首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
针对耕作环境复杂、旋耕机耕作深度测量作业影响因素多等特点,设计了一种自动化测量、省时省力、精度高的便携式耕深深度测量装置。装置搭载于旋耕机后,通过磁致伸缩位移传感器、超声波传感器、姿态传感器和GPS模块等传感器采集数据,结合装置数学模型,融合相关数据,有效获得准确的耕深数据。对超声波传感器和磁致位移传感器采集的数据进行S-G滤波加权融合,有效应对测量过程中泥土飞溅或越坎等数据波动,减小外在因素对测量精度的影响,提高测量的精度。结合多元线性回归预测模型,对滤波融合后的数据进行预测分析,准确预测耕深数据变化值并辅助旋耕机调整机身姿态。试验结果表明:在3组16cm预定耕深下,磁致位移传感器直接采集的数据可以准确地反映数据的变化和趋势,且超声波传感器数据间接辅助磁致伸缩位移传感器数据,还原数据真实变化趋势。研究结果表明:多元线性回归模型预测数据与实际测量的数据之间的平均绝对百分比误差分别为0.03%、0.26%、3.16%,能准确反映实际旋耕机作业耕深数据情况,实现耕深测量预测。  相似文献   

2.
为了提高磁致伸缩位移传感器的稳定性和测量准确性,降低反射波信号对输出电压有效信号的影响,对反射波电压产生原因及影响因素进行了研究。从阻尼与波导丝之间的弹性压力及其产生的摩擦力对应力波传播影响的角度,构建了阻尼作用下磁致伸缩位移传感器反射波电压模型,计算了磁致伸缩位移传感器的反射波电压幅值,利用搭建的实验平台,通过实验获得不同阻尼参数作用下的反射波电压幅值变化。结果表明,计算结果与实验结果的变化趋势基本一致,阻尼对反射波电压幅值有很大影响。基于反射波电压模型,确定了阻尼长度和邵氏硬度最佳取值范围分别为5~10mm、50~75,在直径为10mm、长度为10mm和邵氏硬度为50的最优阻尼作用下,反射波电压幅值从75mV降低至4mV,此时反射波电压幅值远小于有效信号,从而大大降低了对输出电压有效信号造成的影响。本研究可为磁致伸缩位移传感器阻尼选择提供理论依据。  相似文献   

3.
超磁致伸缩伺服阀用电—机转换器传热及热误差分析   总被引:2,自引:0,他引:2  
提出了一种超磁致伸缩伺服阀用超磁致伸缩电-机转换器的结构并阐述了其工作原理,此电-机转换器采用了油液冷却和反向补偿法来抑制因热产生的位移输出。为分析温升对超磁致伸缩电-机转换器控制精度的影响,基于导热和对流传热理论建立了其传热模型,给出了稳态时超磁致伸缩棒上的温度和热补偿装置上的温度,分析了冷却油液流速对稳态温度的影响,并采用温度场数值模拟的方法对仿真结果进行了验证。分析结果表明,当控制电流为额定值1 A时,若超磁致伸缩棒和控制线圈间油液速度大于0.1 m/s,热补偿装置和超磁致伸缩棒的温度在20.3℃附近且温差在0.2℃以下。由超磁致伸缩棒和热补偿装置上的温度,进一步推导出了超磁致伸缩电-机转换器因热而产生的误差位移。通过仿真分析得出,在超磁致伸缩棒和控制线圈间油液速度等于0.1 m/s时,棒和外壳温度接近且温升不大,热误差位移不大于0.1μm。  相似文献   

4.
为提高农田平整作业过程中平后区域田面地形实时测量精度,本文提出一种农田精准平整过程中三维地形实时测量方法(Real-time 3D terrain measurement, Rt3DTM)。以安装有GNSS双天线和姿态传感器的支撑轮式旱地平地机为地形测量平台,利用卡尔曼滤波器融合GNSS与加速度提高定位精度,通过建立平地铲运动学模型获得支撑轮底点的车体坐标,结合平地铲位姿信息对支撑轮底点进行世界坐标解算,并利用最邻近插值法生成地形图。静态试验表明,Rt3DTM方法能准确解算支撑轮底点坐标,平面测量均方根误差小于10 mm,高程测量均方根误差不大于20 mm。水泥路面试验结果表明,在3组不同车速下测量同一段水泥路面三维地形,与真值的高差均方根误差均小于30 mm。田间试验结果表明,Rt3DTM测量的高程均方根误差为16.5 mm,平整度为16 mm,小于30 mm的高差分布列为95.8%,相比机载GNSS测量方法的均方根误差准确性提高29.5%,平整度准确性提高11.1%,高差分布列准确性提高9.5%。提出的Rt3DTM方法能实时准确地获取平整作业过程中平后区域的地形信息,为无人化农田平...  相似文献   

