首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研发一种大水体太阳能自动增氧装置,为大水体的缺氧、水体污染提供一种解决方法。太阳能自动增氧装置由太阳能光伏发电系统、检测与智能增氧系统、自动化驱动系统组成。光伏发电系统充分利用太阳能资源,解决了电能消耗问题;检测与智能增氧系统实现了增氧过程中氧溶解浓度检测和智能感应运行;自动化驱动系统通过智能感应信号和电子差速控制系统实现增氧机原地转向、转弯和直行3种运动模式的移动,增加了增氧面积。使用太阳能自动增氧装置增氧试验表明,80 min内1 m水深处溶氧量增加0.79 mg/L,2 m水深处溶氧量增加0.78 mg/L,3m水深处溶氧量增加0.77 mg/L,4 m水深处溶氧量增加0.78 mg/L;改善水质试验表明能有有效提高水体溶氧,降低氮磷含量;养殖试验表明,增加鲤产量35.3%、鲢鳙产量31.2%。  相似文献   

2.
正4.注意事项(1)夏季高温天气要在中午开动增氧机,才能发挥最佳增氧效果。因为中午植物光合作用最强,水体表层溶氧量最高,如果通过增氧机的搅动,表层饱和溶氧就会灌放底层,使水体上下层溶氧均匀,大大提高池塘总溶氧量。(2)叶轮式增氧机使用时,千万不要在傍晚时分开动增氧机,因为这时水体中的浮游植物已停止光  相似文献   

3.
水体溶氧量直接影响着水产动物的生存、生长、发育。因此,保证水体溶氧水平才能保证养殖动物最佳限度利用饲料,充分生长。选择合理的增氧机械是提高劳动生产率,服务渔业产业化的有效途径。无论是注水、原池循环增氧,还是传统增氧机、化学增氧剂等增氧措施或多或少都有一定的局限性或缺  相似文献   

4.
水体溶氧量直接影响着水产动物的生存、生长、发育.因此,保证水体充足的溶氧水平才能保证养殖动物最佳限度利用饲料,充分生长.选择合理的增氧机械是提高劳动生产率,服务渔业产业化的有效途径.无论是注水、原池循环增氧,还是传统增氧机、化学增氧剂等增氧措施或多或少都有一定的局限性或缺点.  相似文献   

5.
鳜塘水体生态固子的计算机模拟识别法应用   总被引:2,自引:1,他引:2  
赖子尼  余煜棉 《水产学报》2000,24(2):146-150
应用计算机模式识别技术研究鳜塘水体中溶氧量与九项生态因子间的相互关系。研究表明,不同塘或不同时期其生态因子差异较大。在高维空间中,高、低溶氧量两类样品点聚集在不同的区域,周界清晰、分类十分成功,表明池塘水体溶氧量与水中多项生态因子间存在显著规律。用模式识别优化技术求得维持稳定的高溶氧状态的9项生态指标值,优化生态因子的溶氧预值大于8.4mg/L。水体溶氧量与其它九项因子成多元的二次函数关系,其模型  相似文献   

6.
<正>2009年,我们开展了南美白对虾仿生态养殖试验。试验通过池塘底部种植水草等生态养殖技术,利用水草的自然净化功能来改善池塘和水体的生态环境;并配备池塘底部增氧设施,大大提高水体溶氧量,使池塘形成一个水草茂盛、水质清新、溶氧充足的仿生态环境。试验取得良好的效果。现将主要技术总结如下,供参考。  相似文献   

7.
增氧设备在水产养殖中的应用   总被引:1,自引:0,他引:1  
蒋宏斌 《中国水产》2011,(11):49-50
养殖水体中的溶氧水平关系到养殖水生动物的生存、生活和生长,进而关系到养殖成败和养殖效益的高低。根据对我国传统池塘养殖水体中溶氧水平的监测和数据分析,在水体总溶氧量中,70%左右的溶解氧来自于水体中的植物尤其是浮游植物的光合作用,30%左右来自于大气的溶入。通常情况下,水体上层的溶氧量较高,池塘底层水体的溶氧量较低,往往低于lmg/L。溶氧水平的高低直接影响着养殖鱼、虾的摄食量、饲料转化率以及生长速度。据有关资料显示,养殖鱼类在溶氧Nc3mg/L时的饲料系数要l:t4mg/L时增大1倍;在溶氧量7mg/L时,  相似文献   

