首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of inbreeding and heterosis and the difference between them were estimated by comparing linecross (L), topcross (T), inbred (I) and control line (C) Hereford females for reproductive and preweaning growth traits of their progeny. Inbred females (average inbreeding coefficient = 26.5%) originated from four single-sire inbred lines. Control females (average inbreeding coefficient = 6.9%) were produced by a four-sire, 60-cow line. Linecross females were produced from all possible reciprocal crosses of the I lines. Topcross females were produced by mating I bulls to C cows. Differences in pregnancy rate among these lines were not detected. Effects of maternal heterosis were positive for both prenatal and postnatal survival. The weaning rate by L females exceeded the weaning rate by I females as a result. Prenatal survival was reduced in calves from I females relative to those from C females, resulting in corresponding differences in birth and weaning rates. Differences in the magnitudes of maternal heterosis and inbreeding effects were not detected, except for birth weight. For birth weight the effect of maternal inbreeding was of greater magnitude than the effect of maternal heterosis. Within the I and C lines regressions of pregnancy rate, prenatal survival, birth rate, postnatal survival, weaning rate, weaning weight/cow exposed, birth weight and weaning weight on the inbreeding coefficients of the cows indicated significant inbreeding depression on all traits except pregnancy rate and postnatal survival.  相似文献   

2.
基因组选配(genomic mating,GM)是利用基因组信息进行优化的选种选配,可以有效控制群体近交水平的同时实现最大化的遗传进展。但基因组选配是对群体中所有个体进行选配,这与实际的育种工作有点相悖。本研究模拟了遗传力为0.5的9 000头个体的基础群数据,每个世代根据GEBV选择30头公畜、900头母畜作为种用个体,而后使用基因组选配、同质选配、异质选配、随机交配4种不同的选配方案。其中基因组选配中分别选取遗传进展最大的解、家系间方差最大的解、近交最小的解所对应的交配方案进行选育。每种方案选育5个世代,比较其后代群体的平均GEBV、每世代的遗传进展、近交系数、遗传方差,并重复5次取平均值。结果表明,3种基因组选配方案的ΔG均显著高于随机交配和异质选配(P<0.01),而且,选取遗传进展最大的基因组选配方案的ΔG比同质选配还高出4.3%。3种基因组选配的方案的ΔF比同质选配低22.2%~94.1%,而且选取近交最小的基因组选配方案ΔF比异质选配低11.8%。同质选配的遗传方差迅速降低,在第5世代显著低于除基因组选配中选择遗传进展最大的方案以外的所有方案(P<0.05),3种基因组选配方案的遗传方差比同质选配高10.8%~32.2%。这表明基因组选配不仅可以获得比同质选配更高的遗传进展,同时有效的降低了近交水平,并且减缓了遗传方差降低速度,保证了一定的遗传变异。基因组选配作为一种有效的可持续育种方法,在畜禽育种中开展十分有必要。  相似文献   

3.
In the Japanese Black cattle population, five genetically divergent subpopulations have played important roles as suppliers of breeding stocks to the entire breed. We supposed a situation where five lines were constructed from each of the five subpopulations, and applied to this set of lines a management plan to conserve genetic diversity. Assuming that the male migration pattern among the lines followed the island model, we assessed the optimum male migration rate and required male numbers in each line, satisfying the following three conditions simultaneously: (i) the rate of inbreeding in each line was below 0.01 per generation; (ii) at least 97% of the initial genetic diversity was preserved after 10 generations; and (iii) more than 50% of the genes in an initial line were retained in the line after 10 generations. We found that approximately one breeding male should be selected per year and one breeding male should be exchanged among the lines per generation in each line to satisfy these three conditions. Numerical analysis with the migration rates actually observed among the five subpopulations demonstrated that the initial genetic differentiation among the lines was rapidly decayed by an asymmetrical migration pattern. For a successful plan, migration among lines should be strictly managed.  相似文献   

