首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current silvicultural practices in the northeastern United States create diverse vegetation patterns and microclimates that provide a mosaic of terrestrial habitats for amphibian species. We inferred patterns of habitat use by the spotted salamander, Ambystoma maculatum, by studying colonization of four newly created breeding pools each surrounded by four different forest treatments: a control, partial cut, clearcut with coarse woody debris (CWD) removed, and clearcut with CWD retained. Created pools were rapidly colonized, indicating that breeding salamanders readily bred in new pools they encountered. This suggests that in our study area pool-specific philopatry and site fidelity may not be high and that particular pools may not define local breeding populations. In the experimental silvicultural treatments, juvenile salamanders preferred the control forest to the clearcuts, whereas adult salamanders showed no significant preferences among the treatments. Although silvicultural practices such as clearcutting may reduce juvenile movement between pools, inter-pool movement by adults that are more tolerant of habitat change may ameliorate this effect in our study area. If juveniles are the primary life-history stage dispersing between local populations (i.e., moving between more isolated groups of pools), however, there is potential for clearcutting to reduce the connectivity between local populations.  相似文献   

2.
Amphibians are globally threatened by anthropogenic habitat loss, the wildlife trade and emerging diseases. Previous authors have hypothesized that the spread of the amphibian disease chytridiomycosis (Batrachochytrium dendrobatidis) and amphibian ranaviruses are associated with the international trade in live amphibians. The North American bullfrog (Rana catesbeiana) is thought to be a carrier of these pathogens, is globally traded as a live commodity, and is sold live in US markets. We obtained importation data for all live amphibians, and parts thereof, into three major US ports of entry (Los Angeles, San Francisco and New York) from 2000 to 2005. Importation of live amphibians into these ports totaled almost 28 million individuals over this 6-year period. We collected samples from freshly-imported market frogs and found infection with both pathogens in all three cities and all seasons, with an overall infection prevalence of 62% (306/493) and 8.5% (50/588) for B. dendrobatidis and ranaviruses, respectively, by PCR. This study definitively identifies these two important pathogens in recently imported live market frogs and suggests that the amphibian trade can contribute to introductions of these pathogens into new regions. It provides support for the recent listing of B. dendrobatidis and ranaviral diseases by the OIE, and provides evidence for measures to be taken to eradicate these pathogens from the trade.  相似文献   

3.
Trillium camschatcense, a long-lived common woodland herb, has been experiencing intensive habitat fragmentation over the last century in eastern Hokkaido, Japan. We examined the genetic diversity and population genetic structure of 12 fragmented populations with different population sizes using allozyme electrophoresis. The percentage of polymorphic loci and mean number of alleles per locus were positively related to population size, probably due to the stochastic loss of rare alleles (frequency of q<0.1) in small populations. Populations with 350 flowering plants or fewer had lost almost all of their rare alleles. While the heterozygosity and inbreeding coefficient were not related to population size, some small populations showed relatively high inbreeding coefficients. In spite of the low genetic differentiation among overall populations (FST=0.130), local population structuring was recognized between the two geographically discontinuous population groups. Within groups, sufficient historical gene flow was inferred, whereas a low dispersal ability of this species and geographical separation could produce apparent differentiation between groups.  相似文献   

4.
This study investigated the relationship between the current size of endangered bullhead (Cottus gobio) populations and microsatellite genetic variability. Additionally, the microsatellite data were used to evaluate whether a genetic test for population bottlenecks was able to provide evidence of recent severe population declines. Finally, our results were used to develop conservation priorities and measures. Population size appears to be a crucial parameter in determining the amount of genetic diversity that can be preserved in bullheads, since a significant positive correlation was observed between both variables. Furthermore, in some populations we were able to detect genetic signatures of the documented decline in population size. We suggest that the most immediate goal for bullhead conservation should be to increase the size and the range of the populations, and in doing so minimise or even reverse further genetic erosion. Potential management actions like habitat quality improvement, reduction of river fragmentation and supplementation programmes (translocation, supportive breeding) are discussed.  相似文献   

