首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of predictive models is continually increasing, but few models are subsequently field-checked and evaluated. This study evaluates the statistical strength and usefulness for conservation purposes of a predictive habitat use model developed for Chalinolobus tuberculatus, a threatened microchiropteran bat species found in the temperate rainforests of New Zealand. The relationship between various environmental variables and the presence/absence of the species was investigated using generalised linear modelling. The model developed was coupled with GIS data to develop maps of predicted occurrence within the West Coast region of New Zealand’s South Island. It was found that distance to forest boundary, slope, presence of Nothofagus, general land cover, variability in mean annual solar radiation, and mean ambient winter minimum temperature were significantly associated with the occurrence of the species. Evaluation of the statistical strength of the distribution model with independent data of species’ occurrence collected at 152 sites found that the C. tuberculatus model showed a moderate ability to predict both species presence and absence (τ(b) coefficient = 0.37). The field detection rate (0.45) using this model was significantly higher than that of historical surveys (0.12). The value of the species habitat model and the need to evaluate its utility in the development of conservation strategies is discussed.  相似文献   

2.
In recent years, predictive habitat distribution models, derived by combining multivariate statistical analyses with Geographic Information System (GIS) technology, have been recognised for their utility in conservation planning. The size and spatial arrangement of suitable habitat can influence the long-term persistence of some faunal species. In southwestern Victoria, Australia, populations of the rare swamp antechinus (Antechinus minimus maritimus) are threatened by further fragmentation of suitable habitat. In the current study, a spatially explicit habitat suitability model was developed for A. minimus that incorporated a measure of vegetation structure. Models were generated using logistic regression with species presence or absence as the dependent variable and landscape variables, extracted from both GIS data layers and multi-spectral digital imagery, as the predictors. The most parsimonious model, based on the Akaike Information Criterion, was spatially extrapolated in the GIS. Probability of species presence was used as an index of habitat suitability. A negative association between A. minimus presence and both elevation and habitat complexity was evidenced, suggesting a preference for relatively low altitudes and a vegetation structure of low vertical complexity. The predictive performance of the selected model was shown to be high (91%), indicating a good fit of the model to the data. The proportion of the study area predicted as suitable habitat for A. minimus (Probability of occurrence ?0.5) was 11.7%. Habitat suitability maps not only provide baseline information about the spatial arrangement of potentially suitable habitat for a species, but they also help to refine the search for other populations, making them an important conservation tool.  相似文献   

3.
We used sighting location and remotely sensed habitat data, multivariate statistical techniques, and a geographic information system to model bobcat (Lynx rufus) habitat in Illinois, thereby providing state wildlife managers with information to review the listing of bobcats as a state-threatened species and contribute to the development of a statewide management plan. We used canonical discriminant function analysis to model presence/absence and relative abundance of bobcats statewide. These models suggested that bobcats occurred in moderate to high abundance in 23 of 98 counties statewide (23%). We used stepwise logistic regression (SLR) analysis to model statewide habitat suitability. Spatial modeling of the SLR equation predicted that 29% of Illinois contained suitable habitat classified as P>0.50. Models were accurate when validated with an independent data set and indicated the importance of woods-related habitat variables to bobcats. In conclusion, these models provided tools to rapidly assess status that contributed to delisting bobcats as a threatened species in Illinois and provided further information to guide conservation efforts.  相似文献   

4.
Metapopulation theory is one of the most popular approaches to identify the factors affecting the spatial and temporal dynamics of populations in fragmented habitat networks. Habitat quality, patch area and isolation are mainly focused on when analyzing distribution patterns in fragmented landscapes. The effects of landscape heterogeneity in the non-occupied matrix, however, have been largely neglected. Here, we determined the relative importance of patch quality and landscape attributes on the occurrence, density and extinction of the Dupont’s lark (Chersophilus duponti), an endangered steppe passerine whose habitat has been extremely reduced to highly isolated and fragmented patches embedded in a mainly unsuitable landscape matrix. Habitat patch quality, measured in terms of vegetation structure, grazing pressure, arthropod availability, predator abundance, and inter-specific competition, did not affect occurrence, density or extinction. At the landscape scale, however, the species’ occurrence was principally determined by the interactions among patch size, geographic isolation and landscape matrix. Isolation had the main independent contribution to explaining the probability of occurrence, followed by landscape matrix composition and patch size. The species’ density was negatively correlated to patch size, suggesting crowding effects in small fragments, while extinction events were exclusively related to isolation. Our findings suggest that landscape rather than local population characteristics are crucial in determining the patterns of distribution and abundance of non-equilibrium populations in highly fragmented habitat networks. Consequently, conservation measures for these species should simultaneously involve patch size, isolation and landscape matrix and apply to the entire metapopulation rather than to particular patches.  相似文献   