4.
Summary Alternative breeding strategies were simulated based on the population structure of the Tajima strain of Japanese Black cattle. An analysis of the population structure revealed that some sires up to 20 years of age have been used in Tajima. In addition, 95% of newborn calves were the progeny of only 20 sires, and their mating frequencies were significantly skewed. The current average inbreeding coefficient and founder genome equivalents of the strain were estimated to be 0.199 and 2.25, respectively. Average inbreeding coefficient is expected to reach 0.394 within 27 years. Thus, different breeding strategies were assessed for their effect on the level of inbreeding and average genetic merit. We compared strategies that (1) halve the sire service period, (2) double the number of mating sires and (3) lower the skewed sire mating frequency and optimize the frequency for weighted genetic merit and diversity. Reducing the service period yielded a 7.0–12.0% reduction in the rate of inbreeding while maintaining almost the same genetic gain. Increasing the number of sires resulted in a 19.3–21.3% reduction in inbreeding with a corresponding 1.6–8.4% reduction in gain. The rates of inbreeding from the optimized strategies decreased as the weight on genetic diversity increased. However, a strategy that emphasized only genetic gain yielded lower gain than other strategies because the strategy allowed only one sire to mate, resulting in reduced genetic variance and low accuracy of genetic evaluation. In contrast, a strategy with no emphasis on genetic gain when determining mating frequency resulted in reductions of 16.0% and 63.2% in genetic gain and inbreeding, respectively. The strategies examined here are easily applicable and can be expected to reduce immediate loss of genetic diversity.  相似文献   

5.
基于表型和基因组信息评价北京油鸡保种群保种情况   总被引:1,自引:1,他引:0  
旨在利用表型和基因组信息对北京油鸡随机交配保种群体近交系数、有效群体大小进行研究,评价北京油鸡保种群体保种情况。本研究以国家级北京油鸡保种场北京油鸡2019年随机交配保种群体40只鸡为研究对象,对表型记录进行整理,同时利用基因组SNP信息,使用PLINK软件分别计算基于ROH的近交系数(FROH)、基于纯合基因型的近交系数(FHOM)、基于联合配子之间相关性的近交系数(FUNI);使用GCTA和R软件计算基于基因组关系G矩阵的近交系数(FGRM);使用SNeP软件估计北京油鸡历史世代的有效群体大小;使用NeEstimator软件估计基于连锁不平衡方法的当前世代的有效群体大小;使用R软件的PerformanceAnalytics包对FROHFHOMFGRMFUNI等不同算法所得近交系数进行相关性分析,评价北京油鸡的保种情况。结果显示,1979—2019年以来,北京油鸡保种群体凤冠、胫羽、五趾等典型的外貌特征明显且百分比稳定;保种群有效群体大小从98世代前的595逐渐降至13世代前的176;2019年北京油鸡随机交配保种群体FROH为0.079 8,与FGRM显著相关(P<0.01),且相关系数为0.45;除此之外,FHOMFGRM,FHOMFUNI以及FGRMFUNI之间也存在较高的线性相关。北京油鸡1979—2019年以来近交系数增长缓慢,国家级北京油鸡保种场随机交配保种群体的保种工作是十分有效的。基于目前情况,本研究建议每年随机选取一定数量的北京油鸡随机交配保种群体的个体,进行全基因组二代重测序检测,有利于对保种状况进行动态监控,以便随时调整保种工作方案。  相似文献   

6.
An experiment with mice was designed to test the relative efficiency of three selection methods that help to minimize the rate of inbreeding during selection. A common house mice (Mus musculus) population was selected for 17 generations to increase the weight gain between 21 and 42 days. The population was split at random into three lines A, B and C where three selection methods were applied: individual selection and random mating, weighted selection with random mating and individual selection with minimum coancestry mating, respectively. There were three replicates for each line. Cumulated selection response was similar in the three lines, but there were differences in the level of inbreeding attained (in percentage): 31.24 (method A), 24.72 (method B) and 27.88 (method C). As consequence, lines B and C (weighted selection and minimum coancestry) showed a lower value of deterioration of fitness traits (the intrauterine mortality and the mortality at birth) than line A (random mating).  相似文献   

7.
The objective of this study was to use pedigree analysis to evaluate the population structure and genetic variability in the Murrah dairy breed of water buffalo (Bubalus bubalis) in Brazil. Pedigree analysis was performed on 5,061 animals born between 1972 and 2002. The effective number of founders (fe) was 60, representing 6.32?% of the potential number of founders. The effective number of ancestors (fa) was 36 and the genetic contribution of the 17 most influent ancestors explained 50?% of the genetic variability in the population. The ratio fe/fa (effective number of founders/effective number of ancestors), which expresses the effect of population bottlenecks, was 1.66. Completeness level for the whole pedigree was 76.8, 49.2, 27.7, and 12.8?% for, respectively, the first, second, third, and fourth known parental generations. The average inbreeding values for the whole analyzed pedigree and for inbreed animals were, respectively, 1.28 and 7.64?%. The average relatedness coefficient between individuals of the population was estimated to be 2.05?%??the highest individual coefficient was 10.31?%. The actual inbreeding and average relatedness coefficient are probably higher than estimated due to low levels of pedigree completeness. Moreover, the inbreeding coefficient increased with the addition of each generation to the pedigree, indicating that incomplete pedigrees tend to underestimate the level of inbreeding. Introduction of new sires with the lowest possible average relatedness coefficient and the use of appropriate mating strategies are recommended to keep inbreeding at acceptable levels and increase the genetic variability in this economically important species, which has relatively low numbers compared to other commercial cattle breeds. The inclusion of additional parameters, such as effective number of founders, effective number of ancestors, and fe/fa ratio, provides better resolution as compared to the inclusion of inbreeding coefficient and may help breeders and farmers adopt better precautionary measures against inbreeding depression and other deleterious genetic effects.  相似文献   

