首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In summer 1992, isoprene emission was measured on intact leaves and branches of Quercus alba (L.) at two heights in a forest canopy. Isoprene emission capacity (measured at 30 degrees C and a photosynthetic photon flux density of 1000 micro mol m(-2) s(-1)) was significantly higher in sun leaves than in shade leaves when expressed on a leaf area basis (51 versus 31 nmol m(-2) s(-1); P < 0.01). Because leaf mass per unit area (LMA, g m(-2)) was higher in sun leaves than in shade leaves, emissions of sun and shade leaves expressed on a dry mass basis did not differ significantly (99 versus 89 micro g C g(DW) (-1) h(-1); P = 0.05). Similar measurements in 1995 were consistent with the 1992 data, but data from leaves in more shaded locations demonstrated that isoprene emission capacity decreased with decreasing growth irradiance, irrespective of units of expression. Isoprene emission capacity in leaves of Q. coccinea Muenchh. and Q. velutina Lam. also declined steeply with canopy depth. Emission capacity, on a dry mass basis, showed no obvious pattern with canopy position in Q. prinus L. There was no difference in the temperature response of sun versus shade leaves of Q. alba, but shade leaves exhibited a greater quantum efficiency and saturated at lower irradiance than sun leaves. Rates of isoprene emission measured on branches of Q. alba were approximately 60% of those measured on individual leaves, as a result of self-shading within branch enclosures. It is recommended that within-canopy variation in isoprene emission capacity be incorporated into regional emission models.  相似文献   

2.
The atmospheric hydrocarbon budget is important for predicting ozone episodes and the effects of pollution mitigation strategies. Isoprene emission from plants is an important part of the atmospheric hydrocarbon budget. We measured isoprene emission capacity at the bottom, middle, and top of the canopies of a white oak (Quercus alba L.) tree and a red oak (Quercus rubra L.) tree growing adjacent to a tower in the Duke University Forest. Leaves at the top of the white oak tree canopy had a three- to fivefold greater capacity for emitting isoprene than leaves at the bottom of the tree canopy. Isoprene emission rate increased with increasing temperature up to about 42 degrees C. We conclude that leaves at the top of the white oak tree canopy had higher isoprene emission rates because they were exposed to more sunlight, reduced water availability, and higher temperature than leaves at the bottom of the canopy. Between 35 and 40 degrees C, white oak photosynthesis and stomatal conductance declined, whereas red oak (Quercus rubra) photosynthesis and stomatal conductance increased over this range. Red oak had lower rates of isoprene emission than white oak, perhaps reflecting the higher stomatal conductance that would keep leaves cool. The concentration of isoprene inside the leaf was estimated with a simplified form of the equation used to estimate CO(2) inside leaves.  相似文献   

3.
Quercus serrata Thunb. ex Murray is a widespread deciduous oak in China, the Korean Peninsula, and Japan, and a strong isoprene emitter. Establishing accurate inventories of this species and estimating net carbon budgets, including biogenic volatile organic compounds (BVOC), necessitates detailed evaluation of BVOC emission and oxidation characteristics. Emissions of isoprene, the most abundant BVOC, presumably contribute to atmospheric chemistry through the formation of photochemical oxidants and secondary organic aerosols. We built an isoprene flux monitoring system to simultaneously reveal characteristics of the flux and fate of isoprene at multiple locations in Q. serrata forests. We used proton transfer reaction mass spectrometry (PTR-MS) and an automated closed chamber to measure isoprene emissions from soil and leaves in a warm-temperate Q. serrata forest. We used a relaxed eddy accumulation system with PTR-MS to simultaneously measure the canopy flux. In continuous foliage chamber measurements, we observed daily variations of isoprene emissions and continuous nocturnal emissions from leaves. Nocturnal emissions exceeded 25 % of total daily leaf emissions and were relatively high at sunset and low at sunrise. These results suggest that nocturnal emissions from mature trees may not be negligible. When leaf emissions were high in the daytime, the canopy isoprene flux tended to plateau at an upper limit. Observations of isoprene concentrations and gradients suggest that the plateau was caused by acceleration of isoprene oxidation, and sequential formation of secondary organic aerosols may occur near the leaf just after emission. Elucidation of these linkages may require continuous field measurements with a simultaneous multi-flux monitoring system.  相似文献   