5.
The concept of critical thresholds of habitat loss has recently received considerable attention in conservation biology and landscape ecology, yet empirical examples of thresholds are scarce. Threatened species management could benefit from recognition of thresholds because conditions under which populations are at risk can be specified. In this study, 56 woodland patches in north-west Victoria were surveyed for the white-browed treecreeper Climacteris affinis, a threatened insectivorous bird of the semi-arid zone of southern Australia. Comparisons with historic records indicate the species’ range is contracting in Victoria. Using logistic regression and hierarchical partitioning, two models of patch occupancy were developed. Tree species composition was an important factor in both models, confirming the treecreepers’ affinity for belah Casuarina pauper and slender cypress-pine Callitris gracilis-buloke Allocasuarina luehmannii woodlands in north-west Victoria. The first model emphasized the importance of demographic isolation: probability of patch occupancy decreased with distance to the nearest occupied patch. A threshold response in demographic isolation was apparent. In agricultural landscapes, most suitable woodland patches within 3 km of an occupied patch were occupied, whereas patches beyond the threshold were vacant. The threshold distance increased to a minimum of 8 km in a matrix of native vegetation, suggesting landscape context affects the response of white-browed treecreepers to habitat fragmentation. Demographic isolation is a quasi-dependent variable and therefore a second model was developed using surrogate variables for demographic isolation. A positive relationship with the proportion of woodland cover in the landscape (100 km2) emerged as the pre-eminent explanatory factor. Depending on woodland quality, a threshold of patch occupancy was apparent at levels of woodland cover between 15 and 25%. However, belah and slender cypress-pine-buloke woodlands now cover only 10% of their original extent in the region. These results highlight the inter-dependence of patch isolation with the amount and quality of habitat in the landscape and the implications this has for maintaining functional connectivity. The retention (or restoration) of suitable habitat is the critical issue for conservation of the white-browed treecreeper, but in landscapes below the threshold of habitat cover, viability of local populations may be influenced by the configuration and quality of remaining habitat.  相似文献   

6.
A basic element in the success of managing species of conservation concern is knowledge of the species’ habitat occupancy. Often, predictive species-habitat models are developed from GIS data sources that were intended for purposes other than predicting species habitat occupancy and are of inappropriate scale. In addition, the techniques used to quantify predictor variables from such data sources are often time consuming and cannot be repeated efficiently to reflect changing conditions. We used digital orthophotos and a grid cell classification scheme to develop an efficient technique to quantify predictor variables to model Florida scrub-jay habitat occupancy. We combined our classification scheme with a priori hypothesis development using expert knowledge and a previously published habitat suitability index and used an objective model selection procedure to choose candidate models. We classified a large area (43,000 ha) in a fraction of the time that would be required to map vegetation classes and were able to test models at varying scales using a grid-cell windowing process. Interpretation of the selected models confirmed existing knowledge of factors important to Florida scrub-jay habitat occupancy. The potential uses and advantages of using a grid cell classification scheme in conjunction with expert knowledge and an objective model selection procedure are discussed.  相似文献   

