首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capability of the soil water balance model SIMWASER to predict the impact of soil compaction upon the yield of maize (Zea mays L.) is tested, using the results of a field experiment on the influence of soil compaction by wheel pressure upon soil structure, water regime and plant growth. The experimental site was located on an Eutric Cambisol with loamy silt soil texture at an elevation of 260 m in the northern, semi-humid sub-alpine zone of Austria. Within the experimental field a 7 m wide strip was compacted by a tractor driven trailer just before planting maize in May 1988. Compression effects due to trailer traffic resulted in distinct differences of physical and mechanical soil parameters in comparison with the uncompressed experimental plots down to a depth of about 30 cm: bulk density and penetration resistance at field capacity were increased from 1.45 to 1.85 g/cm3, and from 0.8 to 1.5 MPa, respectively, while air-filled pore space as well as infiltration rate were appreciable lowered from about 0.08–0.02 cm3/cm3 and from 50 to 0.5 cm per day, respectively. The overall effect was a clear depression of the dry matter grain yield from 7184 kg/ha of the non-compacted plot to 5272 kg/ha in the compacted field strip. The deterministic and functional model SIMWASER simulates the water balance and the crop yield for any number of crop rotations and years, provided that daily weather records (air temperature, humidity of air, global radiation, wind and precipitation) are available. Crop growth and soil water regime are coupled together by the physiological processes of transpiration and assimilation, which take place at the same time through the stomata of the plant leaves and are both reacting in the same direction to changes in the soil water availability within the rooting zone. The water availability during rainless seasons depends on the hydraulic properties of the soil profile within the rooting depth and on rooting density. Rooting depth and density are affected by both the type of the crop and the penetration resistance of the soil, which depends on the soil moisture status and may be strongly increased by soil compaction. The model SIMWASER was able to simulate these effects as shown by the calculated grain yields, which amounted in the non-compacted plot to 7512 and to 5558 kg dry matter/ha in the compacted plot.  相似文献   

2.
 Earthworms may alter the physical, chemical, and biological properties of a forest soil ecosystem. Any physical manipulation of the soil ecosystem may, in turn, affect the activities and ecology of earthworms. The effects of removing organic matter (logs and forest litter) and severely compacting the soil on native earthworm species were measured in a central USA hardwood region (oak-hickory) forest in the Missouri Ozarks (USA). Soils in this region are characterized by a cherty residuum that is primarily of the Clarksville series (Loamy-skeletal, mixed, mesic Typic Paledults). Earthworms were collected from 0–15 cm depth each spring and fall for 2 years by handsorting, and densities were determined on a per meter square basis. Two native earthworm species, Diplocardia ornata and Diplocardia smithii, were dominant on this site. Organic matter removal decreased the average individual biomass of both species. However, both species responded differently to soil compaction. Soil compaction affected D. ornata adversely and D. smithii favorably. This suggested that the degree of soil compaction was not as restrictive with respect to D. smithii (2 mm diameter) as to D. ornata (5 mm diameter). Moreover, the apparently improved soil environmental conditions resulting from the remaining organic matter in compacted soil enhanced the population and growth of D. smithii. Sampling position on the landscape affected D. ornata but not D. smithii. Soil microbial biomass C and soil microbial biomass N were decreased under soil compaction when the organic matter was removed. Other factors influencing the ecology and activity of these two species will require further study. Received: 6 January 1999  相似文献   

3.
Alleviation of soil compaction: requirements, equipment and techniques   总被引:1,自引:0,他引:1  
The nature of soil disturbance required to alleviate soil compaction in a range of agricultural and land restoration situations is identified. Implement geometry and adjustments required to achieve the desired brittle or tensile deformation of compacted soil are discussed. Field operating procedures to achieve the required degrees of soil fissuring, loosening or soil unit rearrangement using the power units and equipment available are described. A new progressive loosening technique is identified for use within deep, extremely compacted soil profiles. Emphasis is given to the importance of making visual field checks across the loosened soil zone at an early stage, to check the desired disturbance is being achieved. Care must be taken during subsequent trafficking operations, to minimize the risk of recompaction.  相似文献   

