首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate differences in growth and adaptability of maritime pine (Pinus pinaster Ait.), we studied growth, polycyclism, needle tissue carbon isotope composition (delta(13)C) as an estimate of water-use efficiency (WUE) and survival of seven populations at 10 years of age growing in a performance trial at a provenance test site in Escaroupim, Portugal. Six populations were from relatively high rainfall sites in Portugal and southwestern France (Atlantic group), and one population was from a more arid Mediterranean site in Spain. There were significant differences between some populations in total height, diameter at breast height, delta(13)C of bulk needle tissue, polycyclism and survival. A population from central Portugal (Leiria, on the Atlantic coast) was the tallest and had the lowest delta(13)C. Overall, the variation in delta(13)C was better explained by the mean minimum temperatures of the coldest month than by annual precipitation at the place of origin. Analyses of the relationships between delta(13)C and growth or survival revealed a distinct pattern for the Mediterranean population, with low delta(13)C (and WUE) associated with the lowest growth potential and reduced survival. There were significant negative correlations between delta(13)C and height or survival in the Atlantic group. Variation in polycyclism was correlated with annual precipitation at the place of origin. Some Atlantic populations maintained a high growth potential while experiencing moderate water stress. A detailed knowledge of the relationships between growth, survival and delta(13)C in contrasting environments will enhance our ability to select populations for forestry or conservation.  相似文献   

2.
Waring RH  Silvester WB 《Tree physiology》1994,14(11):1203-1213
Although herbaceous species generally show little within plant variation in delta(13)C, trees show large spatial and temporal differences. We found that the aspect of exposure and branch length accounted for up to 6 per thousand delta(13)C difference within the foliage of individual trees of Pinus radiata D. Don. The foliage on branches 0.5 m in length was as much as 4 per thousand more depleted in (13)C than foliage on 10-m long branches, and an additional 2 per thousand more depleted on the shaded side than on the exposed side. We confirmed that on clear days, relative branch hydraulic conductivity, defined as the ratio of transpiration to the water potential gradient, was much higher in short branches than in long branches. Stomatal conductance remained high in foliage on short branches during the day, whereas it declined progressively in long-branch foliage under similar conditions. These differences were sufficient to explain the observed variation in delta(13)C in foliage on long and short branches.  相似文献   

3.
The relationship between maintenance respiration (Rm) of woody organs and their structural characteristics was explored in adult Pinus pinaster Ait. trees. We measured Rm on 75 stem and branch segments of different ages (from 3 to 24 years) and diameters (from 1 to 35 cm). The temperature response of Rm was derived from field measurements based on a classical exponential function with Q10 = 2.13. Relationships between Rm and the dimensions of the woody organs were analyzed under controlled conditions in the laboratory. The surface area of a woody organ was a better predictor of Rm than volume, but surface area failed to account for the observed within-tree variability of Rm among stems, branches and twigs. Two simple models were proposed to predict the variability of Rm at 15 degrees C in an adult tree. Model 1, a linear function model based on the dry mass and nitrogen concentration of sapwood and phloem tissues, explained most of the variability of Rm in branches and stems (R2 = 0.97). We concluded that the respective contributions of the phloem and sapwood depend on the location and diameter of the woody organ. Model 2, a power-law function model based on the length, diameter and age of the sample, explained the same variance of Rm as Model 1 and is appropriate for scaling Rm to the stand level. Models 1 and 2 appear to explain a larger variability of Rm than models based on stem area or sapwood mass.  相似文献   

4.
The carbon isotopic composition (delta(13)C) of wood and leaf cellulose of beech trees (Fagus sylvatica L.) was studied at 80 sites in northeastern France. We sampled sites with contrasting water balance, depending on soil type and precipitation. We tested the hypothesis that inter-site variations in plant delta(13)C reflect the spatial distribution of soil water availability, and we assessed whether delta(13)C could be used as a bioindicator of soil water availability. Patterns of variation in delta(13)C were compared with estimates of monthly water balance and with other soil characteristics. Between-site variability in delta(13)C was high (2.9 per thousand range in wood cellulose, 2.1 per thousand in leaf cellulose), but variation in water availability appeared to be only a minor factor contributing to this variation in delta(13)C. Unexpectedly, spatial variations in wood and leaf cellulose delta(13)C were significantly and positively related to soil fertility expressed by soil pH (r = 0.42 and 0.43, respectively) and cation content. On average, trees growing on acidic soils displayed 0.5 per thousand lower delta(13)C in both wood and leaf material than trees growing on neutral or calcareous soils. Our initial hypothesis of a strong negative relationship between delta(13)C and site water availability was not confirmed. In the study zone, neither wood nor leaf delta(13)C appeared to be a reliable bioindicator of spatial variations in water availability. Possible causes for the lack of a relationship are discussed. Our findings confirm, under natural conditions, the strong effect of soil fertility on water-use efficiency previously observed in experiments. This effect needs to be considered in isotopic studies involving different sites.  相似文献   