5.
基于卡尔曼滤波融合算法的深松耕深检测装置研究   总被引:1,自引:0,他引:1  
为提高实时检测耕深的准确性,设计了基于超声波传感器和红外传感器以及卡尔曼滤波融合算法的耕深检测装置,采用超声波传感器通过渡越时间法测量耕深,采用红外传感器通过三角测距法测量耕深,通过卡尔曼滤波融合算法滤除两传感器检测数据中的杂波,并进行融合。室内试验表明,在平整地面,红外传感器检测效果优于超声波传感器;在秸秆覆盖地面,超声波传感器检测效果优于红外传感器。经卡尔曼滤波融合后的数据能充分利用两传感器在不同环境中检测的有效数据。在设定耕深为30 cm和40 cm的田间试验中,超声波传感器滤波数据的平均值分别为29.51 cm和38.79 cm,深松深度变异系数分别为2.51%和3.10%;红外传感器滤波数据的平均耕深分别为32.06 cm和41.52 cm,深松深度变异系数分别为2.41%和2.76%;而经卡尔曼滤波融合后的数据平均耕深分别为30.06 cm和39.95 cm,深松深度变异系数分别为1.07%和1.00%,说明采用滤波融合后的检测数据比单个传感器更能准确检测耕深和反映耕深变化趋势。  相似文献   

6.
超声波传感器评定水田激光平地机水平控制系统性   总被引:4,自引:0,他引:4  
为了评定水田激光平地机平地铲水平控制系统性能,采用2个SensComp 600超声波传感器测量平地铲两端与参考水平面的距离,然后利用三角关系计算得到平地铲倾斜角度.对超声波测距、传感器与反射面成一定夹角的影响以及运动对测量的影响因素进行了分析,并与姿态航向参考系统AHRS500GA-226提供的参考倾角进行了对比,结果表明2个超声波传感器在静态和动态条件下均能较准确地测量出平地铲倾斜角度,最大静止误差和最大动态误差分别为0.08°和1.00°.在平整的水泥地面上对平地铲水平系统性能进行了测试,实验结果表明,水田激光平地机水平控制系统倾斜角度测量准确,误差不超过1.00°,整个系统能较好地实现平地铲水平控制,满足水田平整作业需要.  相似文献   

7.
耕作土壤地表不平度对拖拉机悬挂机组作业质量与作业效率有着重要的影响。为实现准确、高效的测量耕作土壤地表不平度,利用激光位移传感器设计了一套非接触式耕作土壤地表三维形貌测量装置,可获得区域内耕作地表的三维形貌图,并计算出地表不平度。该测量装置主要包括运动测试台、控制箱和基于Lab VIEW软件的数据采集系统,测量范围为1m×1m,空间分辨率为0. 001mm,距离分辨率为1mm。实验表明:测量装置的均方根误差为0. 017mm,表明该测量装置能够准确、高效地测量耕作土壤地表三维形貌,为后续耕作土壤地表三维形貌的理论分析与耕作土壤地表不平度评价提供了有效的支持。  相似文献   