5.
Clianthus is an acutely threatened, bird-pollinated genus endemic to New Zealand, represented in the wild by only one population of C. puniceus and 11 populations of C. maximus, each with very few individuals (typically <10 per population). A limited number of named Clianthus cultivars of indeterminate origin are commonly grown as ornamentals. Genomic DNA from individual Clianthus plants was extracted for genetic diversity analysis using a range of molecular markers, including amplified fragment length polymorphism (AFLP). Data were analysed by the unweighted pair-group method with arithmetic averaging (UPGMA), the generation of Neighbor-Joining trees, and analyses of molecular variance (AMOVA). Genetic distance between wild populations of C. maximus was highly correlated with geographical distance between populations. Sequencing of intron 2 of a putative partial homologue of the floral meristem identity gene LEAFY (CmLFY) revealed a 7 bp deletion that was exhibited homozygously in the more northern populations of C. maximus, and in all individuals tested from the sole population of C. puniceus. This deletion was not exhibited in more southern populations of C. maximus. Further, one geographically intermediate population contained some plants that were heterozygous for the deletion. Parallel analyses of cultivated Clianthus genotypes, more than half of which were also homozygous for the 7 bp deletion, showed that these were not representative of the broad, but threatened, diversity remaining in the wild. It is argued that wild populations of C. maximus are unlikely to have arisen from the escape of plants from cultivation. Conservation effort should focus on the protection and study of the extant plants in these wild populations, rather than on the introduction of disturbance regimes to uncover potential seed banks.  相似文献   

6.
We investigated and reviewed the current and historic distribution of northern dusky salamanders (Desmognathus fuscus fuscus) in Acadia National Park (ANP), Maine, USA during 1938-2003. Historical data indicate that northern dusky salamanders were once widespread and common in ANP. We conducted intensive surveys for stream salamanders during 2000-2003 and observed only two adult northern dusky salamanders on one stream. No eggs or larvae were observed. Although the cause of the observed population decline is unknown, we identify multiple potential stressors including stocking of predatory fishes, fungal pathogens, substrate embeddedness, and widespread pollution (i.e., from atmospheric pollutants) of surface waters at ANP. Our data suggest that ANP streams may no longer be suitable for northern dusky salamanders. This investigation is the first to document the decline of a stream dwelling amphibian species in a national park (i.e., areas that are not subject to obvious habitat loss or major changes in land use) with widespread mercury contamination of its surface waters.  相似文献   

7.
The extent of damage to the host plant caused by Gaeumannomyces graminis var. tritici (Ggt) and var. graminis (Ggg) is a result of a net effect of host susceptibility and mycelium infectivity. The disease severity on cereal roots caused by G. graminis (Gg) fungi varies considerably depending on the genetic subtypes. Results of our rhizobox placement experiments additionally showed a subtype-specific effect of the spatial distance between host and fungus on the infection. The highest pathogenicity of each subtype was found in different zones of the root system: pathozones of different subtypes alternated along the root. The extent of the pathozone profiles did not depend on the infectivity of the inoculum and plant age. However, disease severity was shown to be affected by defence reactions of the host plant. An attack of a fungal subtype that is easily recognized by the host plant leads to defence reactions like increased root growth, thus minimizing the damage to the shoot. Detailed analysis showed that a Ggt subtype had a high potential for colonizing root laterals. It formed concentric zones of high colonization efficiency at a distance of ca. 5 cm around the shoot.  相似文献   

8.
The endangered fish species Anaecypris hispanica is restricted to eight disjunct populations in the Portuguese Guadiana drainage. The genetic structure of these populations was studied in order to determine levels of genetic variation within and among populations and suggest implications for conservation of the species. Based on five microsatellite loci, the null hypothesis of population homogeneity was tested. Tests for genetic differentiation revealed highly significant differences for pairwise comparisons between all populations, and substantial overall population subdivision (FST=0.112). All sampled populations contained unique alleles. Our findings indicate marked genetic structuring and emphasise limited dispersal ability. The high levels of genetic diversity detected within and among A. hispanica populations suggest, however, that the observed fragmentation and reduction in population size of some populations during the last two decades, has impacted little on levels of genetic variability. Data imply that most A. hispanica populations should be managed as distinct units and that each has a high conservation value containing unique genetic variation. It is argued that geographic patterns of genetic structuring indicate the existence of eight management units.  相似文献   