5.
Panek JA  Waring RH 《Tree physiology》1995,15(10):657-663
The natural abundance of stable carbon isotopes in the annual rings of forest trees is used as a tracer of environmental changes such as climate and atmospheric pollution. Although tree-ring delta(13)C varies by about 2 per thousand from year to year, variability within the foliage can be as high as 6 per thousand. Recent studies have shown that branch length affects stomatal response, which influences the integrated foliar delta(13)C signal. To improve the ability of delta(13)C to predict climate differences, we examined the relationship between branch length and foliar delta(13)C in Pseudotsuga menziesii (Mirb.) Franco from four sites across a steep climate gradient in Oregon. The transect spanned the boundary between the ranges of the coastal variety, P. menziesii var. menziesii (three sites), and the Rocky Mountain variety, P. menziesii var. glauca (one site). At the most maritime site, branch length explained 76% of within-site variation of 5 per thousand, whereas at the harshest site, branch length accounted for only 15% of this variation. We considered the possibility that cavitation in the water-conducting xylem obscures the branch length effect in the harsher climates. Cavitation, as measured by dye perfusion, was most extensive at sites where the branch length effect in the coastal variety was weakest. Trees at the site with the most substantial cavitation displayed seasonal xylem refilling. Branch length standardization significantly improved the relationship between delta(13)C and climate. With standardization to constant length, delta(13)C values were significantly related to the degree that climatic variables, as modeled with a forest growth simulation model, constrain transpiration (R(2) = 0.69, P < 0.0001). Without standardization, the R(2) was 0.27. We conclude that sampling standard length branches or tree rings from trees of similar shape and size is desirable when seeking correlations between isotopic composition and climate.  相似文献   

6.
To explore the physiological mechanisms underlying ozone-induced growth reductions in loblolly pine (Pinus taeda L.), seedlings were exposed to sub-ambient (charcoal-filtered), ambient or twice-ambient ozone in open-top chambers for three growing seasons. In the final year of exposure, current-year needle fascicles were labeled with (14)CO(2) and the incorporation of (14)C into biochemical fractions was followed for 48 hours. Irrespective of ozone treatment, losses of (14)C-assimilates from foliage to respiration and translocation were minimal during the first 3 hours, whereas more than 60% of the label was lost during the next 45 hours. Radiolabel in sugar decreased rapidly after a lag period, roughly paralleling the pattern of total (14)C loss. The amount of (14)C label in starch and lipids plus pigments remained constant throughout the 48-hour chase period, whereas the amount of (14)C label in other fractions showed a net decrease over the 48-hour chase period. Ozone treatments altered foliar carbon dynamics in two ways: (1) ozone exposure increased foliar (14)C retention up to 21% for the first 5 hours after labeling, but not thereafter, and (2) ozone exposure decreased partitioning of (14)C into starch and increased partitioning of (14)C into organic acids, residue, and lipids plus pigments, indicating an intensified partitioning of carbon to injury and repair processes. Both short-term carbon retention and diversion of carbon from storage compounds to repair processes are foliar mechanisms by which ozone exposure could decrease growth in loblolly pine seedlings.  相似文献   

7.
Huang Z  Xu Z  Blumfield TJ  Bubb K 《Tree physiology》2008,28(10):1535-1543
Weed control may improve the growth of forest plantations by influencing soil water and nutrient availability, but our knowledge of leaf-level physiological responses to weed control at different within-canopy positions is limited for tropical and subtropical plantations. Foliar carbon (delta(13)C) and oxygen (delta(18)O) isotope compositions, gas exchange, and nitrogen (N(mass)) and phosphorus (P(mass)) concentrations at four canopy positions were assessed in a young spotted gum (Corymbia citriodora subsp. Variegata (F. Muell.) A.R. Bean & M.W. McDonald) plantation subjected to either weed control or no weed control treatment, to test if leaves at different positions within the tree canopy had the same physiological responses to the weed control treatment. Weed control increased foliar delta(13)C but lowered delta(18)O in the upper-outer and upper-inner canopy, indicating that weed control resulted in a higher foliar photosynthetic capacity at upper-canopy positions, a conclusion confirmed by gas exchange measurements. The increased photosynthetic capacity resulting from weed control can be explained by an increase in foliar N(mass). In the lower-outer canopy, weed control reduced foliar delta(13)C while lowering delta(18)O even more than in the upper-canopy, suggesting strong enhancement of the partial pressure of CO(2) in the leaf intercellular spaces and of foliar stomatal conductance in lower-canopy foliage. This conclusion was supported by gas exchange measurements. Foliar photosynthesis in the lower-inner canopy showed no significant response to weed control. The finding that leaves at different canopy positions differ in their physiological responses to weed control highlights the need to consider the canopy position effect when examining competition for soil nutrient and water resources between weeds and trees.  相似文献   