8.
Minimum coancestry mating (MC) is a simple mating system to reduce inbreeding in populations, in which matings are allocated so as to minimize the average inbreeding coefficient of progeny. This system was compared with random mating (RM) in simulated broiler lines. The population structure and genetic parameters were determined on the basis of an existing broiler line. Comparison of mating systems was made under two selection methods. The first method (DIS) was based on selection index for achieving desired genetic gains. In the second method (LPS), a combination of the family index and linear programming technique was applied to obtain the desired genetic gains. The selected traits were body weight at 6 weeks of both sexes and age at sexual maturity of hen. Four schemes by all the possible combinations of selection and mating methods (DIS + RM, DIS + MC, LPS + RM and LPS + MC) were compared in terms of genetic gains and inbreeding during 15 generations of selection and mating. The results obtained are summarized as follows: (i) the four schemes produced similar genetic gains averaged over replicates; (ii) the variations of genetic gains under LPS + RM and LPS + MC schemes were much smaller than under DIS + RM and DIS + MC schemes; (iii) irrespective of the selection methods, MC reduced the average inbreeding coefficients to about 80% of RM and; (iv) the inbreeding coefficients of individuals in the schemes with RM were distributed in a wide range, while the inbreeding coefficients in the schemes with MC showed a high uniformity. From these results, the LPS + MC scheme was recommended as a selection and mating strategy in closed broiler lines.  相似文献   

9.
The purpose of this study is to use demographic and litter size data on four Spanish maternal lines of rabbits (A, V, H and LP), as a case study, in order to: (i) estimate the effective population size of the lines, as a measure of the rate of increase of inbreeding, and (ii) study whether the inbreeding effect on litter size traits depends on the pattern of its accumulation over time. The lines are being selected for litter size at weaning and are kept closed at the same selection nucleus under the same selection and management programme. The study considered 47 794 l and a pedigree of 14 622 animals. Some practices in mating and selection management allow an increase of the inbreeding coefficient lower than 0.01 per generation in these lines of around 25 males and 125 females. Their effective population size (Ne) was around 57.3, showing that the effect of selection, increasing the inbreeding, was counterbalanced by the management practices, intended to reduce the rate of inbreeding increase. The inbreeding of each individual was broken down into three components: old, intermediate and new inbreeding. The coefficients of regression of the old, intermediate and new inbreeding on total born (TB), number born alive (NBA) and number weaned (NW) per litter showed a decreasing trend from positive to negative values. Regression coefficients significantly different from zero were those for the old inbreeding on TB (6.79 ± 2.37) and NBA (5.92 ± 2.37). The contrast between the coefficients of regression between the old and new inbreeding were significant for the three litter size traits: 7.57 ± 1.72 for TB; 6.66 ± 1.73 for NBA and 5.13 ± 1.67 for NW. These results have been interpreted as the combined action of purging unfavourable genes and artificial selection favoured by the inbreeding throughout the generations of selection.  相似文献   

10.
1. The endogenous avian leukosis virus (ev) loci present in 9 lines of domestic fowls have been partially characterised and the average heterozygosity of the loci in each line calculated. 2. Using these data an estimate of the coefficient of inbreeding of the lines was derived; this estimate of the extent of inbreeding is compared with the mating history of the lines. 3. This method provides the first means of directly assessing the degree of inbreeding of fowl lines: assumptions implicit in the method are discussed.  相似文献   

11.
The effective population size is a key parameter in the definition of selection programs, because the magnitude of this parameter determines both the rate of inbreeding and the amount of genetic drift in the population. Prediction of the effective size of selected populations is complicated by the fact that selection has a cumulative effect on the effective size. In the present article, two basic approaches to predict the effective size of populations under selection were summarized, and the interrelation among them was clarified. Several extensions to practical situations relevant to animal breeding, such as non‐random mating, index selection and marker‐assisted selection, were also reviewed.  相似文献   