8.
无公害黄鳝网箱养殖对水质要求比较高,水体溶氧量要求在5毫克/升以上,透明度在25-30厘米,盐度不高于2;对环境生态条件的要求是在网箱内种植一些水生植物,水位不能有太大的落差,水体最好是活动水和微流水。小体积网箱设置在池塘中和水生植物覆盖在网箱表面,不利于网箱内水体的交换和增加溶氧,如果采用传统的增氧方式增氧,噪音大、增氧面积小、不适宜在网箱养殖中应用。  相似文献   

9.
蒋宏斌 《科学养鱼》2012,(10):83-84
底层微孔增氧又称底充式增氧、底部微孔增氧、底层微孔曝气增氧等,这里我们统一称"底层微孔增氧"。底层微孔增氧装置已列入《国家支持推广的农业机械产品目录》,获得了国家农机补贴,在全国得到了大面积推广应用。底层微孔增氧是一种新型水体立体增氧技术,其利用管道将空气输送到池塘底层增氧装置,通过曝气增加水体的上下、左右流动,达到池塘底层水体温度与中上层水体相近,同时通过调整气泡的大小和运动,提高了空气与水接触面,增加了水体溶氧量,达  相似文献   

10.
丁磊  吴康 《科学养鱼》2001,(12):36-36
目前青虾养殖成活率很低,通常为30%左右,所以产量不高。根据实践经验,我们认为提高青虾养殖成活率的主要技术措施是:一、提高溶氧青虾对溶氧的要求较高,其窒息点为1.1毫克/升,而且青虾在溶氧相对较低的夜晚活动更为频繁,极易缺氧死亡。因此要提高青虾养殖成活率,关键是提高水体溶氧量。1.配备增氧机的功率应达到0.5千瓦/亩,使水体溶氧量不低于5毫克/升。2.底泥以10厘米厚为宜,清除池塘中过多的淤泥。施放的有机肥应充分发酵腐熟,以减少高温季节的有机耗氧量。3.主养青虾混养鱼类的池塘应控制鱼种放养量,以…  相似文献   

11.
增氧测控系统涉及的是水产养殖溶氧测控的技术领域,是为了解决现有增氧测控方面存在的不足而设计的,本系统具有模拟人工进行定时增氧的功能;可利用溶解氧检测电路进行养殖水体溶氧量自动监测与控制;既具有模拟人工进行定时定量增氧的功能,又可以实现24小时全自动控制增氧系统进行增氧工作;对增氧系统电动机的工作情况进行实时监控及显示,在发生过流、缺相时将自动停止增氧系统的工作,并发出声光报警。  相似文献   

12.
鳜塘水体生态因子的计算机模式识别法应用   总被引:2,自引:0,他引:2  
应用计算机模式识别技术研究鳜塘水体中溶氧量与九项生态因子间的相互关系。研究表明 ,不同塘或不同时期其生态因子差异较大。在高维空间中 ,高、低溶氧量两类样品点聚集在不同的区域 ,周界清晰、分类十分成功 ,表明池塘水体溶氧量与水中多项生态因子间存在显著规律性。用模式识别优化技术求得维持稳定的高溶氧状态的 9项生态指标值 ,优化生态因子的溶氧预报值大于 8.4mg/L。水体溶氧量与其它九项因子成多元的二次函数关系 ,其模型复相关系数R =0 .97。对测量点溶氧量的回代准确率为 93.9%。  相似文献   

13.
以氧锥为气水混合装置的纯氧增氧系统溶氧效率高,但需产生一定气耗及能耗。本研究运用物质平衡等相关原理,对通入氧锥纯氧气体流量、养殖水体流量进行科学设计,分析其运行成本,并讨论设计关键问题。结果显示:采用一定锥体结构尺寸氧锥,当通入其纯氧气体流量为14.6 L/min、养殖水体流量为1 327.3 L/min(养殖系统水循环量79.6 m3/h)时,能充分利用氧锥81.88%~89.07%高溶氧效率,提供1 026.8~1 116.9 g/h养殖系统需氧量,完全满足养殖水体300 m3、养殖密度6 kg/m3的凡纳滨对虾循环水养殖溶氧量需求。氧锥运行耗氧1 252.7 g/h,耗电2.9 kW·h。研究表明,本设计对提高纯氧增氧系统技术性能,推进纯氧增氧在高密度循环水养殖中广泛应用提供支持。  相似文献   