8.
Heat treatment of Pinus pinaster and Eucalyptus globulus wood was carried out by hot air in an oven for 2–24 h at 170–200°C and by steam in an autoclave for 2–12 h at 190–210°C. The colour parameters L*, a* and b* were determined by the CIELAB method on radial, tangential and transverse sections of untreated and treated wood, and their variation with regard to the treatment (ΔL*, Δa* and Δb*) were calculated in percent. For untreated eucalypt wood, lightness (L*) varied between 54.1 and 63.8% with a* between 7.4 and 8.5, and b* between 15.7 and 19.9. For untreated pine wood, L* varied between 67.3 and 76.1%, a* between 6.9 and 7.6 and b* between 16.3 and 24.1. Oven heat-treated wood became darker (ΔL* about 50% for 4% mass loss), and this was more for eucalypt wood under the same treatment conditions. In general, the contribution of red (a*) and yellow (b*) colour decreased with heat treatment. The transverse section of the two species darkened less for both the treatments with small differences between radial and tangential sections. Lightness decrease was related to chemical changes; with good correlations with glucose (R = 0.96), hemicelluloses (R 2 = 0.92) and lignin (R 2 = 0.86). As regards colour, the heat treatments showed an interesting potential to improve the wood quality for solid timber products from pine and eucalypt.  相似文献   

9.
Summary Spacing trials were established inPinus pinaster, in plantations in the Southern and South-Western Cape Province in South Africa. Eight spacings, with nominal initial stem numbers between 125 and 3000 were tested in each of the two trials, with a single replicate in each experiment. The Chapman-Richards growth model was applied to mean diameter, mean height and basal area/ha. For diameter and height, the assumption m=0 holds true, but for basal area/ha, this parameter is related to initial stem number. The volume growth of each sample plot was estimated from equations with basal area and mean height and their interaction as predictor-variables. The regression model also included constraints for basal area and height, to prevent anomalies for the estimated volume per hectare at young age. Each of the trials contained a number of plots, thinned after the onset of competition. The growth rates in these plots was statistically significantly greater than that of the same stand density in the unthinned plots.   相似文献   

10.
11.
Lehtonen A 《Tree physiology》2005,25(7):803-811
Dynamic decomposition models are needed to estimate changes in the carbon stock of boreal soil because these changes are difficult to measure directly. An important aboveground carbon flux to the soil is foliage litterfall. To estimate this flux, both the amount and the turnover rate of the foliage biomass component must be known. Several methods for estimating foliage biomass of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.), including biomass equations and biomass expansion factors (BEFs), were compared with predicted foliage biomass based on forest inventory plot-level measurements. Measured foliage biomass was up-scaled from the branch-level to the plot-level by combining forest inventory variables (diameter, height, height at the crown base and crown base diameter) based on the assumptions of pipe model theory. Combining the foliage biomass: cross-sectional area ratio with the forest inventory variables provided accurate estimates of foliage biomass at the plot-level for plots in southern Finland. The results emphasize the need to test biomass equations with independent data, especially when the equations applied are based on neighboring regions.  相似文献   