7.
Many wild reptile species are threatened by habitat loss. However, the way in which changes in landscape patterns influence intraspecific ecological processes is not completely understood. Boa constrictor occidentalis is an endangered species and has a special conservation value since it is endemic of dry forests in the Gran Chaco region. Because the Gran Chaco is largely threatened due to habitat loss it is necessary to know how landscape changes influence this species. Therefore, we evaluated the effects of forest loss and landscape composition on the reproductive life-history parameters. Landscape changes were assessed by analyzing satellite imagery and reproductive parameters were determined by ultrasound images of the reproductive structures. The obtained results indicate that habitat loss may affect body condition, clutch size and testicular volume of the Argentine boa constrictor. We also found that the spatial pattern of vegetation influences the distribution of females and males in the landscape. Matting aggregations are scarce in shrublands. Therefore, our study shows that forest loss could enhance vulnerability to extirpation through constraints placed on reproduction. We encourage resource managers to evaluate sensitive reproductive life-history parameters as well as habitat deterioration to asses the conservation status of the populations of the Argentine boa constrictor. Since the Gran Chaco forest, a key habitat to the species’ reproduction, is largely threatened, strong conservation action is needed to halt and reverse forest loss in this region.  相似文献   

8.
A population viability analysis (PVA) was conducted to assess the minimum viable population (MVP) of the Atlantic Forest spiny rat Trinomys eliasi, a species threatened by habitat loss and restricted geographical distribution. Objectives were to suggest quasi-extinction thresholds, estimate minimum areas of suitable habitat (MASH) and MVPs, and compare results with the species’ current status. The computer package VORTEX was used. The model predicted sizes of 200 animals to achieve demographic stability, but buffering declines in genetic variability required populations of 2000 animals. Estimated MASHs were approximately 250 and 2500 ha for demographic and genetic stability, respectively. Mortality rate and mean litter size were the most sensitive parameters to changes in model assumptions. The protection of known populations and the search for extant populations are the first steps in conservation. T. eliasi's issue could help protecting the coastal shrubland ecosystem of Rio de Janeiro state. Observing IUCN's criteria for listing threatened species, it is suggested that T. eliasi should be ranked as vulnerable in red lists.  相似文献   

9.
A major challenge in conservation biology is to understand species’ responses to habitat loss. In Fennoscandia, the ongoing decline in aspen in forests is of particular concern, since aspen is the boreal forest tree species that supports the most host-specific species of cryptogams and invertebrates. In order to predict the potential effects of aspen decline we compared the occurrence of three epiphytic cyanolichens in old-growth stands of the same habitat quality, in four aspen-rich and four aspen-poor landscapes. Collemacurtisporum and Collemafurfuraceum were, on average, five and six times more frequent, respectively, in the aspen-rich than in the aspen-poor landscapes. Leptogiumsaturninum was not affected by the abundance of aspen stands at the landscape level. Our data suggests that lichen species with poor dispersal abilities may be more sensitive to habitat loss than more easily dispersed species and that species with broader habitat amplitude may be less sensitive to habitat loss than more specialized species, even if they have inferior dispersal ability. We conclude that (i) predictions of species occurrences at the stand level have to take account of the amount of suitable habitat at the landscape level, and (ii) predicting the responses of individual species based on life-history traits can be crucial, but cannot be based on single traits. Thus our study shows that biological value cannot be assessed on the basis of habitat quality alone and that a landscape perspective is needed for the sustainable management of specialist species.  相似文献   

10.
Saproxylic insects are characterised by their exceptional diversity and high proportion of threatened species. No recent studies have demonstrated the validity of habitat suitability analysis for scientifically based habitat management for these species. We studied the habitat requirements of the endangered longhorn beetle Cerambyx cerdo, a species with a supposed keystone function for the saproxylic insect community living on oaks. We used species distribution modelling based on datasets from Central Europe to understand the species-habitat relationships and to find the environmental variables responsible for habitat selection of C. cerdo. Our results show that the most important parameters, insolation, presence of oak sap, bark depth and the distance from the next colonised tree, are able to predict the presence of C. cerdo very well. A spatial validation procedure revealed very similar predictive power, indicating the general validity of our model. Tree-level parameters were shown to have a stronger effect on the occurrence probability than landscape-level predictors. To improve the tree-level conditions (e.g. insolation on the trunk) habitat management in the form of semi-open pasture landscapes is recommended from which many other taxa will also draw considerable benefit. The provision of such conditions over decades is the essential key in the conservation of this longhorn beetle species. The success of the European network of conservation areas “Natura 2000” heavily depends on broad biological knowledge of the designated protected species. The present paper shows that species distribution models can give valuable contributions for conservation in saproxylic insects.  相似文献   