9.
Dramatic changes have been documented in New Zealand's vertebrate faunas since human settlement, involving major declines and extinctions, but over recent years few species have declined in numbers so rapidly as the terrestrial Archey's frog Leiopelma archeyi (Anura: Leiopelmatidae). Long-term monitoring over more than 20 years revealed a major population reduction of the species over 1996-2001 and L. archeyi is now classified as Nationally Critical under the New Zealand threat classification system. The decline progressed northwards in the Coromandel ranges, and mostly larger (female) frogs survived. On a 100 m2 study plot at Tapu Ridge, annual population estimates averaged 433 frogs (SE ±32) over 1984-1994, declining by 88% to average 53 frogs (SE ±8) over 1996-2002. A mean annual survival rate of 82% for most years declined to 33% over 1994-1997. There is mounting evidence to suggest that disease is the major agent of decline, supported by (1) the rapidity and severity of decline, (2) the progressive (south to north) nature of decline, and (3) finding frogs with chytriodiomycosis from Batrachochytrium dendrobatidis at the time of decline. Surprisingly, sympatric populations of the semi-aquatic Leiopelma hochstetteri have not declined dramatically, nor has a western population of L. archeyi at Whareorino, despite chytridiomycosis occurring in some frogs there. Sustaining and restoring populations of L. archeyi in New Zealand raises major challenges for conservation management.  相似文献   

10.
RAPD polymorphisms were applied to check the efficiency of ex situ genetic conservation of endangered Vatica guangxiensis X. L. Mo. endemic to southwestern China. Low level of genetic variation was revealed in three remaining natural populations. Twenty random primers, each with 10 base pairs, generated 231 bands with 53.68% being polymorphic, and with an average of 32.46% being polymorphic in each natural population. Strong population differentiation was revealed by AMOVA (analysis of molecular variance) and Gst value was 0.3764. The population ML ex situ conserved in the Xishuangbanna Tropical Botanical Garden contained an intermediate genetic variation compared with natural populations, with 30.74% bands being polymorphic. Of the total 231 bands generated in V. guangxiensis, 204 bands were also detected in population ML, indicating that 88.31% of the total genetic variations of this species were conserved in ex situ population. If only the alleles with moderate to high frequency (P>0.05) were considered, 204 out of 209 bands (97.61%) occurred in ex situ population ML. RAPD analysis also detected one exclusive band in natural population NS, and five in natural population NP, three of these exclusive bands were generated in every samples of natural population (NP), and other three had moderate to high frequencies. While none of these exclusive bands were detected in ex situ conserved population ML. Our conclusions are that the ex situ conserved population ML contains representative genetic variation to maintain long-term survival and evolutionary process of V. guangxiensis, and that more extensive ex situ sampling in natural population NS and NP is needed to conserve more exclusive alleles in ex situ population. The tropical area in the Botanical Garden would play a more important role in the ex situ conservation of rare and endangered plants.  相似文献   

11.
Levels of genetic variation and intrapopulation genetic structures of Leontice microrhyncha S. Moore (Berberidaceae) were assessed for six populations in South Korea, representing the southern most range of a species found in Northeast China and the Korean peninsula. Detected genetic diversity (Hes) was very low (0.024) and FIS values showed large heterozygote deficiencies. The small percentage of polymorphic loci and numbers of alleles per locus suggest that L. microrhyncha has a history of severe or long-lasting population bottlenecks that have eroded genetic diversity. This study suggests that the Korean population appears to consist of two historically isolated and independently evolving populations. It seems likely that these groups have been isolated and unstable for a significant period of time. However, the effects of recent habitat fragmentation on the historically disjunct and fragmented population system found in L. microrhyncha were not those predicted from the lack of significant relationships between population-level patterns of genetic variation and population sizes. Most non-unique genotypes were shared by most individuals and the lower level of diversity, high levels of inbreeding and population differentiation as well as high rate of seed production indicated that this species is autogamous and self-compatible and probably largely selfing. Therefore, to preserve extant genetic variation, all populations must be protected across the small geographic range of the species to retain both allelic and genotypic diversity.  相似文献   