4.
Abstract. Soil compaction has long been considered to be a problem in arable land, primarily because it causes damage to soil structure, which can lead to serious reduction in crop yields. However, few studies have sought to investigate the effects of soil compaction on the water transport regime of modified soil pore systems. We attempted to quantify the effects of soil compaction on the initiation of preferential flow by using dye tracers and image analysis. A laboratory methodology involving rainfall simulation enabled us to quantitatively evaluate differences in the mechanisms of water flow between two soil types at several degrees of compaction. The results suggested significant differences in the types of water flow pathways between clay loams and sandy loams at different extents of compaction. In the sandy loam, it was concluded that a high degree of compaction led to an increased likelihood of preferential flow, whereas a more uniform movement of soil water occurred at less compaction. By contrast, preferential routing of soil water was recorded in the clay loam, except at the highest measured compaction. The results indicate that the visual techniques of dye tracing and image analysis could enable improved understanding of flow pathways of soil water associated with soil compaction.  相似文献   

5.
The initially high level of soil compaction in some direct sowing systems might suggest that the impact of subsequent traffic would be minimal, but data have not been consistent. In the other hand on freshly tilled soils, traffic causes significant increments in soil compaction. The aim of this paper was to quantify the interaction of the soil cone index and rut depth induced by traffic of two different weight tractors in two tillage regimes: (a) soil with 10 years under direct sowing system and (b) soil historically worked in conventional tillage system. Treatments included five different traffic frequencies (0, 1, 3, 5 and 10 passes repeatedly on the same track). The work was performed in the South of the Rolling Pampa region, Buenos Aires State, Argentina at 34°55′S, 57°57′W. Variables measured were (1) cone index in the 0–600 mm depth profile and (2) rut depth. Tyre sizes and rut depth/tyre width ratio are particularly important respect to compaction produced in the soil for different number of passes. Until five passes of tractor (2WD), ground pressure is responsible of the topsoil compaction. Until five passes the tyre with low rut depth/tyre width ratio reduced topsoil compaction. Finally, the farmer should pay attention to the axle load, the tyre size and the soil water content at the traffic moment.  相似文献   

6.
Conventional and zero traffic systems were mole ploughed and effects on soil physical properties were compared. Draught of the plough operating at 550 mm depth was measured while it was winched across plots having a 5-year history of different traffic regimes. Results showed that the draught was reduced by about 18% on non-trafficked compared with conventionally-trafficked soil.

Cone resistance measurements, 1 month before and 3 months after mole ploughing, confirmed that the non-trafficked soil had significantly less strength to a depth of about 400 mm. Bulk density measured at 75 and 175 mm depth 1 month before mole ploughing indicated a similar trend, but clod and bulk densities at 125 mm and 350 mm depth 3 months later, failed to show any consistent differences between treatments.  相似文献   


7.
Lodging is the permanent displacement of cereal stems from the vertical. Cereal plants growing in the edge rows next to both wheel tracks (‘tramlines’) and the gaps between experimental plots (‘inter-plot spaces’), which are traversed by farm vehicles during planting operations and agrochemical application, are less prone to lodge than plants growing elsewhere in fields and plots. Previous research has attributed this phenomenon to an increase in the stem strength of edge row plants, and hence their resistance to stem lodging, resulting from reduced competition between edge row plants for resources. However, this explanation gives no consideration to the anchorage strength of edge row plants, and hence their resistance to root lodging. Differences in soil and plant characteristics between the edge and centre rows of plots of winter barley (Hordeum vulgare L.) were examined on sand, silt and clay dominated soil types. Edge rows next to tramlines were investigated on the silt and clay soil types, whereas edge rows next to inter-plot spaces were investigated on the sand soil type. Edge row plants next to both tramlines and inter-plot spaces had 58.8% greater anchorage strength and hence resistance to root lodging than centre row plants. This was attributed to (1) greater soil compaction in the edge rows resulting from wheel traffic in the tramlines and inter-plot spaces, which increased the strength of the soil matrix surrounding the roots, and (2) greater plant root growth in the edge rows resulting from reduced competition. Bulk density, root plate spread and structural rooting depth were 19, 22, and 12% greater, respectively, in the edge rows of all soil types. The results suggest that in order to reduce lodging risk, energies should be directed towards identifying agricultural practices that optimise soil compaction in the seedbed without causing significant limitations to root growth.  相似文献   