12.
Leffler AJ  Evans AS 《Tree physiology》2001,21(15):1149-1155
Different populations of widely distributed species can experience dramatically different climatic conditions that may influence physiological activity, specifically carbon assimilation and water use. Populus fremontii Wats. (Fremont cottonwood) populations are found near rivers of varying size along a precipitation gradient from New Mexico to northern California. Climatic differences among populations may lead to physiological differences because P. fremontii is sensitive to water availability. To assess physiological variation among populations, we collected foliage and wood samples from 13 populations that experience different precipitation and stream flow regimes and analyzed the samples for carbon isotope composition (delta13C). Wood delta13C served as a lifetime-averaged indicator of water-use efficiency (WUE), whereas foliage delta13C provided as an estimate of WUE during the growing season of collection. We found approximately 3.4 per thousand variation in delta13C among populations for both foliage (-31.1 to -27.9 per thousand) and wood (-28.3 to -24.7 per thousand). Wood delta13C was, on average, 2.8 per thousand more enriched than foliage. Some of the variation in wood delta13C can be explained by variation in elevation of the study sites. We constructed total precipitation and mean stream flow variables based on the length of the growing season at each study site and analyzed for a relationship between delta13C, precipitation and stream flow. A significant relationship between foliage delta13C and precipitation was found, but water availability did not explain a significant fraction of the variation in wood delta13C. The data suggest that water availability can account for some of the delta13C variation among populations but, given the large residual variances, other factors are important.  相似文献   

13.
To determine if trees respond to dynamic and static loading in the same manner, 2-year-old maritime pine (Pinus pinaster Ait.) trees were subjected to different types of mechanical loading in the field. One block of trees (the control) were kept in pots and planted in the field at an angle of 0 or 45 degrees to the vertical. A similar block of leaning potted trees was planted nearby and subjected to frequent, unilateral wind loading for a period of 1 s every 2 min. Half the leaning trees were oriented toward the direction of wind loading and half were oriented along the axis of wind loading. The stem profile was measured three times during the growing season to quantify the rate of stem straightening. Compression wood formation and stem shape were measured in all plants. No differences in mean height or diameter were observed between blocks and all leaning trees straightened, but not at the same rate. Although no difference in the rate of apical straightening occurred between control and wind-treated trees, the righting response of the basal part of the stem of leaning trees subjected to wind was four times greater than that of leaning trees without wind. No differences in the righting response were observed between leaning trees growing toward and trees growing away from the source of wind. No significant differences in compression wood formation were found between control trees and wind-treated trees, indicating that other factors must determine the reorientation rate of leaning trees. Results are discussed with reference to the quality of compression wood in conifers and the mechanotransductive pathway in plants.  相似文献   

14.
We tested the hypothesis that branch hydraulic conductivity partly controls foliar stable carbon isotope ratio (delta13C) by its influence on stomatal conductance in Pinus monticola Dougl. Notching and phloem-girdling treatments were applied to reduce branch conductivity over the course of a growing season. Notching and phloem girdling reduced leaf-specific conductivity (LSC) by about 30 and 90%, respectively. The 90% reduction in LSC increased foliar delta13C by about 1 per thousand (P < 0.0001, n = 65), whereas the 30% reduction in LSC had no effect on foliar delta13C (P = 0.90, n = 65). Variation in the delta13C of dark respiration was similar to that of whole-tissues when compared among treatments. These isotopic measurements, in addition to instantaneous gas exchange measurements, suggested only minor adjustments in the ratio of intercellular to atmospheric CO2 partial pressures (ci/ca) in response to experimentally reduced hydraulic conductivity. A strong correlation was observed between stomatal conductance (gs) and photosynthetic demand over a tenfold range in gs. Although ci/ca and delta13C appeared to be relatively homeostatic, current-year leaf area varied linearly as a function of branch hydraulic conductivity (r2 = 0.69, P < 0.0001, n = 18). These results suggest that, for Pinus monticola, adjustment of leaf area is a more important response to reduced branch conductivity than adjustment of ci/ca.  相似文献   

15.
Three-year-old seedlings of five provenances of Pinus pinaster Ait. that differed in climatic conditions at their geographical origin were subjected to decreasing soil water availability. The degree of needle osmotic adjustment (OA) was estimated based on logarithmic plots of needle relative water content (RWC) against needle osmotic potential (Psi(pi)); i.e., lnRWC versus -ln(-Psi(pi)). There were significant differences among provenances in active OA (0.13 to 0.30 MPa for a decrease in RWC to 80%), and a clear negative relationship was found between OA and precipitation (650 to 1280 mm of mean annual rainfall) at the geographical origins of the provenances. A high osmoregulatory capacity contributes to the maintainance of positive turgor at low water potentials. We conclude that OA is one of the mechanisms underlying adaptation to drought in P. pinaster. Solute accumulation was about 2.3 times higher in the provenance from the driest site than in the provenance from the wettest site. The contribution of osmotic adjustment to differences in drought tolerance mechanisms among provenances is discussed.  相似文献   