12.
Soil populations of Rhizobium leguminosarum bv. viciae (Rlv) that are infective and symbiotically effective on pea (Pisum sativum L.) have recently been shown to be quite widespread in agricultural soils of the eastern Canadian prairie. Here we report on studies carried out to assess the genetic diversity amongst these endemic Rlv strains and to attempt to determine if the endemic strains arose from previously used commercial rhizobial inoculants. Isolates of Rlv were collected from nodules of uninoculated pea plants from 20 sites across southern Manitoba and analyzed by plasmid profiling and PCR-RFLP of the 16S-23S rDNA internally transcribed spacer (ITS) region. Of 214 field isolates analyzed, 67 different plasmid profiles were identified, indicating a relatively high degree of variability among the isolates. Plasmid profiling of isolates from proximal nodules (near the base of the stem) and distal nodules (on lateral roots further from the root crown) from individual plants from one site suggested that the endemic strains were quite competitive relative to a commercial inoculant, occupying 78% of the proximal nodules and 96% of the distal nodules. PCR-RFLP of the 16S-23S rDNA ITS also suggested a relatively high degree of genetic variability among the field isolates. Analysis of the PCR-RFLP patterns of 15 selected isolates by UPGMA indicated two clusters of three field isolates each, with simple matching coefficients (SMCs) ≥0.95. However, to group all field isolates together, the SMC has to be reduced to 0.70. Regarding the origin of the endemic Rlv strains, there were few occurrences of the plasmid profiles of field isolates being identical to the profiles of inoculant Rlv strains commonly used in the region. Likewise, the plasmid profiles of isolates from nodules of wild Lathyrus plants located near some of the sites were all different from those of the field isolates. However, comparison of PCR-RFLP patterns suggested an influence of some inoculant strains on the chromosomal composition of some of the field isolates with SMCs of ≥0.92. Overall, plasmid profiles and PCR-RFLP patterns of the isolates from endemic Rlv populations from across southern Manitoba indicate a relatively high degree of genetic diversity among both plasmid and chromosomal components of endemic strains, but also suggest some influence of chromosomal information from previously used inoculant strains on the endemic soil strains.  相似文献   

13.
The chytrid fungus Batrachochytrium dendrobatidis has contributed to declines and extinctions of amphibians worldwide. B. dendrobatidis is known to infect the frog Eleutherodactylus coqui in its native Puerto Rico. E. coqui was accidentally introduced into Hawaii in the late 1980s, where there are now hundreds of populations. B. dendrobatidis was being considered as a biological control agent for E. coqui because there are no native amphibians in Hawaii. Using a DNA-based assay, we tested 382 E. coqui from Hawaii for B. dendrobatidis and found that 2.4% are already infected. We found infected frogs in four of 10 study sites and on both the islands of Hawaii and Maui. This is the first report of B. dendrobatidis in wild populations in Hawaii. As the range of E. coqui expands, it may become a vector for the transmittance of B. dendrobatidis to geographic areas where B. dendrobatidis does not yet exist.  相似文献   

14.
Microsatellite DNA polymorphisms were screened in seven populations of the largest Neotropical predator, the Black caiman Melanosuchus niger (n = 169), originating from Brazil, French Guiana and Ecuador. Eight loci were used, for a total of 62 alleles. The Ecuadorian population had the lowest number of alleles, heterozygosity and gene diversity; populations of the Guianas region exhibited intermediate diversities; highest values were recorded in the two populations of the Amazon and Rio Negro. During the last century Melanosuchus populations have been reduced to 1-10% of their initial levels because of hunting pressure, but no strong loss of genetic diversity was observed. Both the inter-locus g-test and the Pk distribution suggested no recent important recovery and/or expansion of current populations. On a global scale, the inter-population variation of alleles indicated strong differentiation (FST = 0.137).Populations were significantly isolated from each other, with rather limited gene flow; however, these gene flow levels are sufficiently high for recolonization processes to effectively act at regional scales. In French Guiana, genetic structuring is observed between populations of two geographically close but ecologically distinct habitats, an estuary and a swamp. Similar divergence is observed in Brazil between geographically proximate “black water” and “white water” populations. As a consequence, the conservation strategy of the Black caiman should include adequate ecosystem management, with strong attention to preservation of habitat integrity. Distribution of genetic diversity suggests that current populations originated from the central Amazonian region. Dispersal of the species may thus have been deeply influenced by major climatic changes during the Holocene/Pleistocene period, when the Amazonian hydrographic networks were altered. Major ecological changes such as glaciations, marine transgressions and a hypothesized presence of an Amazonian Lake could have resulted in extension of Black caiman habitats followed by isolation.  相似文献   