8.
In Belgium, growing silage maize in a monoculture often results in increased soil compaction. The aim of our research was to quantify the effects of this soil compaction on the dry matter (DM) yields and the nitrogen use of silage maize (Zea mays L.). On a sandy loam soil of the experimental site of Ghent University (Belgium), silage maize was grown on plots with traditional soil tillage (T), on artificially compacted plots (C) and on subsoiled plots (S). The artificial compaction, induced by multiple wheel-to-wheel passages with a tractor, increased the soil penetration resistance up to more than 1.5 MPa in the zone of 0–35 cm of soil depth. Subsoiling broke an existing plough pan (at 35–45 cm of soil depth). During the growing season, the release of soil mineral nitrogen by mineralisation was substantially lower on the C plots than on the T and S plots. Silage maize plants on the compacted soil were smaller and flowering was delayed. The induced soil compaction caused a DM yield loss of 2.37 Mg ha−1 (−13.2%) and decreased N uptake by 46.2 kg ha−1 (−23.2%) compared to the T plots. Maize plants on compacted soil had a lower, suboptimal nitrogen content. Compared with the traditional soil tillage that avoided heavy compaction, subsoiling offered no significant benefits for the silage maize crop. It was concluded that avoiding heavy soil compaction in silage maize is a major strategy for maintaining crop yields and for enhancing N use efficiency.  相似文献   

9.
模拟机械压实对黑土微团聚体组成及稳定性的影响   总被引:3,自引:0,他引:3  
采用田间模拟机械压实的方法,通过对不同深度压实土壤水稳性微团聚体组成、平均质量比表面积、分形维数和分散系数等特征指标的测定、计算与分析,研究了机械压实对黑土区耕作土壤微团聚体组成及稳定性的影响。结果表明:0~20 cm表层土壤仅12次压实时平均质量比表面积、分形维数和分散系数显著高于对照(P0.05);20~40 cm亚表层土壤3次压实时平均质量比表面积、分形维数值显著降低,而12次压实时平均质量比表面积、分形维数和分散系数显著增加(P0.05);40~80 cm下层土壤,平均质量比表面积、分形维数和分散系数随压实次数的增加而增大,除3次和6次压实之间外,其他处理间差异均达显著水平(P0.05)。可以认为,压实对黑土区耕作土壤团聚体组成及稳定性的影响表现为下层土壤的积累压实为主。  相似文献   

10.
Since the 1970s a network of underground pipes, up to 1200 mm diameter, has been installed in the UK to transmit crude oil to refineries and gas from onshore terminals for distribution. Chosen routes are subject to significant constraints. Current techniques for pipe installation involve topsoil removal and storage. Trench depth is set to allow a cover of 1200 mm overburden after pipes have been installed. The heavy machinery involved results in severe compaction of exposed subsoil. Subsoil is loosened comprehensively and topsoil replaced. Existing field drains are reconnected, and, if necessary, new drains with gravel backfill installed. Pipe installation usually takes place between April and October. Preventative measures to limit compaction during installation are not a practical option. If subsequent arable crops or grass are poorer or drainage more defective than before disturbance, the loss is assessed and compensation paid. To determine the cause of the loss >60, investigations have been made throughout the UK. Soil physical properties were assessed in an open trench using visual and tactile methods. Consistently, severe compaction in the subsoil was identified as the cause of poor crop growth or drainage; it was not observed in the topsoil. Specific recommendations for remedial action were made based on location, depth and severity of the compaction. These included the installation of additional land drains, increasing the amount of gravel above the drains, or further subsoil loosening orientated to cross gravel backfill. After appropriate remedial action, net compensation for crop losses was frequently small or negligible.  相似文献   

