], Z[time of year] axis) Fvar curves of non-stressed seedlings measured over 300 s followed a three phase change over the growing season. In actively growing seedlings, the portion of the Kautsky induction curve between 60 and 300 s was 0.4 relative fluorescence units (rfu) in northern (i.e. >56° latitude) seedlots and 0.6 in the southern (i.e. <56° latitude) range seedlot from August until early September. About mid-September curve features between 60 and 300 s decreased sharply to approximately zero (rhu) by October. Freeze test data indicated seedlings became frost hardy during this time. The third, or inactive phase was seen as flat line from 40 to 100 s. The portion of the curve after 100 s was responsive to short term temperature changes. White spruce seedlots of northern and southern B.C. latitudes having curve fluorescence peak (Fp) values at about 1 s of 0.6, and 0.8 (rhu) respectively, plus curve minimum (Fmin) values at about 60 s which do not decrease further over a 2–3 week period represent stock which can safely be lifted for cold storage. The Fvar attribute at 5 s after the actinic light is turned on (F5s) correlates well with net photosynthesis (r2 =0.61) during the growing season. 相似文献
15.
The physiognomy of Caribbean dry forest is shorter, denser and contains a greater proportion of multi-stemmed trees than other neotropical dry forests. Our previous research, conducted after Hurricane Georges in 1998, has shown that dry forest trees sprout near the base following hurricane disturbance, even if the trees have not incurred structural damage. However, for these hurricane-induced sprouts to contribute to the physiognomy of the forest, they must grow and survive. We followed sprout dynamics and stem mortality on 1,407 stems from 1998, after Hurricane Georges, until 2005. The number of surviving sprouts and the proportion of sprouting stems decreased during the 7-year period, but the sprouting rate was still 3-fold higher and the proportion of sprouting stems 5-fold higher than before the hurricane. Mortality of non-sprouting stems (15.4%) was about the same as for sprouting stems (13.9%) after 7 years. The mean length of the dominant sprout surpassed 1.6 m by 2005, with over 13% of the dominant sprouts reaching subcanopy height. Sprout growth and survival varied among species. These results demonstrate that, despite some thinning, hurricane-induced sprouts survive and grow and that the unique physiognomic characteristic of Caribbean dry forests is related to hurricane disturbance. 相似文献
16.
In the tropical canopy tree, Dryobalanops aromatica Gaertn. f., upper-canopy leaves (UL) develop under sunlit conditions but are subjected to self-shading within the crown as they age. In contrast, lower-canopy leaves (LL) are exposed to uniform dim light conditions throughout their life span. By comparing leaf morphology and physiology of UL and LL, variations in leaf characteristics were related to leaf age and self-shading. Mass-based chlorophyll (chl) concentration and the chlorophyll/nitrogen (chl/N) ratio were lower and the chl a/b ratio was higher in UL than in LL. In UL, the chl/N ratio gradually increased and the chl a/b ratio gradually decreased with leaf aging, whereas these ratios remained unchanged with leaf age in LL. The effective quantum yield of photosystem II (PSII) (DeltaF/F(m)') at a given irradiance remained unchanged with leaf age in LL, whereas DeltaF/F(m)' changed with leaf age in UL. These data indicate N reallocation within the leaves from carbon fixation components to light harvesting components and a dynamic regulation of photochemical processes of PSII in response to increased self-shading of UL. Despite the difference in light environment with leaf age between UL and LL, maximum photosynthetic rates and nitrogen-use efficiency decreased with leaf aging in both UL and LL. Constancy in the chl/N ratio with leaf age in LL indicated that the decrease in photosynthetic capacity was caused by effects other than shading, such as leaf aging. We conclude that N reallocation and acclimation of PSII to self-shading occurred even in mature leaves, whereas the change in photosynthetic capacity with leaf age was more conservative. 相似文献
17.
Leaf hydraulic conductance (K(leaf)) and several characteristics of hydraulic architecture and physiology were measured during the first 10 weeks of leaf ontogeny in Populus tremula L. saplings growing under control, mild water deficit or elevated temperature conditions. During the initial 3 weeks of leaf ontogeny, most measured characteristics rapidly increased. Thereafter, a gradual decrease in K(leaf) was correlated with a decrease in leaf osmotic potential under all conditions, and with increases in leaf dry mass per area and bulk modulus of elasticity under mild water deficit and control conditions. From about Week 3 onward, K(leaf) was 33% lower in trees subjected to mild water deficit and 33% higher in trees held at an elevated temperature relative to control trees. Mild water deficit and elevated temperature treatment had significant and opposite effects on most of the other characteristics measured. The ontogenetic maximum in K(leaf) was correlated positively with the width of xylem conduits in the midrib, but negatively with the overall width of the midrib xylem, number of lateral ribs, leaf dry mass per area and bulk modulus of elasticity. The ontogenetic maximum in K(leaf) was also correlated positively with the proportion of intercellular spaces and leaf osmotic potential, but negatively with leaf thickness, volume of mesophyll cells and epidermis and number of cells per total mesophyll cell volume, the closest relationships being between leaf osmotic potential and number of cells per total mesophyll cell volume. It was concluded that differences in protoplast traits are more important than differences in xylem or parenchymal cell wall traits in determining the variability in K(leaf) among leaves growing under different environmental conditions. 相似文献
18.