15.
There is much concern over the high mortality of many populations of Acacia raddiana, a keystone tree species in the Negev desert of Israel. We used random amplified polymorphic DNA (RAPD) to assess patterns of genetic variation within and among 12 populations of A. raddiana from the Arava (Syrian-African Rift) valley and western Negev. A high level of genetic polymorphism was recorded within populations. An analysis of molecular variance (AMOVA) showed that about 59.4% of total genetic variance occurred among populations, which is considerably greater population differentiation than that recorded for other outbreeding species. Cluster and principal coordinates analyses and AMOVA indicate that the western Negev and Arava valley populations are highly differentiated. We suggest that there may have been two invasions of A. raddiana into Israel: one across the northern Sinai/Gaza Strip area into the western Negev, with some plants reaching the Dead Sea and a second invasion across the southern part of the Sinai peninsula, or even from Saudi Arabia, up to the Arava valley. From the conservation point of view, each population should be conserved separately because they are genetically highly differentiated and loss of any one population would lead to a dramatic loss of genetic variation. The mixing of genetically distinct populations may give rise to outbreeding depression (particularly because of GXE interactions). An obvious first step to the maintenance of this species' genetic diversity is the separate management of the western Negev and Arava valley populations because of their different evolutionary histories.  相似文献   

16.
Oryzomys couesi cozumelae is an endemic, threatened rodent from Cozumel Island, Mexico. We estimated its genetic diversity and structure by analyzing microsatellite loci in 228 samples from 12 sampling sites widely distributed throughout the island. Unexpected high levels of genetic and allelic diversity were found: a total of 54 alleles, an average of 10.8 alleles per locus, and high heterozygosity values (mean HO = 0.624, HE = 0.690 and HNei = 0.689). These values are higher than those reported for small sized insular mammals, higher than that found in 37 individuals of the mainland O. couesi from southern Mexico (HO = 0.578) that we analyzed for comparative purposes, and similar to those of other mainland small mammal populations. Despite factors that affect Cozumel’s biota, such as exotic predators and competitors, hurricanes, seasonal population fluctuations and anthropogenic activities, no evidence of genetic bottlenecks was found. A significant population structure was observed and a model of isolation-by-distance was supported. Our findings render O. c. cozumelae a high conservation value, not only for its high genetic diversity and structure, but because available data suggests that its population has declined significantly in recent years. Further habitat fragmentation and population isolation could result in a higher genetic structure and loss of genetic diversity. The protection of habitat, the maintenance of habitat connectivity and the removal of introduced competitors and predators are a conservation priority. Acknowledging that the genetic structure of populations has crucial conservation implications, the present genetic information should be taken into account in management plans for the conservation of O. c. cozumelae.  相似文献   

17.
The red kite (Milvus milvus) occurs in a relatively small area in the southwestern Palearctic region, with population strongholds in Central Europe. Following strong human persecutions at the beginning of the 20th century, populations have receded, particularly in peripheral areas and islands. In order to describe and compare levels of genetic diversity and phylogeographic patterns throughout its entire distribution in Europe, sequence variation of a 357 bps part of the mitochondrial DNA control region was assessed in eight populations and 105 individuals. Overall, results indicate that population declines have affected red kite mtDNA variation. We found low levels of genetic diversity (values of nucleotide diversity ranging from 0 in Majorca island to 0.0062 in Central Europe), with only 10 distinct haplotypes, separated by low levels of genetic divergence (mean sequence divergence = 0.75%). Highest haplotype and nucleotide diversities match with demographic expectations, and were found in Central European and Central Spanish samples, where present strongholds occur, and lowest values in the declining southern Spanish and insular samples. Φst estimates indicated moderate gene flow between populations. Phylogeographic patterns and mismatch distributions analyses suggest central European regions may have been colonized from southern glacial refugia (in the Italian or Iberian peninsulas). Interspecific phylogenetic comparisons and divergence date estimates indicated the genetic split between the red kite and its closely related species, the black kite (Milvus migrans), might be relatively recent. The low level of genetic variation found in the red kite mitochondrial control region, compared to the black kite, is likely the result of relatively recent divergence (associated with founder events), successive bottlenecks and small population sizes. As there are several ongoing projects aimed at reinforcing populations in countries such as the United Kingdom, Italy or Spain, our results may prove useful for the genetic management of the species.  相似文献   