14.
耕水叶轮式增氧机是水产养殖机械的新型设备.它将耕水机与叶轮增氧机二项技术整合在一台机械设备上,既发挥了耕水机净化水质、节能、搅水能力强的特点,解决了耕水机不具备增氧能力的问题;又利用了叶轮式增氧机增氧能力强,在水产养殖中增产效果明显的优势.在叶轮增氧机向水体增氧的同时,耕水机搅动水体,使上下层水体进行交换,提高整个水体的溶氧量和溶氧速度.在不需要增氧的情况下,利用耕水机低能耗的特点,连续不间断工作,缓慢搅动水体,使渔塘形成大范围的立体循环弱水流,改善净化水质,实现渔业生产的清洁养殖.  相似文献   

15.
扩散增氧系统是向水体喷射气泡或氧气,普通泵和“气石”就是一例。在池底上面安装空气扩散装置有许多缺点,如妨碍捕鱼操作、不增氧时气孔容易堵塞等,故在鱼类养殖中不如表层型增氧机使用广泛。在扩散增氧系统中特别有效的是U管型增氧装置,如图6所示。U管一般深15~20米,所以,气泡与水的接触时间长,适用于在水中溶氧量相对高时增加氧的饱和值。一般的扩散增氧装置是泵。  相似文献   

16.
冬季,如发现越冬池出现溶氧量突然下降,鱼类浮头,则应马上采取增氧措施,以免鱼类大批死亡。越冬池应急增氧可根据自身实际情况,选择适合的方法进行增氧。  相似文献   

17.
高容量鱼池初级生产力和产氧、耗氧值特点的初步研究   总被引:1,自引:0,他引:1  
本文总结了亩净产为1500~2600公斤的高容量(高载鱼晕)鱼池水域初级生产力和产氧、耗氧值的特点,在透明度为28~40厘米的条件下,“水呼吸”耗氧量占31.3%;池鱼呼吸(考虑到活动和摄食生长因素)占61.8%,与一般精养鱼池“水呼吸”耗氧要占约70%,池鱼占20%和其它因子的耗氧占10%的情况有着明显的区别;高容量鱼池在透明度为35~40厘米时,2米深水柱毛产氧量约等于水呼吸耗氧晕,而一般精养鱼池2米深水柱的毛产氧量要小于水呼吸耗氧量。由此证明,高容量鱼池所采取的排除底层污泥的池塘改造措施以及经常排除底层负氧水、及时添补新鲜水的水质控制技术,对于减少“水呼吸”耗氧量,改善池水溶氧条件是有效的。高容量鱼池由于载鱼量高,仅依靠水体的产氧,溶氧的收、支还不平衡,因此,使用增氧设备自然是重要的增产措施。  相似文献   

18.
海湾网箱渔场老化特征分析   总被引:46,自引:4,他引:42  
以珠江口牛头岛深湾作为周年逐月监测点,采用点面结合的方法,同时对大亚湾和珠江口几个开发网箱养鱼多年的海湾作季度调查。通过渔场水质、沉积物的环境要素监测,发现海湾网箱渔场使用多年以后有机污染严重,沉积硫化物含量比湾外自然沉积高10多倍,在夏季小潮期,深湾下层水体溶氧量平均值仅为3.58mg/L,最低值为1.36mg/L。认为沉积硫化物高和下层水体溶氧低是渔场老化的特征。  相似文献   

19.
一、营造优良的水环境1.合理使用增氧机:增氧机具有搅水、曝气、增氧的作用,合理使用好增氧机一方面可增加池水的溶氧量,有效预防鱼类浮头;另一方面溶氧量高了,可以增  相似文献   

20.
如何增加池塘中的溶氧量,是水产养殖中遇到的难题。目前,池塘常用的增氧设备是叶轮式、水车式增氧机,这些传统增氧机存在着增氧能力有限、底层增氧量低、增氧不均匀、能耗大、噪声大等缺点,特别是水质改善效果不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号