4.
Oaks emit large amounts of isoprene, a compound that plays an important role in tropospheric chemistry. Isopentenyl diphosphate isomerase (IDI, E.C. 5.3.3.2) catalyzes the isomerization of isopentenyl diphosphate (IDP) to dimethylallyl diphosphate (DMADP), and in isoprene-emitting plants, isoprene synthase (IS) converts the DMADP to isoprene. To study the role of IDI in isoprene biosynthesis of oak leaves, we compared IDI and IS activities in pedunculate oak (Quercus robur L.) and pubescent oak (Quercus pubescens Willd.) with the isoprene emission rates of these species. We developed a non-radioactive enzyme assay to detect IDI activity in crude leaf extracts of Q. robur. The substrate dependency of IDI activity showed biphasic kinetics with Michaelis constants (K(m)(IDP)) of 0.7 +/- 0.2 micro M for a high-affinity phase and 39.5 +/- 6.9 micro M for a low-affinity phase, potentially attributable to different IDI isoforms. Under standard assay conditions, the temperature optimum for IDI activity was about 42 degrees C, but IDI activity was detectable up to 60 degrees C. A sharp pH optimum appeared around pH 7, with 20 mM Mg(2+) also required for IDI activity. Neither IDI activity nor IS activity showed diurnal variation in Q. robur leaves. The sum of IDI activities showed a significant linear correlation with IS activity in both Q. robur and Q. pubescens leaves, and both enzyme activities showed a linear relationship to isoprene emission factors in leaves of these oak species, indicating the possible involvement of IDI in isoprene biosynthesis by oak leaves.  相似文献   

5.
Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated natural fluctuations in leaf temperature and effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the top of the canopy at Harvard Forest. Throughout the day, leaves often reached temperatures as much as 15 degrees C above air temperature. The highest temperatures were reached for only a few seconds at a time. We compared isoprene emission rates measured when leaf temperature was changed rapidly with those measured when temperature was changed slowly. In all cases, isoprene emission rate increased with increasing leaf temperature up to about 32 degrees C and then decreased with higher temperatures. The temperature at which isoprene emission rates began to decrease depended on how quickly measurements were made. Isoprene emission rates peaked at 32.5 degrees C when measured hourly, whereas rates peaked at 39 degrees C when measurements were made every four minutes. This behavior reflected the rapid increase in isoprene emission rate that occurred immediately after an increase in leaf temperature, and the subsequent decrease in isoprene emission rate when leaf temperature was held steady for longer than 20 minutes. We concluded that the observed temperature response of isoprene emission rate is a function of measurement protocol. Omitting this parameter from isoprene emission models will not affect simulated isoprene emission rates at mild temperatures, but can increase isoprene emission rates at high temperatures.  相似文献   