8.
基于ARMA的插秧机田间行驶姿态预测   总被引:1,自引:0,他引:1  
为减小水田不平度对农业机械精准作业品质的影响,进一步提高农机装备工作效率,从系统控制角度出发,提出将预测算法应用于农机具的姿态补偿控制。在分析自回归滑动平均模型(Auto regressive and moving average,ARMA)建模原理和适用性的基础上,对车载GPS/INS组合导航系统采集的插秧机田间行走侧倾角序列进行ARMA建模及提前预测,单次预测时长为1s和2s,预测总时长为30s;对GPS/INS组合导航系统所采集的原始值以2Hz、5Hz和10Hz 3种频率输出,以比较不同频率的数据建模对姿态预测精度的影响。结果表明:ARMA模型可有效预测插秧机未来1~2s内的姿态变化趋势;对于同一频率的样本,提前2s预测精度均低于提前1s预测精度,但差异不明显;以3种频率数据分别作样本时5Hz样本预测效果最好,其提前1s预测均方根误差和误差标准差分别为0.6567°、0.6565°,提前2s预测均方根误差和误差标准差分别为0.6712°、0.6769°。  相似文献   

9.
为提高水田自走式喷雾机喷施作业均匀性,设计了喷杆自动调平系统,包括自动调平机械结构、喷雾机车身倾角传感器和控制器,以及车身倾角传感器和控制器的硬件系统和软件系统,并研究了对加速度计和陀螺仪数据进行融合的卡尔曼滤波算法和喷杆自动调平PID控制算法。以井关JKB18C型喷雾机为平台,采用叉车调节喷雾机车身倾斜角度,用2台MTI-300高精度惯性传感器分别测量喷雾机车身和喷杆倾角,并进行了测试试验。结果表明:随着车身倾角变化速率的增加,喷杆倾斜角度的平均绝对误差、均方根误差和最大误差增大,平均绝对误差最大为0. 90°,均方根误差最大为1. 39°,最大误差为1. 70°,车身倾角变化速率对喷杆控制精度影响较大。为检测喷杆自动调平控制系统的田间作业性能,采用双天线RTK-GNSS导航定位系统测量喷雾机作业过程中喷杆水平倾角,并进行了田间试验。试验结果表明:喷杆相对于水平面的平均绝对误差最大为0.79°,均方根误差最大为0. 85°,最大误差为1. 70°,喷杆自动调平控制系统可以有效地控制喷杆的水平姿态。  相似文献   

10.
水田激光平地机平地铲姿态测量系统的设计   总被引:1,自引:0,他引:1  
水田激光平地机水平控制作为农田激光平地技术的重要组成部分,其研究过程中首先要解决平地铲实时倾角测量问题.为提高倾角测量精度,设计了平地铲姿态测量系统,采用MEMS传感器集成模块AD1S16300作为惯性测量单元,通过卡尔曼滤波实现传感器信息融合以计算平地铲倾角.分析了姿态测量系统的构成,阐述了两种传感器融合测量实时倾角的方法,基于ARM7 Cotex- M3微处理器设计了姿态测量系统硬件.采用AHRS500GA对该姿态测量系统性能进行了融合算法验证与ADIS16300测量平地铲倾角验证.测试结果表明,该姿态测量系统能在动态条件下准确地测定平地铲实时倾角,可以进一步应用于激光平地机的水平控制之中.  相似文献   

11.
温度是设施生产中作物生长的主要制约因素之一,提前预测温室温度对精准调控温室环境具有重要的指导意义。因此提出一种基于灰狼优化算法的长短期记忆网络模型预测温室温度,该模型利用灰狼优化算法(Grey Wolf Optimizer, GWO)对长短期记忆网络(Long Short-Term Memory, LSTM)模型参数进行调整优化。以江苏省农业科学院阳光板温室2020年9月23日—12月21日期间的试验数据对该方法进行验证。结果显示:在预测时间步长30 min时,GWO-LSTM的预测均方根误差、平均绝对误差、平均绝对百分比误差和决定系数分别为0.677 6、0.411 4、0.168 7和0.960 4。在预测时间步长60 min内,GWO-LSTM模型预测精度均高于标准LSTM和反向传播人工神经网络(Back Propagation Artificial Neural Network, BP-ANN)。说明所提出的GWO-LSTM模型能够准确地预测未来温室内温度变化,可为制定温室环境智能调控策略提供有效的数据支撑。  相似文献   