11.
The main breeding populations of the red kite (Milvus milvus L.), have been declining in the Iberian peninsula during the last decade. However, there is a lack of regional assessments of habitat suitability that identifies limiting ecological factors for the species and areas with conservation problems. In this work we present a regional model for the distribution and abundance of breeding red kites in the Iberian peninsula. The occurrence and estimated abundance in 100 km2 UTM squares resulting from road censuses were modelled with broad-scale explanatory variables obtained from satellite imagery, thematic digital cartography, climatic data and spatial coordinates. The occurrence model incorporated mainly climatic variables and had a good discrimination ability, while the abundance model incorporated mainly land-use variables and had a lower explanatory power (r2=0.14). The predictions somewhat overestimated the results of the censuses, and this agrees with the decline of population size and range observed for this species in the Iberian peninsula. These models are relevant in the conservation of the species: first, they suggest the limiting factors for red kite in the Iberian peninsula, and, second, they generate predictive maps pointing out both areas in which conservation problems may be acute (suitable locations that are unoccupied), and areas where no data is available but the red kite is likely to be present (thus guiding further survey and research).  相似文献   

12.
Leiopelma hochstetteri is an endangered New Zealand frog now confined to isolated populations scattered across the North Island. A better understanding of its past, current and predicted future environmental suitability will contribute to its conservation which is in jeopardy due to human activities, feral predators, disease and climate change. Here we use ecological niche modelling with all known occurrence data (N = 1708) and six determinant environmental variables to elucidate current, pre-human and future environmental suitability of this species. Comparison among independent runs, subfossil records and a clamping method allow validation of models. Many areas identified as currently suitable do not host any known populations. This apparent discrepancy could be explained by several non exclusive hypotheses: the areas have not been adequately surveyed and undiscovered populations still remain, the model is over simplistic; the species’ sensitivity to fragmentation and small population size; biotic interactions; historical events. An additional outcome is that apparently suitable, but frog-less areas could be targeted for future translocations. Surprisingly, pre-human conditions do not differ markedly highlighting the possibility that the range of the species was broadly fragmented before human arrival. Nevertheless, some populations, particularly on the west of the North Island may have disappeared as a result of human mediated habitat modification. Future conditions are marked with higher temperatures, which are predicted to be favourable to the species. However, such virtual gain in suitable range will probably not benefit the species given the highly fragmented nature of existing habitat and the low dispersal ability of this species.  相似文献   

13.
Increasing habitats diversity in agricultural landscapes has been proposed as a key measure for reversing the decline of farmland biodiversity in Europe. However, indicators used for assessing such a potential compensation effect usually only rely on species diversity and abundance while ignoring variations in species-specific vulnerability. The extent to which habitat diversity may reverse the decline of specialist species in Europe to farming systems is thus still unclear. In this study, we investigate whether the effect of non-cropped habitat diversity on farmland birds’ occurrences was dependent on species’ specialization for habitats. In particular, we focused on the relative effects of non-cropped habitat diversity on species’ abilities to persist or to colonize new vacant areas. We used a capture-recapture statistical framework to study the spatial dynamics of 20 farmland bird species in France monitored from 2001 to 2007. We found that non-cropped landscape diversity reduces both the probabilities that a species becomes extinct locally and that a species colonizes new vacant areas, and the occupancy rate. Although this suggests a possible stabilizing effect of the surrounding habitat diversity on species occurrence in farming systems, the occupancy was only weakly affected. Moreover, we found that the most specialist species were the more negatively affected by this landscape diversity in terms of colonization abilities. We argue that accounting for the differences in habitat specialization among farmland species can improve conservation policies dedicated to the management of landscape diversity.  相似文献   