12.
为了更好地了解青峪猪在世代更替过程中遗传结构的变化,更好的保护和利用青峪猪遗传资源,本研究利用50K SNP芯片,对青峪猪保种群内141头(26头公猪,115头母猪)健康成年个体进行SNP测定,通过多种分析软件对青峪猪保种群体和各个世代进行系谱校正,进而实施群体遗传多样性、遗传距离以及遗传结构变化等分析。结果显示,该封闭保种群由3个重叠世代构成,群体有效含量为12头,且整个群体可以分为6个含有公猪的家系和1个不含公猪的家系。其中,第3世代的有效群体含量最少,仅为3头,多态性标记比例随着世代的增加不断下降;141头青峪猪的平均遗传距离为(0.260 4±0.025 2),26头种公猪的遗传距离为(0.263 3±0.023 7)。随着繁殖世代的增加,各世代群体的遗传距离有轻微的上升趋势,部分种猪之间的亲缘关系和遗传距离较近;在141头青峪猪群体中共检测到1 481个基因组上长纯合片段(runs of hemozygosity,ROH),78.01%的长度在200 Mb以内,基于ROH值计算的近交系数表明整个群体的平均近交系数为0.055,且各世代的近交系数在不断上升,到第3世代时已经达到了0.075。综上所述,通过对青峪猪分子水平的群体遗传结构研究表明,该保种群体在闭锁的继代繁育过程中存在群体遗传多样性损失,需要加强选配或导入外血以确保青峪猪遗传资源的长期保存。  相似文献   

13.
The aim of this study was to estimate the current level of inbreeding in the German cow population and for bull dams born in Germany, to find out sires most related to different subsets of their breed and to demonstrate the negative effect of homozygosity in the case of complex vertebral malformation (CVM). Further on, the application of optimum genetic contribution (OGC) theory for the selection of bull dams and bull sires in different breeding scenarios was investigated. Levels of inbreeding for the cow population were in a low range from 0.97% to 1.70% evaluating birth years from 1996 to 1999 in a total dataset of 244,427 registered Holstein cows. The inbreeding coefficient of 8030 bull dams was much higher, i.e. 3.71%, for the birth year 1999. Increases in inbreeding of 0.19% per year indicated an effective population size of only 52 animals. Individual sires like R.O.R.A. Elevation and Hannoverhill Starbuck were highly related to potential bull dams with coefficients of relationship of 13.4% and 12.9%, respectively, whereas P.F. Arlinda Chief (16.3%) and Carlin-M Ivanhoe Bell (16.1%) were highest related to the best available AI sires. Coefficients of relationship were calculated by classes of estimated breeding values (EBV) for production traits showing highest values above 7% in the two highest EBV-classes. The optimum genetic contribution theory using official EBVs and approximative, for zero inbreeding corrected EBVs, was applied for elite matings in a breeding program embracing 30 young bulls per year to find the optimal allocations of bull sires and bull dams. Compared with the actual breeding program applied in practice, OGC-theory has the potential to increase genetic gain under the same constraint for the increase of average relationship by 13.1%. A more relaxed constraint on increase in inbreeding allowed even higher expected genetic gain whereas a more severe constraint resulted in more equal contributions of selected bull sires. Contributions from 21 selected bull sires and 30 selected bull dams for a scenario at 5% constrained relationship were used to develop a specific mating plan to minimise inbreeding in the short term in the following generation applying a simulated annealing algorithm. The expected coefficient of inbreeding of progeny was 66.3% less then the one resulting from random mating. Mating programs can address inbreeding concerns on the farm, at least in the short term, but long-term control of inbreeding in a dairy population requires consideration of relationships between young bulls entering AI progeny test programs. Significantly better EBVs of CVM-free bulls compared with CVM-carriers for the paternal fertility justify the application of OGC for elite matings.  相似文献   