6.
We used a localized ozone (O3) fumigation (LOF) system to study acute and short-term O(3) effects on physiological leaf traits. The LOF system enabled investigation of primary and secondary metabolic responses of similarly and differently aged leaves on the same plant to three different O3 concentrations ([O3]), unconfounded by other influences on O3 sensitivity, such as genetic, meteorological and soil factors. To simulate the diurnal cycle of O3 formation, current-year and 1-year-old Quercus ilex (L.) and Quercus pubescens (L.) leaves were fumigated with O3 at different positions (and hence, different leaf ages) on the same branch over three consecutive days. The LOF system supplied a high [O3] (300+/-50 ppb) on leaves appressed to the vents, and an intermediate, super-ambient [O3] (varying between 120 and 280 ppb) on leaves less than 30 cm from the vent. Leaves more than 60 cm from the O3 vent were exposed to an [O3] comparable with the ambient concentration, with a 100 ppb peak during the hottest hours of the day. Only leaves exposed to the high [O3] were affected by the 3-day treatment, confirming that Mediterranean oak are tolerant to ambient and super-ambient [O3], but may be damaged by acute exposure to high [O3]. Stomatal and mesophyll conductance and photosynthesis were all reduced immediately after fumigation with high [O3], but recovered to control values within 72 h. Both the intercellular and chloroplast CO2 concentrations ([CO2]) remained constant throughout the experiment. Thus, although treatment with a high [O3] may have induced stomatal closure and consequent down-regulation of photosynthesis, we found no evidence that photosynthesis was limited by low [CO2] at the site of fixation. One-year-old leaves of Q. ilex were much less sensitive to O3 than current-year leaves, suggesting that the low stomatal conductance observed in aging leaves limited O3 uptake. No similar effect of leaf age was found in Q. pubescens. Dark respiration decreased during the treatment period, but a similar decrease was observed in leaves exposed to low [O3], and therefore may not be an effect of O3 treatment. Light respiration, on the other hand, was mostly constant in ozone-treated leaves and increased only in leaves in which photosynthesis was temporarily inhibited by high [O3], preventing them from acting as strong sinks that recycle respiratory CO2 in the leaves. There was no evidence of photochemical damage in Q. ilex leaves, whereas Q. pubescens leaves exposed to a high [O3] showed limited photochemical damage, but recovered rapidly. Biochemical markers were affected by the high [O3], indicating accumulation of reactive oxygen species (ROS) and increased denaturation of lipid membranes, followed by activation of isoprene biosynthesis in Q. pubescens leaves. We speculate that the high isoprene emissions helped quench ROS and normalize membrane stability in leaves recovering from O3 stress.  相似文献   

7.
The effects of the interaction between high growth temperatures and water stress on gas-exchange properties of Populus nigra saplings were investigated. Water stress was expressed as a function of soil water content (SWC) or fraction of transpirable soil water (FTSW). Isoprene emission and photosynthesis (A) did not acclimate in response to elevated temperature, whereas dark (R(n)) and light (R(d)) respiration underwent thermal acclimation. R(d) was ~30% lower than R(n) irrespective of growth temperature and water stress level. Water stress induced a sharp decline, but not a complete inhibition, of both R(n) and R(d). There was no significant effect of high growth temperature on the responses of A, stomatal conductance (g(s)), isoprene emission, R(n) or R(d) to FTSW. High growth temperature resulted in a significant increase in the SWC endpoint. Photosynthesis was limited mainly by CO(2) acquisition in water-stressed plants. Impaired carbon metabolism became apparent only at the FTSW endpoint. Photosynthesis was restored in about a week following rewatering, indicating transient biochemical limitations. The kinetics of isoprene emission in response to FTSW confirmed that water stress uncouples the emission of isoprene from A, isoprene emission being unaffected by decreasing g(s). The different kinetics of A, respiration and isoprene emission in response to the interaction between high temperature and water stress led to rising R(d)/A ratio and amount of carbon lost as isoprene. Since respiration and isoprene sensitivity are much lower than A sensitivity to water stress, temperature interactions with water stress may dominate poplar acclimatory capability and maintenance of carbon homeostasis under climate change scenarios. Furthermore, predicted temperature increases in arid environments may reduce the amount of soil water that can be extracted before plant gas exchange decreases, exacerbating the effects of water stress even if soil water availability is not directly affected.  相似文献   