《Southern Forests》2013,75(3):167-174
Euterpe edulis Mart. (Arecaceae) is a threatened palm tree of the Brazilian Atlantic Rainforest understory with fundamental importance for the restoration of degraded forest environments. We assessed the leaf gas exchange, growth and survival of E. edulis seedlings transplanted at three different forest sites (S1, S2 and S3) in the same area in which cocoa trees had been cultivated in a rustic agroforestry system. Measurement was carried out during the first year after seedling transplantation. The sites were characterised according to canopy openness (CO) and total daily photosynthetic photon flux density (PPFD). Average CO and PPFD values were 13.3%, 8.0% and 6.7%, and 3.34, 2.79 and 0.62 mol m?2 d?1 for S1, S2 and S3, respectively. A progressive decline in seedling survival was observed in all sites throughout the experiment. At 387 d after planting, survival at S1, S2 and S3 was 57%, 44% and 37%, respectively. The gross light-saturated photosynthetic rate (Amax), leaf area and plant biomass were significantly higher (P < 0.05) in S1 and S2 when compared with S3. The values of dark respiration rate (R d) and photosynthetic compensation irradiance (I c) were sufficiently low for a positive carbon balance. Notwithstanding, the interpretation of results of microclimate variables together with leaf gas exchange and growth variables indicated that seedlings at all sites were in a suboptimal condition to achieve Amax, which is probably the main cause of the dramatic decline in the seedlings’ survival throughout the first year after transplantation. From a practical point of view, if the values of CO and PFD are lower than 10% and 3 mol m?2 d?1, respectively, it is suggested that the transplanting of E. edulis seedlings to the understory of abandoned agroforestry systems be accompanied by cultural practices, such as the thinning and pruning of tree tops. 相似文献
19.
Fude Liu Ming Zhang Wenjin Wang Shuning Chen Jianwei Zheng Wenjie Yang Fengqin Hu Shuqing An 《Frontiers of Forestry in China》2009,4(1):75-84
In order to make clear the relationships between photosynthesis and leaf N, leaf P and SLA of tropical trees, and test the
differences in the relationships among life-form groups (trees, shrub-like trees and shrubs), seedlings and saplings of 101
species from a tropical montane rain forest, located in the Diaoluo Mountain of Hainan Island, were selected. The net photosynthesis
based on area and mass (A
area and A
mass), leaf nitrogen content based on area and mass (N
area and N
mass), leaf phosphorus content based on area and mass (P
area and P
mass) and specific leaf area (SLA) were measured and/or calculated. The results showed that A
area and A
mass tended to follow the order of shrubs > trees > shrub-like trees. One-way ANOVA showed that the difference in A
area between shrubs and shrub-like trees was significant (p<0.05), and for A
mass there were significant differences between shrubs and shrub-like trees and between shrubs and tree species (p<0.05). The relationships between A
area and N
mass were highly significant in all three life-form groups and for all species (p<0.0001). The correlation between A
area and P
mass was highly significant in shrubs (p = 0.0038), shrub-like trees (p < 0.0002) and for all species (p<0.0001), but not significant in trees (p>0.05). The relationship between A
area and SLAwas highly significant in shrubs (p = 0.0006), trees (p<0.0001) and for all species (p<0.0001), however this relation was not significant in shrub-like trees (p>0.05). The relationships between A
mass and leaf N and SLA were highly significant in all three life-form groups and for all species (p<0.0001). For A
mass and leaf P, there were significant correlations in tree groups (p = 0.0377) and highly significant correlations in shrub groups (p = 0.0004), shrub-like tree groups (p = 0.0018) and for all species (p < 0.0001). Stepwise regression showed that predicted A
mass values were closer to the observed values than those for predicted A
area values. Thus, it can be concluded that the relationships obtained from seedling and sapling measurements are close to those
from mature individuals; correlations between photosynthesis and N
mass, P
mass and SLA traits are significant and the relationships are stronger and more stable for A
mass than for A
area.
__________
Translated from Acta Ecologica Sinica, 2007, 27(11): 4651–4661 [译自:生态学报] 相似文献
20.
Variations in several growth, gas exchange and leaf traits among greenhouse-grown black locust (Robinia pseudoacacia L.) seedlings from 11 half-sib families were investigated. Three weeks after germination, early growth rates ranged from a minimum of 1 cm d(-1) in the slowest growing family, to a maximum of 3 cm d(-1) in the fastest growing family. Significant family variation in net photosynthetic rate per unit leaf area (P(N)), stomatal conductance, chlorophyll content, height, diameter, stem dry weight and total dry weight was observed. Net photosynthetic rate declined with seedling age. Net photosynthetic rate per unit leaf area was significantly correlated (r < 0.4) with specific leaf area, total chlorophyll, root dry weight, foliage dry weight and total dry weight. The correlation coefficients were higher (r >/= 0.55) between P(N) x total leaf area and growth traits (height, stem dry weight, foliage dry weight and total dry weight). The study indicated that variation in leaf area among the families was one reason for the lack of a strong relationship between P(N) and growth. 相似文献