18.
Fragmented and degraded vegetation characterises agricultural landscapes across southern Australian. Remnant vegetation within these regions performs a number of vital ecological and hydrological roles, but little is known about whether or how fragmentation is affecting the long-term persistence of these critical landscape elements. Acacias are a significant component of many remnant vegetation communities across Australia, forming numerous integral faunal and floral relationships. Here, reproductive output of 11 fragmented Acacia dealbata (Mimosaceae) populations from across the southern tablelands of New South Wales was assessed over 2 years to identify reproductive constraints associated with increasing vegetation fragmentation. Fertilization success is the major reproductive constraint, particularly in small populations, and probably reflects a self-incompatible reproductive strategy. During 2002 larger and more dense populations produced more legumes (p = 0.014 and <0.001, respectively) while in 2003 these two variables were associated with increased fertilization success (p = 0.004 and 0.017, respectively). There was also some suggestion that populations with fewer exotic species also experienced increased fertilization success (p = 0.055). Assessment of plant performance within populations suggests that consistent reproductive output of particular individuals within small populations may limit reproductive compatibility within these populations over time. The long-term persistence of many small A. dealbata populations may be jeopardised by low seed set, and limited recruitment and aging stands. Immediate steps are now required to ensure that these populations continue contributing to landscape function by augmenting populations, improving connectivity, and allowing disturbance events that will stimulate recruitment.  相似文献   

19.
In parasite-host dynamics, parasites exert frequency-dependent selection on their hosts by favouring rare alleles that may confer resistance against infection. Therefore host populations that suffer strong parasite stress should maintain higher levels of genetic variability. We studied the Lumbricus terrestris-Monocystis sp. host-parasite system at a microgeographical scale. Using three polymorphic microsatellite loci on one large earthworm population sampled at 26 different sites (281 genotypes), we tested the relationship between parasite load and genetic variation in natural samples of the common earthworm L. terrestris. Our analysis yielded the following: (1) parasite load varied significantly across sites in this population; (2) there was no consistent evidence for heterozygote deficiency (observed heterozygosities ranged between 0.74 and 0.87), indicating a low level of inbreeding; (3) there was no significant genetic structuring among sample sites; (4) we could not identify a significant association between parasite load and population genetic diversity; (5) there was considerable population differentiation (15.17%) between our German samples and a Canadian L. terrestris reference population. Our study provides insight into the population genetics of one of the most economically important soil organisms on a microgeographic scale.  相似文献   

20.
The estimated number of tsessebes on a cattle and wildlife ranch in Zimbabwe decreased during 1995-1999 from 2209 to 435 animals. Existing records of rainfall, cattle management, wildlife numbers, captures, hunting and predation were analysed and, together with a demographic model and limited fieldwork, used to identify the probable cause of this decline. There was no convincing evidence that cheetah predation, excessive legal or illegal offtakes, a food shortage as a direct consequence of the 1994/1995 drought, or interspecific competition with wild herbivores were likely causes. After the 1991/1992 drought, tsessebe number was negatively correlated with cattle biomass, suggesting that cattle and tsessebe have competed for food since then. Two factors probably caused a long-lasting reduction in the dry-season availability of green grass leaf (the preferred food of tsessebe). First, drought and heavy grazing pressure by cattle may have shifted sward composition away from leafy grasses and towards grass species with small, wiry leaves. Secondly, while shrub encroachment has been occurring for decades, the 1991/1992 drought probably encouraged the establishment of another cohort of bushes, which now compete with grasses for soil moisture, reducing the water available for grass growth during the dry season. The competition between tsessebe and cattle was masked by significant cattle destocking during 1992-1995, but became apparent after 1995 when cattle numbers were increased. This competition was exaggerated by a general decline, since 1994, in rainfall during September-October, which further reduced the late dry season supply of green grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号