11.
Soil compaction caused by traffic of heavy vehicles and machinery has become a problem of world-wide concern. The aims of this study were to evaluate and compare the changes in bulk density, soil strength, porosity, saturated hydraulic conductivity and air permeability during sugar beet (Beta vulgaris L.) harvesting on a typical Bavarian soil (Regosol) as well as to assess the most appropriate variable factors that fit with the effective controlling of subsequent compaction. The field experiments, measurements and laboratory testing were carried out in Freising, Germany. Two tillage systems (conventional plough tillage and reduced chisel tillage) were used in the experiments. The soil water contents were adjusted to 0.17 g g−1 (w1), 0.27 g g−1 (w2) and 0.35 g g−1 (w3).Taking the increase in bulk density, the decrease in air permeability and reduction of wide coarse pore size porosity (−6 kPa) into account, it seems that CT (ploughing to a depth of 0.25 m followed by two passes of rotary harrow to a depth 0.05 m) of plots were compacted to a depth of at least 0.25 m and at most 0.40 m in high soil water (w3) conditions. The trends were similar for “CT w1” (low soil water content) plots. However, it seems that “CT w1” plots were less affected than “CT w3” plots with regard to bulk density increases under partial load. In contrast, diminishments of wide coarse pores (−6 kPa) and narrow (tight) coarse pores (−30 kPa) were significantly higher in “CT w1” plots down to 0.4 m. Among CT plots, the best physical properties were obtained at medium soil water (w2) content. No significant increase in bulk density and no significant decrease in coarse pore size porosity and total porosity below 0.2 m were observed at medium soil water content. The soil water content seemed to be the most decisive factor.It is likely that, CS (chiselling to a depth of 0.13 m followed by two passes of rotary harrow to a depth 0.05 m) plots were less affected by traffic treatments than CT plots. Considering the proportion of coarse pore size porosity (structural porosity) and total porosity, no compaction effects below 0.3 m were found. Medium soil water content (w2) provides better soil conditions after traffic with regard to wide coarse pore size porosity (−6 kPa), air permeability (at 6 and 30 kPa water suction), total porosity and bulk density. Proportion of wide coarse pores, air permeability and bulk density seems to be suitable parameters to detect soil compaction under the conditions tested.  相似文献   

12.
One of the most significant soil parameters affecting root growth is soil compaction. It is therefore important to be able to determine the presence of compacted layers, their depth, thickness and spatial location without the necessity of digging a large number of holes in the field with either a spade or backhoe. Previous investigations have identified soil compaction by different methods such as: using ground penetrating radar, acoustic systems, vertical and horizontal penetrometers and instrumented wings mounted on the faces of tines. Linking the output from these sensors to global positioning systems would give an indication of the spatial patent variation. The aim of this study was to evaluate the performance of a soil compaction profile sensor in both controlled laboratory and field conditions. The sensor consisted of a series of instrumented flaps; a flap is defined as the sensing element which comprises one half of a pointed leading edge to the leg of a tine to which strain gauges are placed on the rear face of the flap. Studies measured the effect of compaction on the changes in the soil resistance acting upon a flap face in a soil bin laboratory and under field conditions. The results indicated that the sensor was sensitive to differences in soil strength at different depths in soils. A technique was developed to identify the soil compaction resulting from different tyre inflation pressures and loads. The soil compaction profile sensor was tested on a number of fields in south‐eastern England to determine the changes in soil strength below the wheelings of a pea harvester operating at different tyre inflation pressures.  相似文献   