8.
From June to December, we determined the effects of variations in biochemical composition on delta(13)C of tree rings of 2-year-old oaks (Quercus petraea (Matt.) Liebl.) growing under semi-natural conditions, and the dependence of these effects of water stress during the growth season. Percent abundance, carbon concentration and delta(13)C were measured in holocellulose, lignin, extractive-free wood, starch and a water-soluble fraction. Relative concentrations of lignin and holocellulose in the extractive-free wood varied little during the season or in response to water stress, indicating that these compounds could not quantitatively explain the variations in whole-wood delta(13)C. Among all sampled tree rings, the relative concentration of each structural compound (holocellulose and lignin) accounted for less than 5% of the delta(13)C variability in whole wood. Variations in holocellulose and extractive-free wood delta(13)C between tree rings were almost identical (r > 0.95), whereas variations in lignin delta(13)C were less well correlated to these compounds. Whole-wood delta(13)C had a slightly altered isotopic signal compared with that of the structural compounds because of the presence of the extractive component. These results showed that variations in lignin delta(13)C and lignin concentration have little influence on extractive-free wood delta(13)C and whole-wood delta(13)C. Rather, holocellulose influences delta(13)C the most. Thus, we confirmed that, for climatic reconstruction from tree rings, removal of extractives by soxhlet is generally sufficient and sometimes unnecessary. Our findings also indicate that, in the case of rapid and severe water stress, the structural component did not accurately record the associated increase in delta(13)C because of dilution with previously formed organic matter and cessation of trunk growth. The effect of drought on carbon isotope ratios was more pronounced in the extractive compounds, making them good water stress indicators but only on a scale of days to months.  相似文献   

9.
The variation in twenty-four parameters measrued on small wood samples of Eucalyptus deglupta has been described adequately by four principal components. The interpretation of these components and determination of the relative importance of variables within components were aided by techniques of factor analysis and varimax rotation.  相似文献   

10.
Hui D  Luo Y  Katul G 《Tree physiology》2003,23(7):433-442
Interannual variability (IAV) in net ecosystem exchange of carbon (NEE) is a critical factor in projections of future ecosystem changes. However, our understanding of IAV is limited because of the difficulty in isolating its numerous causes. We proposed that IAV in NEE is primarily caused by climatic variability, through its direct effects on photosynthesis and respiration and through its indirect effects on carbon fluxes (i.e., the parameters that govern photosynthesis and respiration), hereafter called functional change. We employed a homogeneity-of-slopes model to identify the functional change contributing to IAV in NEE and nighttime ecosystem respiration (RE). The model uses multiple regression analysis to relate NEE and RE with climatic variables for individual years and for all years. If the use of different slopes for each year significantly improves the model fitting compared to the use of one slope for all years, we consider that functional change exists, at least on annual time scales. With the functional change detected, we then partition the observed variation in NEE or RE to four components, namely, the functional change, the direct effect of interannual climatic variability, the direct effect of seasonal climatic variation, and random error. Application of this approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 indicated that functional change, interannual climatic variability, seasonal climatic variation and random error explained 9.9, 8.9, 59.9 and 21.3%, respectively, of the observed variation in NEE and 13.1, 5.0, 38.1 and 43.8%, respectively, of the observed variation in RE.  相似文献   

11.
Acoustic emission from softwoods in tension   总被引:3,自引:0,他引:3  
Summary Acoustic emission (AE) monitoring is a non-destructive testing technique widely used to detect flaw development and crack propagation in metals, ceramics, polymers and composite materials.This paper relates the AE-strain characteristics from three softwoods tested in tension to mechanisms of deformation observed by scanning electron microscopy. All wood specimens are identical in size and radial-longitudinal in orientation, enabling the path of failure through planes of earlywood and latewood to be examined.It is found that the proportion of earlywood to latewood in each species has a marked effect on the shape of the AE-strain curves. Parana pine, containing very few latewood tracheids, exhibits a close to linear relationship between log cumulative emissions and strain until close to failure when the count rate increases rapidly. Douglas-fir, which has well-defined earlywood-latewood boundaries generates many AEs at low strain and there is greater variation in the shape of the AE characteristic between samples.Parana pine and Douglas-fir are tested at 20 °C (12.5 % EMC). Scots pine is also stressed at 20°C (12.5%EMC), 20°C (0.7%EMC) and 80°C (0.7%EMC), to assess the effect of moisture content on AE.Values of Young's modulus, stress at failure and work of fracture for the three softwoods are compared with the AE-strain data. Although the work of fracture is related to the total AEs to failure, no direct proportionality exists between the two parameters.Finally, the AE-strain data for plywood and glass-reinforced plastic (GRP), both man-made composite materials, are compared with those of wood, the natural composite material.S.R.C. support for this work under grant No. GR/A/13257 is gratefully acknowledged. The support of Professor Bryan Harris of the School of Materials Science, University of Bath and Dr. J. M. Dinwoodie of the Building Research Establishment, Princes Risborough is greatly appreciated. Mr. B. Dobraszczyk performed the impact tests.  相似文献   