16.
Water relations and growth of maritime pine (Pinus pinaster Ait.) were investigated in 2-year-old seedlings of French ('Landes'), Iberian ('Iberian') and Moroccan ('Tamjoute') origin raised for 67 days in a flowing solution culture system containing 0, 50, 150 or 250 mM NaCl. Height growth, and stem, needle and root dry matter were reduced by salinity with minor differences among geographic origins. Predawn needle water potential was decreased by salinity and corresponded approximately to the osmotic potential of the nutrient solution. Stomatal conductance was reduced according to the amount of salinity applied. Whole-plant hydraulic conductance was also reduced, even when expressed on a root dry weight basis. The osmotic potential of xylem sap was five- to sixfold lower than that of the nutrient solution. Seedlings of the most southerly origin (Tamjoute) exhibited a greater ability to decrease osmotic potential under saline conditions than seedlings of more northerly origin (Landes and Iberian) as a result of higher mineral cation transport to the shoot.  相似文献   

17.
Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.  相似文献   

18.
We tested the hypothesis that forest age influences the carbon isotope ratio (delta13C) of carbon reservoirs and CO2 at local and regional levels. Carbon isotope ratios of ecosystem respiration (delta13C(R)), soil respiration (delta13C(R-soil)), bulk needle tissue (delta13C(P)) and soil organic carbon (delta(13)C(SOC)) were measured in > 450-, 40- and 20-year-old temperate, mixed coniferous forests in southern Washington, USA. Values of delta13C(R), delta13C(R-soil), delta13C(P) and delta13C(SOC) showed consistent enrichment with increasing stand age. Between the youngest and oldest forests there was an approximately 1 per thousand enrichment in delta13C(P) (at similar canopy levels), delta13C(SOC) (throughout the soil column), delta13C(R-soil) (during the wet season) and delta13C(R) (during the dry season). Mean values of delta13C(R) were -25.9, -26.5 and -27.0 per thousand for the 450-, 40- and 20-year-old forests, respectively. Both delta13C(R-soil) and the difference between delta13C(R) and delta13C(R-soil) were more 13C enriched in older forests than in young forest: delta13C(R) - delta13C(R-soil) = 2.3, 1.1 and 0.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta(13)C(P) were proportionally more depleted relative to delta13C(R): delta13C(R) - delta13C(P) = 0.5, 2.2 and 2.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta13C(P) were most 13C-enriched at the top of the canopy and in the oldest forest regardless of season (overall values were -26.9, -28.7 and -29.4 per thousand for the 450-, 40- and 20-year-old forests, respectively). Values of delta13C(SOC) from shallow soil depths were similar to delta13C(P) values of upper- and mid-canopy needles. All delta13C data are consistent with the hypothesis that a decrease in stomatal conductance associated with decreased hydraulic conductance leads to increased CO2 diffusional limitations in older coniferous trees. The strong associations between delta13C(P) in needles with delta13C(R) and delta13C(R-soil) at the forest level suggest that 13C observations scale between leaf and ecosystem levels.  相似文献   

19.
This study was aimed at describing post-fire mushroom production in a Mediterranean ecosystem dominated by Pinus pinaster Ait. in the northwest of Spain and assessing the results by classificatory models. During the autumn periods of 2003–2006, fruit bodies from 115 fungal taxa were collected in burned and unburned areas and were further grouped into the following categories: saprotrophic/mycorrhizal; and edible/non-edible. After wildfires, a significant reduction in the number of fungal species and fruit body biomass production was observed. Based on this relevant information, the first simple classificatory model for this aim is provided. Nine alternative models based on classifications according to combinations of edibility and functional groups were fitted, and four fruiting body biomass production classes were defined as possible responses. As explanatory factors, time after fire and climatic variables significantly related to fruit body production were included. The best predictive results were obtained for edible and edible-mycorrhizal models, for which the correct classification rate of production classes was between 92 and 85 %. Moreover, the models obtained were applied to analyse the effect of time after fire on fungal production. Mycorrhizal and edible fungal production after fire was classified into the lowest class, whereas saprotrophic and non-edible species followed a contrary trend. The classificatory models can be useful to optimise management and harvest of these increasingly appreciated non-timber forest resources.  相似文献   

20.
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s)?=?2.0?×?10(-4) m(2) MPa(-1) s(-1)) and safety (P(50)?=?-?1.5 MPa) than stem xylem (k(s)?=?7.7?×?10(-4) m(2) MPa(-1) s(-1); P(50)?=?-?3.6 to?-?3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was?-?0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to?-?3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号