13.
土壤是耕地的重要组成部分,也是农田生态系统的基础,健康的农田土壤对抵抗自然营力如风力、水力、风力等导致的土壤侵蚀至关重要。但随着近些年来农业机械的普及发展,农田土壤也遭受更严重的机械压实。机械作业过程中农田土壤遭受的压实对农田土壤理化性质及土壤生物产生不良影响,机械压实也使农田土壤抵抗侵蚀的能力受到影响,这种影响主要通过机械压实对土壤物理性质的影响间接实现。为明确农田机械压实的研究现状及压实对土壤侵蚀的影响机理,该研究概述了农田土壤机械压实的起因,阐述了机械压实对土壤性质的影响及其作用机理,讨论了机械压实间接影响土壤侵蚀的因素。总结发现,目前研究主要集中在机械压实对土壤性质的影响、土壤性质对土壤侵蚀的影响方面,鲜有研究机械压实对土壤侵蚀的影响机制。最后针对目前机械压实研究的不足提出了未来研究的方向,并探讨了农田土壤机械压实与土壤侵蚀之间的联系,以期将现有机械压实研究理论更好应用到实践,趋利避害,为国内农田土壤侵蚀防治提供参考。  相似文献   

14.
Subsoil compaction may reduce the availability and uptake of water and plant nutrients thereby lowering crop yields. Among the management options for remediating subsoil compaction are deep tillage and the selection of crop rotations with deep-rooted crops, but little is known of the effects of applications of organic amendments on subsoil compaction. The objectives of this study were to determine the effects of subsoil compaction on corn yield and N availability in a sandy-textured soil and to evaluate the use of deep tillage and surface applications of poultry manure to remediate subsoil compaction. A field experiment planted to corn (Zea mays L.) was conducted from 2000 to 2001 on a Reelfoot fine sandy loam (fine-silty, mixed thermic Aquic Argiudolls) formed in silty alluvium located in southeast Missouri near the Mississippi River. Treatments were arranged in a factorial design with three levels of subsoil compaction and subsoiling and four rates (averaging 0, 6, 11 and 18 Mg ha−1) of poultry manure. Subsoil tillage to a depth of 30 cm had multiple effects, including overcoming a natural or tillage-induced dense layer or pan and increasing volumetric soil water content and crop N uptake, especially in the 2001 cropping year with low early season precipitation. N recovery efficiency (NRE) was significantly higher in the subsoil treatment compared to the highest compaction treatment in 2001. No significant interactions between manure rates and compaction and subsoiling treatments were observed for corn grain and silage yields, N uptake and NRE. Average increases in corn grain yields over all manure rates due to subsoil tillage of compacted soil were 2002 kg ha−1 in 2000 and 3504 kg ha−1 in 2001. Application of poultry manure had a consistent positive effect on increasing grain yields and N uptake in 2000 and 2001 but did not significantly alter measured soil physical properties. The results of this study suggest that deep tillage and applications of organic amendments are management tools that may overcome restrictions in both N and soil water availability due to subsoil compaction in sandy-textured soils.  相似文献   

15.
Soil compaction generally reduces crop performance because of degraded soil physical and biological properties, and possibly inappropriate soil nutritional status. The effects of varying compaction, and phosphorus (P) and zinc (Zn) supplies on the growth of Berseem or Egyptian clover (Trifolium alexandrimum), and accumulation of P and Zn in shoots and roots were investigated in a pot experiment using a surface layer of a Typic Torrifluvent (USDA), Calcaric Fluvisols (FAO) soil. Plants were treated with three soil compaction levels, three rates of P and three rates of Zn in a factorial combination. Phosphorus accumulation in shoots did not change up to bulk densities of 1.65 Mg m−3 and declined at bulk density of 1.80 Mg m−3. Increasing the levels of Zn and P resulted in a significant increase in shoot dry mass (from 0.3 to 0.8 g pot−1), and root length (from 11.4 to 32.5 m pot−1). Shoot and root growth were reduced by soil compaction particularly at low P and Zn application rates. Shoot dry mass was reduced from 0.8 to 0.3 g pot−1, and root length from 43 to 5 m pot−1 at bulk densities of 1.4 and 1.8 Mg m−3, respectively. However, the accumulation of P (from 0.06 to 0.15 g kg−1) and Zn per unit length of roots (from 0.8 to 1.8 μg pot−1) increased as soil compaction increased. As the Zn supply increased, Zn accumulation per unit length of roots, and total Zn accumulation increased. Severe compaction reduced P and Zn accumulation in shoots and also decreased shoot dry mass, and root length compared to lower soil compaction levels. The present study suggests that Zn and P supply can moderate the adverse effect of soil compaction on clover performance.  相似文献   