14.
Habitat-suitability modelling is being increasingly used as a tool for conservation biology. Although studies at large spatial scales are more appropriate for reserve design and management, there is a scarcity of published work on local, high-resolution applications of such models. In this work we develop high-resolution habitat models (1 ha) and study habitat preferences (focal points) of Dupont’s lark Chersophilus duponti, an endangered shrub-steppe passerine, in the partially overlapping Special Protected Area for birds (SPA) and Important Bird Area (IBA) of “páramos de Layna” (NW Spain), to assess both the adequacy of the reserve’s limits and the effect of land-use changes on the species’ population size. Both analytical approaches show that the Dupont’s lark favours flat areas characterized by small shrubs with bare ground, so that, for example, a conversion of dry crops to shrubs promoted by agri-environment schemes under CAP could increase the population size up to 80%. Although the IBA and SPA are similar in size - as compelled by EU environmental policy - the latter shows rugged topography typically avoided by the species. We further discuss the possible conflict between EU environmental and agricultural policies on the conservation of this species and suggest it can be addressed with our study approach.  相似文献   

15.
Significant biodiversity loss is characteristic of agricultural landscapes worldwide. Biodiversity recovery efforts in such landscapes can be hamstrung by a paucity of information on factors affecting species’ distributions, particularly for threatened and/or declining species. The temperate woodlands of south-eastern Australia have been extensively modified for agriculture and numerous bird taxa are declining. We have explicitly identified habitat and landscape attributes of woodland remnants affecting site occupancy by 13 woodland bird species of conservation concern.Using case-control data and linear logistic regression, we found that site occupancy for each species was related to both habitat and landscape variables. Habitat variables of particular importance included those in the ground layer (an abundance of leaf litter, an intact surface crust of mosses and lichens and a scarcity of annual grasses) and overstorey (a scarcity of eucalypt dieback and an abundance of mistletoe). Landscape variables strongly affecting site occupancy included the number of paddock trees and the area of native grass within 500 m of a site. Many of our study species were found most often in regrowth remnants.Our findings indicate a gap between current conservation practices and the actual habitat requirements of woodland bird species of conservation concern. Successful management will require protection and/or rehabilitation of the ground layer and overstorey of woodland remnants and sympathetic management of the surrounding landscape. It also will require managers to go beyond current practices of conserving old growth remnants and establishing replantings to maintaining and creating stands of woodland regrowth.  相似文献   

16.
For species whose decline preceded the modern era and whose distribution is in the developing world, it is difficult to map suitable habitat across its former range. Eld’s deer (Cervus eldi) is an endangered cervid whose range across Southeast Asia was reduced during the last century to disjoint populations in Myanmar and Cambodia. We used ecological data from the present populations to determine landscape and habitat parameters that would help us predict the occurrence of the species in forests not yet surveyed. The suitable-forest GIS model was created using four readily available datasets for elevation, forest type, canopy closure, and human density. Comparison of the GIS model with 24 verified sightings of Eld’s deer during recent large mammal surveys in Cambodia, found 22 sightings (92%) within predicted suitable forest. Use the suitable-forest GIS model to survey a province in southern Lao People’s Democratic Republic, located a single, previously unreported population from 9 patches surveyed. In a separate analysis, a logistic regression model to predict Eld’s deer habitat in Northern Cambodia found percent tree cover, presence of wetlands, and distance to villages as the best predictors of deer, similar to variables used in the GIS model, with the exception of the importance of wetlands. Using mean annual rainfall to rank suitable-forest patches identified in the GIS model indicated dry dipterocarp forests in Northeastern Cambodia and Northern Myanmar have the highest potential to conserve eld’s deer. Examination of the suitable-forest GIS map and current protected areas indicated only Cambodia, with 11% suitable forest protected, has placed sufficient dry dipterocarp forest under protected status. Other Southeast Asia countries have not recognized dry dipterocarp forest as a significant ecotype worthy of conservation status.  相似文献   