12.
板栗树冠节肢动物群落的时间生态位研究   总被引:3,自引:0,他引:3  
测定了板栗树冠节肢动物群落主要害虫和天敌的时间生态位,分析了各类群在时间资源序列上分布的数量特征和资源利用状况,研究了各类群之间的竞争与共存机制.研究结果表明:在害虫和天敌中分别以象甲和瓢虫类的时间生态位宽度最大,象甲和蜘蛛类的时间生态位重叠指数最大,其次为蜘蛛和瓢虫类;象甲类和瓢虫类在时间资源上分布较广,对资源具有较强的竞争作用.蜘蛛类对象甲类具有较强的跟随捕食作用.蜘蛛类和瓢虫类对时间资源具有较强的竞争作用。  相似文献   

13.
Temporal variation in nutrient concentrations of Scots pine (Pinus sylvestris L.) needles was studied during a three‐year period in three stands of differing stages of development. Concentrations of N, P and K varied significantly between years; this variation was related to differences in needle dry weight. Concentrations of all measured nutrients (N, P, K, Ca, Mg, Mn, Cu, Zn, Fe, B) and Al varied between seasons; this variation was related to nutrient mobility and the annual physiological cycle. Concentrations of the mobile nutrients N, P and K decreased in spring and early summer during shoot and needle elongation and increased in late summer and autumn during needle senescence and litterfall. Concentrations of Mg, Cu, Zn and B followed somewhat similar patterns. The poorly mobile nutrients Ca, Mn and Fe accumulated gradually in needles during each growing season. Needle nutrient concentrations were stable during the nonactive period.  相似文献   

14.
The release of hydrogen cyanide from endogenous cyanide-containing compounds in plants is an effective herbivore deterrent. We investigated temporal and spatial variations in cyanogenic glycoside concentration in greenhouse-grown seedlings and 6-year-old plantation trees of Eucalyptus cladocalyx F. Muell., which allocates up to 20% of leaf nitrogen to the cyanogenic glycoside, prunasin. The highest cyanogenic glycoside concentrations were in the young, developing vegetative and reproductive tissues. Both the overall cyanogenic glycoside concentration and the proportion of nitrogen allocated to cyanogenic glycoside decreased as tissues matured. Cyanogenic glycoside and nitrogen concentrations were similar at all positions on the leaf blade. There was no change in concentration of cyanogenic glycosides either diurnally or following wounding of the tissue, suggesting that these compounds are constitutive. Cyanogenic glycoside concentration varied seasonally in young leaf tips of field-grown E. cladocalyx, but not in mature, fully expanded leaves. Although some of the changes in cyanogenic glycoside concentration in young leaf tips may have been driven by changes in leaf nitrogen, there was a significant decrease in the proportion of nitrogen allocated to cyanogenic glycosides in young leaves during the summer, coinciding with the peak flowering period. Mobilization of cyanogenic glycosides may have occurred to provide nitrogen for reproduction. Most of the observed temporal and spatial variations in cyanogenic glycosides are consistent with the optimal use of resources, particularly nitrogen.  相似文献   

15.
Abe H  Nakai T  Utsumi Y  Kagawa A 《Tree physiology》2003,23(12):859-863
Cell behavior in the cambium and developing xylem of 3-year-old Japanese cedar (Cryptomeria japonica D. Don.) trees, during and after an 11-day suspension of irrigation, was analyzed. Leaf xylem pressure potential and tangential strain of the stem surface were monitored throughout the experiment. Anatomical features and numbers of developing tracheids and cambial cells were observed in four trees, sampled on Days 0, 4, 8 and 11 after irrigation was suspended. Daytime xylem pressure potential decreased to -1.9 MPa on Day 7 and remained the same until irrigation was resumed on Day 11. The transverse dimensions of the tracheids, which began to form secondary walls, began to decrease on Day 4. The number of cells in the cambial zone and cell expansion zone decreased abruptly on Day 8. Tangentially aligned developing tracheids with collapsed cell walls were observed in samples harvested on Days 8 and 11. Secondary wall formation was recognized in these tracheids. After the resumption of irrigation, xylem pressure potential recovered rapidly to the same value as before the suspension of irrigation. Tangential strain increased within 30 min after the resumption of irrigation, and continued to increase until the onset of light the next day. Eighteen days after the resumption of irrigation, anatomical features of cells in the cambium and cell-expansion zone were similar to those observed before suspension of irrigation.  相似文献   