16.
 We studied the influence of soil compaction in a loamy sand soil on C and N mineralization and nitrification of soil organic matter and added crop residues. Samples of unamended soil, and soil amended with leek residues, at six bulk densities ranging from 1.2 to 1.6 Mg m–3 and 75% field capacity, were incubated. In the unamended soil, bulk density within the range studied did not influence any measure of microbial activity significantly. A small (but insignificant) decrease in nitrification rate at the highest bulk density was the only evidence for possible effects of compaction on microbial activity. In the amended soil the amounts of mineralized N at the end of the incubation were equal at all bulk densities, but first-order N mineralization rates tended to increase with increasing compaction, although the increase was not significant. Nitrification in the amended soils was more affected by compaction, and NO3 -N contents after 3 weeks of incubation at bulk densities of 1.5 and 1.6 Mg m–3 were significantly lower (by about 8% and 16% of total added N, respectively), than those of the less compacted treatments. The C mineralization rate was strongly depressed at a bulk density of 1.6 Mg m–3, compared with the other treatments. The depression of C mineralization in compacted soils can lead to higher organic matter accumulation. Since N mineralization was not affected by compaction (within the range used here) the accumulated organic matter would have had higher C : N ratios than in the uncompacted soils, and hence would have been of a lower quality. In general, increasing soil compaction in this soil, starting at a bulk density of 1.5 Mg m–3, will affect some microbially driven processes. Received: 10 June 1999  相似文献   

17.
Soil compaction is known to affect plant growth. However, most of the information regarding the effects of this factor on carbon partitioning has been obtained on young plants while little is known about the evolution of these effects with plant age. The objective of this work was to investigate how soil compaction affects carbon assimilation, photosynthate partitioning and morphology of maize plants during vegetative growth up to tassel initiation. A pressure was applied on moist soil to obtain a bulk density of 1.45 g cm−3 (compacted soil (CS) treatment) while the loose soil (LS) treatment (bulk density of 1.30 g cm−3) was obtained by gentle vibration of soil columns. Plants were grown in a growth chamber for 3–6 weeks and carbon partitioning in the plant–soil system was evaluated using 14C pulse-labelling techniques. Soil compaction greatly hampered root elongation and delayed leaf appearance rate, thereby decreasing plant height, shoot and root dry weights and leaf area. The increase in soil bulk density decreased carbon assimilation rate especially in early growth stages. The main effect of soil compaction on assimilate partitioning occurred on carbon exudation, which increased considerably to the detriment of root carbon. Furthermore, soil microbial biomass greatly increased in CS. Two hypotheses were formulated. The first was that increasing soil resistance to root penetration induced a sink limitation in roots and this increased carbon release into the soil and resulted in a root feedback that regulated carbon assimilation rate. The second hypothesis relies on soil–plant water relations since, due to compaction, the pore size distribution has to be considered. In a compacted soil, the peak of the pore size distribution curve is shifted towards the small pore size. The volume of small pores increases and the unsaturated conductivity decreases substantially, when compared to non-compacted soil. Due to small hydraulic conductivity, the inflow into the roots is well below optimum and the plant closes stomata thus reducing carbon assimilation rate. The effects of soil compaction persisted with plant age although the difference between the two treatments, in terms of percentage, decreased at advanced growth stages, especially in the case of root parameters.  相似文献   