17.
A researcher’s perception of a target species’ landscape strongly influences the design of habitat studies conducted at broad spatial scales. Consequently, researcher-dependent perceptions may misguide conservation efforts. Although the life histories of some crayfish (i.e., primary burrowers) are centered on a fossorial existence independent of surface water, all North American crayfish are viewed in an aquatic context. This paradigm restricts the range of habitats that are typically sampled and managed for crayfish conservation. This study used presence/absence of the primary burrower Distocambarus crockeri at 137 locations within the Long Cane Ranger District of the Sumter National Forest, South Carolina, USA, to model the habitat association of the species across a GIS-based landscape. Logistic regression indicated that D. crockeri presence was most strongly associated with a terrestrial habitat defined by a set of morphologically similar soils located along ridge tops. Furthermore, the species was negatively associated with aquatic habitats such as streams and floodplains. The results indicate that D. crockeri is a terrestrial habitat specialist and should be modeled and managed at the landscape as a terrestrial organism. When viewed as a subset of the total United States cambarid fauna, primary burrowers are disproportionately imperiled. Primary burrowers comprise only 15% of the total crayfish fauna, while they account for 32% of those crayfish ranked critically imperiled. Habitat loss and an aquatic bias that restricted sampling to aquatic and semi-aquatic habitats might explain the group’s disproportionate imperilment.  相似文献   

18.
Deforestation threatens biodiversity conservation worldwide, but little quantitative information is available on how it affects individual species’ distributions. We modeled potential distributions of 85 continental endemic Mexican mammal species using ecological niche modeling, and produced testable predictions of species’ extant distributions by limiting ecological niches to remnant untransformed habitat based on the Inventario Nacional Forestal 2000. We included point occurrence data for all endemics only from collecting localities prior to 1970, before wide areas of habitat transformation occurred nationwide. Most endemics (61 of 85, 72%) showed a high proportion of transformed habitat (34.5%) at the national level. More than one-fourth of the endemics (23 out of 85, 27%) lost more than 50% of untransformed habitat within their potential distributions; two showed drastic areal loss of more than 90%; another two showed a loss of more than 80%. Only 34 of the endemics are listed as endangered or threatened in the Mexican Norma Oficial Mexicana (NOM). No significant association existed between proportional loss and conservation status as assigned in the NOM, nor are correlations significant between original distributional area and area of remnant untransformed habitat. Both findings suggest that geographic location determines extinction risks rather than area per se. Endemics in the state of Veracruz and in the Transvolcanic Belt suffered the most drastic niche reductions and thus appear to be at high extinction risk from further deforestation.  相似文献   

19.
Generalised linear modelling (GLM) was used to develop habitat models for 25 of the 28 microchiropteran bat species that occur in the wet-dry tropics of the Northern Territory (the ‘Top End’). Based on these models, a geographic information system (GIS) was used to derive probability of occurrence maps for each species. Almost all of the models identified a unique combination of environmental variables, and the resulting probability of occurrence maps revealed contrasting predicted distributions. The reliability of the models was variable. Based on model variances, 11 of the species models were considered to be weak (<30% of the deviance captured) whereas seven models were robust (>40% of the deviance captured). ROC plot analysis suggested all models were at least moderately robust (area under the ROC curve >0.7). Annual rainfall and habitat complexity were identified as significant variables in the majority of the models. All of the spatial models were combined to derive a probability map of species richness of microchiropteran bats in the Top End. This map shows greatest species richness in the north-west and north-central parts of the study area.  相似文献   

20.
Information about geographic distributions is required for species conservation and management. Ultimately, this information is derived from records of occurrence. However, the reliability and availability of occurrence records are variable. A conceptual framework for evaluating the reliability of occurrence records is provided. Only records associated with physical evidence, especially a museum voucher specimen, are considered verified. However, errors in species identification or location are possible even for verified records. In addition, biases exist in occurrence records because they generally are collected haphazardly. Other sources of bias include sampling error associated with small areas or range limits and aspects of the species’ biology that make it unlikely to be documented. A practical method is provided for interpreting a species’ distribution in a particular area given a paucity of reliable occurrence records. Factors that must be considered for including such areas of interest within the range of a species include: (1) plausible reason for the paucity of records; (2) continuous suitable habitat between the area of interest and localities of reliable occurrence; and (3) absence of biogeographic breaks in the distribution of other organisms with similar evolutionary histories. The possible distribution of wolverine (Gulo gulo) and Canada lynx (Lynx canadensis) in New Mexico provides a case study of this approach. It is concluded that the mountains of north-central New Mexico should be considered within the natural range of wolverine and Canada lynx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号