16.
The utility of site index as a predictor variable in models for complex, mixed species stands is limited because the site index concept is not well suited for these stand types. Additionally, there is no standard protocol of estimating site index for uneven-aged mixed species stands, which is evident in permanent sample plot (PSP) and co-operative (COOP) data sets available from the Province of Ontario, Canada. Under such circumstances, an alternative to site index in a basal area increment model was explored, using a combination of climate and Forest Ecosystem Classification (FEC) variables from the Ontario boreal region. Among the four candidate climate variables chosen, mean annual temperature (MAT) explained the most variability in basal area increment for the four selected tree species – trembling aspen (Populus tremuloides Michx.), balsam fir (Abies balsamea (L.) Mill.), jack pine (Pinus banksiana Lamb.), and black spruce (Picea mariana (Mill.) B.S.P.). Our results indicated that a combination of the climate variable, MAT, and FEC explained a substantially higher proportion of variation in the basal area increment than site index alone. Thus, climate and FEC variables are superior substitutes in the basal area increment model even when error-free site index values are possible to obtain.  相似文献   

17.
以湖南省15个栎类固定样地为研究对象,从6种生长模型中选取栎类断面积最优基础模型,在此基础上构建含林分类型哑变量的栎类单木断面积生长模型.结果表明:栎类单木断面积最优基础模型为Logistic;单木哑变量模型相比于其它基础模型,模型的R2由0.785提高到0.869,RRMSE由16.65%减少到9.28%,模型精度显...  相似文献   

18.
Issues in the development and formulation of forest site-index models are examined, linking the forestry terminology and methods to standard mathematical concepts. Variability complicates interpretation. Three sources of variation are distinguished: between sites, within sites, and observation error, with the article focusing mainly on the second one. Two site-index definitions arising from different views about the variability are contrasted. Modelling based on algebraic difference equations (ADE’s) is analyzed in detail, relating it to concepts of state space flows used in modern dynamical systems theory. It is shown that, given a stand current state, ADE’s predict growth rates that are independent of site quality.  相似文献   

19.
Epicuticular waxes have vital roles in the growth and development of plants and in defense. Conifers have a considerable amount of waxes on their cones and leaves.Here we characterized the n-alkane composition of Iranian conifers, including Juniperus oblonga, J. foetidissima, J.sabina, J. communis subsp. hemisphaerica, J. excelsa,Cupressus sempervirens, Platycladus orientalis from Cupressaceae and Taxus baccata from Taxaceae for the first time using GC-FID analyses. In the waxes, 25 n-alkane homologs with chain lengths ranging from C7 to C32 were identified. Short-chain n-alkanes were dominant in almost all samples with some exceptions. Complementary studies to elucidate complete wax constituents of Iranian conifers and n-alkane distribution pattern as a function of geographical and bioclimatic variables are recommended.  相似文献   

20.
三环泡湿地位于黑龙江省三江平原腹地,是典型的内陆淡水沼泽、湖泊湿地,是三江平原湿地的典型代表。作为湿地水生生态系统的初级生产者和食物链基础环节的浮游植物和浮游动物,由于对环境变化敏感,其群落变化常被认为是评价水环境质量的一个重要指标。文章通过对三环泡湿地浮游生物的种类组成和水平分布的调查与分析,确定了三环泡湿地浮游生物的常见种和优势种,分析了三环泡湿地浮游生物群落结构时空分布的特征,对揭示东北不同类型湿地浮游生物功能群对各种人为污染的响应机制具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号