14.
The objective of this research was to estimate the amount of inbreeding and effective population size of the Japanese Black breed using pedigree records from bulls and heifers registered between 1985 and 1997. Inbreeding was quantified by three F-statistics: actual inbreeding, inbreeding expected under random mating, and inbreeding due to population subdivision. During the period of 1985 to 1997, the inbreeding expected under random mating increased from 2.3% to 5.0%, whereas the increase of actual inbreeding was more gradual (from 4.7% to 5.4%). The inbreeding due to population subdivision decreased almost linearly and reached 0.5% in 1997, indicating that genetic subdivision of the Japanese Black cattle population has essentially disappeared. The effective size of the breed was estimated from the increasing rate of inbreeding expected under random mating. In the earlier half of this period (1986 to 1990), the breed maintained an effective size of approximately 30. However, after 1991 the effective size sharply decreased and the harmonic mean between 1993 and 1997 was only 17.2. The main cause of this reduction of the effective size was considered to be the intensive use of a few prominent sires. To increase the effective size, an upper limit in the use of AI semen per sire should be imposed.  相似文献   

15.
A data set constituting a total of 310,109 Hanoverian warmblood horses was analyzed to ascertain the genetic variability, coefficients of inbreeding, and gene contributions of foreign populations. The reference population contained all Hanoverian horses born from 1980 to 2000. In addition, Hanoverian stallions born from 1980 to 1995 and Hanoverian breeding mares from the birth years 1980 to 1995 with registered foals were analyzed for the same genetic parameters. The average complete generation equivalent was approximately 8.43 for the reference population. The mean coefficient of inbreeding was 1.33, 1.19, and 1.29% for the reference population, stallions, and breeding mares, respectively. The effective number of founders was largest in stallions (364.3) and smallest in the reference population (244.9). The ratio between the effective number of founders and the effective number of ancestors was 3.15 for the reference population, 3.25 for the stallions, and 3.06 for the breeding mares. The effective population size in the Hanoverian warmblood reference population was 372.34. English Thoroughbreds contributed nearly 35% of the genes to the Hanoverian reference population and even slightly greater contributions (39%) to the stallions. Trakehner and Arab horses contributed approximately 8 and 2.7%, respectively, to the Hanoverian gene pool. The most important male ancestors were Aldermann I from the A/E line, Fling from the F/W line, and Absatz from the Trakehner line, whereas the breeding mare Costane had the greatest contribution to the reference population, stallions, and breeding mares. From 1996 onward, the stallions Weltmeyer and Donnerhall had the largest genetic impact on the Hanoverian horse population.  相似文献   

16.
Increased rate of inbreeding in selection programmes may have an important effect on mid- and long-term selection response and reproductive performance through reduction in genetic variance and inbreeding depression. Selection on an inherited trait inflates the rate of inbreeding and reduces the effective population size (R obertson 1961; S antiago and C aballero 1995). This can be particularly important in selection based on index with information from relatives (L ush 1947) or best liner unbiased prediction (BLUP) with an animal model (H enderson 1984). In recent years, various methods have been proposed to reduce the rates of inbreeding in selection programmes while keeping genetic gains at the same level. These methods assume various selection and mating strategies. G rundy et al. (1994) showed that the use of biased heritability estimates for BLUP evaluation is one of the simplest and most efficient methods. A direct reduction in the weight on family mean in index selection (T oro and P erez -E nciso 1990), selection for weighted ancestral Mendelian sampling estimates (W oolliams and T hompson 1994; G rundy et al. 1998) and limited use of selected parents (T oro and N ieto 1984; W ei 1995) have also been shown to be efficient methods. Other methods include nonrandom matings of selected parents, such as factorial mating designs (W oolliams 1989), minimum coancestry mating (T oro et al. 1988) and compensatory mating (S antiago and C aballero 1995). Simultaneous optimization of the selection of candidates and their mating allocations has been also considered through mate selection with linear programming techniques (T oro and P erez -E nciso 1990). Among these methods, compensatory mating is a very simple and efficient method (G rundy et al. 1994; S antiago and C aballero 1995; C aballero et al. 1996). This mating system was derived from the theoretical consideration on effective population size under selection (S antiago and C aballero 1995). Although S antiago and C aballero (1995) considered that implementation of this mating could counteract the cumulative effect of selection on the effective population size, the theoretical basis has been little studied. In this paper, the author gives the theoretical basis of compensatory mating. A modification to enhance the effect of compensatory mating is also proposed and the efficiency is examined by stochastic simulation.  相似文献   