18.
On-farm approaches are needed to help farmers avoid soil compaction. It is the purpose of this paper to document the experience of using the Horn and Fleige [Horn, R., Fleige, H., 2003. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Till. Res. 73, 89–99] procedures to develop improved guidance to help farmers avoid compaction in agricultural operations in the Commonwealth of Pennsylvania, USA. A soil characterization database for the Commonwealth of Pennsylvania, USA, was used to provide input to the Horn and Fleige [Horn, R., Fleige, H., 2003. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Till. Res. 73, 89–99] approach to estimate the pre-consolidation stress and the maximum depth of compaction for 29 agricultural soils in Pennsylvania. The Horn and Fleige [Horn, R., Fleige, H., 2003. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Till. Res. 73, 89–99] approach was tentatively validated using previously measured pre-consolidation stress or penetration resistance values measured on five of the 29 soils. The estimated maximum depth of compaction indicated that an 89-kN (10-ton) axle load was excessive in almost all cases for soils at matric potentials of −33 and −6 kPa for both tillage and no-till management. A 53-kN (6-ton) axle load was acceptable for most cases when tillage was planned to a 0.20-m depth, but was excessive in most cases for no-till management at a matric potential of −6 kPa while mostly acceptable for no-till management at a matric potential of −33 kPa. Penetration resistance measurements are recommended to decide when a load is excessive.  相似文献   

19.
Reinstated soil at restored sites often suffers from severe compaction which can significantly impede root development. Several methods, such as ripping and complete cultivation, are available to alleviate compaction that may occur as a result of soil reinstatement. This paper examines the effectiveness of the industry standard industrial ripper and a prototype modern ripper, the Mega‐Lift, in comparison with the recommended best practice method of complete cultivation. An investigation of the penetration resistance of the soil at a restored sand and gravel quarry was carried out using a cone penetrometer and a ‘lifting driving tool’ (dropping weight penetrometer) 3 years following cultivation. All the cultivation treatments reduced soil compaction to some degree compared with the untreated control. However, the penetration resistance values suggest that rooting would be restricted at relatively shallow depths in the plots cultivated using the industrial and Mega‐Lift ripper; penetration resistance exceeded 2 MPa within the first 0.33 m. Complete cultivation maintained penetration resistance values of less than 2 MPa within the depth limit of the penetrometer of 0.42 m. In addition, the results from the ‘lifting driving tool’ indicate that soils treated using complete cultivation remained significantly looser than those treated with the ripper to a depth of at least 0.80 m. The results demonstrate that complete cultivation remains the most effective method of alleviating soil compaction on restored sites, although it is recognized that its relatively high cost may restrict the uptake of the technique.  相似文献   

20.
Soil damage, compaction and displacement, during logging or clearing and cultivation affects both soil physical and chemical properties and reduces growth of regenerated or planted tree seedlings. Understanding the factors involved will aid management and set limits for indicators of sustainable management in eucalypt forests. In the first of two glasshouse studies, three Eucalyptus species were grown for 110 days in soils from six forest sites in Tasmania, Australia. Sites sampled ranged from low rainfall dry forest to very high rainfall wet forest. Soil was collected from three soil depths, in 10 cm increments to 30 cm, each packed in pots to four different bulk densities, ranging from that present in undisturbed field sites to that plus 0.17 g cm−3. In the second study Eucalyptus globulus Labill. seedlings were grown in soil collected from disturbed and undisturbed sites, packed to two bulk densities, and fertilized with combinations of N and P. Increasing soil compaction, in Study 1, caused a proportional decrease in final mass of seedlings of up to 25%. Growth on soil from lower horizons (10–30 cm) averaged only 41% of that on topsoil, a significantly greater restriction of growth than that achieved through compaction. It was concluded that topsoil displacement and profile disturbance was a more significant form of soil damage than compaction. Above-ground dry weight of seedlings was most strongly correlated with soil total N but poorly correlated with other macronutrients. Growth of E. globulus seedlings grown on disturbed soils, in Study 2, averaged 30% of that on undisturbed sites. With added P and N on undisturbed sites growth averaged seven times that of the unfertilized seedlings indicating a general deficit of available P and N on the three soils tested. On soils from disturbed areas, there was also a response to fertilizing with N and P together but the response varied on the three soils. The effects of profile disturbance were ameliorated with fertilizer applications on only one of the soils. The results highlighted the importance of retaining topsoil in situ during forest operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号