17.
Because native breeds can serve as genetic resources for adapting to environment changes, their conservation is important for future agroecosystems. Using pedigree analysis, we investigated genetic diversity and inbreeding in Japanese Hokkaido native horses, which have adapted to a cold climate and roughage diet. Genetic diversity was measured as the number of founders and the effective number of founders, ancestors and genomes. All metrics imply a decrease in genetic diversity. A comparison of these metrics suggested that pedigree bottlenecks contributed more than did random gene losses to the reduction of genetic diversity. Estimates of marginal contributions of ancestors suggest that the bottlenecks arose mainly because related stallions had been used for breeding. A tendency for an increase in inbreeding coefficients was observed. F‐statistics revealed that a small effective population size majorly contributed to this increase, although non‐random mating in particular regions also contributed. Because the bottlenecks are thought to have reduced the effective population size, our results imply that mitigation of bottlenecks is important for conservation. To this end, breeding should involve genetically diverse stallions. In addition, to prevent non‐random mating observed in particular regions, efforts should be made to plan mating with consideration of kinships.  相似文献   

18.
Population structure of Reyna Creole cattle in Nicaragua   总被引:1,自引:1,他引:0  
Reyna Creole cattle originated from Bos taurus cattle brought to Latin America during the Spanish colonization in the fifteenth century and are the only remaining local breed in Nicaragua. However, the current genetic status of this breed is unknown. Therefore, the population structure of three recorded Reyna Creole herds in Nicaragua was studied to estimate their level of inbreeding, effective population size, and generation intervals. Data from 2,609 animals born between 1958 and 2007 were analyzed. A pedigree completeness index higher than 0.8 was required to obtain reliable estimates of the level of inbreeding, and this criterion was met for 367 animals (14%) in two herds. The average level of inbreeding was 13.0%, with values ranging from 0% to 43.8% for individual animals. One of the herds had an average inbreeding level of 21.6%, primarily due to long periods in which the same bulls were used for mating, leading to excessive frequencies of matings between closely related animals. The effective population size differed between years and ranged from 28 to 46 animals, showing that the Reyna Creole cattle breed is endangered, close to critical status. The average generation interval was 6.9 years with values as high as 19.1 years for some sires that were used for artificial insemination over a long period of time. Due to the high level of inbreeding and small population size, urgent actions are required for the development of a breeding program to protect the breed and support its sustainable utilization.  相似文献   

19.
按照公母比例1:3选择公犬50只,母犬150只组建河曲藏獒犬育种核心群,从体型、外貌、体尺、毛色、适应性与气质等方面提出河曲藏獒犬评定的标准与要求,实施各家系等数留种法,使核心群体有效含量达到239.8,世代间隔2.5年,世代近交系数的增量控制在0.2%以下。通过选育核心群公犬平均体高72.1 cm、管围16.3 cm,母犬平均体高70.2 cm、管围15.2 cm,为同步开展河曲藏獒犬品种资源保护与选育奠定了基础。  相似文献   

20.
Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro fertilization and embryo transfer (JIVET) have been shown to accelerate genetic gain by increasing selection intensity and decreasing generation interval. Genomic selection (GS) increases the accuracy of selection of young candidates which can further accelerate genetic gain. Optimal contribution selection (OCS) is an effective method of keeping the rate of inbreeding at a sustainable level while increasing genetic merit. OCS could also be used to selectively and optimally allocate reproductive technologies in mate selection while accounting for their cost. This study uses stochastic simulation to simulate breeding programmes that use a combination of artificial insemination (AI) or natural mating (N), MOET and JIVET with GS. OCS was used to restrict inbreeding to 1.0% increase per generation and also to optimize use of reproductive technologies, considering their effect on genetic gain as well as their cost. Two Australian sheep breeding objectives were used as an example to illustrate the methodology—a terminal sire breeding objective (A) and a dual‐purpose self‐replacing breeding objective (B). The objective function used for optimization considered genetic merit, constrained inbreeding and cost of technologies where costs were offset by a premium paid to the seedstock breeder investing in female reproductive technologies. The premium was based on the cumulative discounted expression of genetic merit in the progeny of a commercial tier in the breeding programme multiplied by the proportion of that benefit received by the breeder. With breeding objective B, the highest premium of 64% paid to the breeder resulted in the highest allocation of reproductive technologies (4%–10% for MOET and 19%–54% for JIVET) and hence the highest annual genetic gain. Conversely, breeding objective A, which had a lower dollar value of the breeding objective and a maximum of 5% mating types for JIVET and zero for MOET were optimal, even when highest premiums were paid. This study highlights that the level of investment in breeding technologies to accelerate genetic gain depends on the investment of genetic improvement returned to the breeder per index point gain achieved. It also demonstrates that breeding programmes can be optimized including allocation of reproductive technologies at the individual animal level. Accounting for revenue to the breeder and cost of the technologies can facilitate more practical decision support for beef and sheep breeders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号