12.
针对现有地表微地貌测量装置难以兼顾农业耕种作业后地表微地貌测量的精度和效率、部分测量装置单次测量覆盖区域不能满足统计要求的问题,设计了一套由激光雷达、直线导轨、便携式计算机和支架等构成的非接触式地表微地貌测量装置,开发了以STM32单片机为核心的步进电机驱动控制器,并与上位机软件形成整套采集系统,可实现激光雷达精确定位并快速获取地表三维坐标。该装置典型分辨率在激光雷达扫描方向为3. 8~10 mm,垂直扫描方向可在毫米精度范围内任意设置,测距分辨率为1 mm;测量区域覆盖面积典型值为6. 8 m~2,垂直扫描方向分辨率为10 mm时,单次测量时间低于2. 5 min。通过分析测量误差来源,建立了系统误差补偿模型,在15次均值滤波的条件下,该装置测量最大绝对误差为2. 7 mm,最大平均绝对误差为0. 9 mm。油菜机械直播后地表微地貌测量试验结果表明:利用Matlab生成的地表三维模型可以精确地重构原有地表微地貌特征,测量结果与实际地表高度变化吻合度较高;测量数据统计结果表明,固定区域内均方根高度和相关长度测量值需分别在16次和64次的等距采样下达到稳定均值,而畦沟相关评价参数也需要多组样本计算才具有统计意义。  相似文献   

13.
近红外传感器测量不同种类土壤含水率的适应性研究   总被引:2,自引:0,他引:2  
采用我国不同土壤类型地区的5种土壤样品,利用自行设计的近红外传感器测量不同土壤含水率对应的反射光强。选取中心波长1 940 nm的近红外光为测量光,1 800 nm为参考光,将两波长的反射光强值换算为相对吸收深度。实测结果表明,随着土壤含水率的增加,相对吸收深度增加,两者间呈线性相关关系。选取独立样品对线性标定模型进行验证,除红土外,其他4种样品的均方根误差均小于6%。通过标定,所设计的传感器能够较好地测定不同土壤的含水率。  相似文献   

14.
当前农业甜菜生产中存在普遍的氮肥过量使用的问题,建立实时准确农田氮肥推荐体系至关重要。为此,通过利用BP神经网络算法利用图像数据对甜菜氮素含量进行预测,通过合理剔除原始数据中不符合拍摄条件的异常图像数据,选取147组数据作为训练集,90组数据组为预测集,将R、G、B作为输入量,通过BP神经网络算法训练得到预测值与实际值最优相关系数为r=0.70,均方根误差RMSE=4.60。将R/(R+G+B)、G/(R+G+B)、B/(R+G+B)作为输入量,利用BP神经网络算法训练后预测值与实际值最优相关系数r=0.6 4,均方根误差RMSE=3.66。由此可以看出:使用BP神经网络算法建立甜菜颜色特征信息氮素模型是可行的,可为农业甜菜生产中实时无损诊断植株氮素含量提供方法支持。  相似文献   

15.
针对油菜精量联合直播机作业后,田间作业厢面微地貌形状特征参数测量困难、传统测量方法存在测量效率和误差难以兼顾、现有测量装置操作便捷性不够的问题,设计了一种自走遥控地表微地貌测量装置。该装置主要由行走部件和微地貌测量系统组成,装置可以通过遥控操作到达指定测量区域并通过手机APP控制激光雷达扫描作业高度和扫描作业速度及实时显示测量装置测量状态信息,实现农田耕后地表微地貌特征高效测量。对装置行走部件悬挂避振机构和驱动机构行走驱动力进行了设计和分析,确定了弹簧避振器中圆柱螺旋压缩弹簧参数和驱动机构驱动电机参数;对微地貌测量系统控制单元硬件和软件进行了设计,确定了控制单元硬件电路和软件工作流程;对装置倾斜误差和系统误差进行了分析,消除了装置倾斜误差和系统误差。开展了装置田间测量试验,对地表厢面微地貌特征及畦沟沟型进行了测量,结果表明:相较于传统针板法测量方式,所开发的微地貌测量装置测量油菜直播机作业后的地表微地貌特征,获得的厢面平整度特征参数高度均方根、表面相关长度、畦沟平均沟宽、沟宽稳定性系数、平均沟深和沟深稳定性系数误差分别为4.01%、4.81%、3.70%、1.34%、2.09%和2.8...  相似文献   

16.
为了揭示电磁波信号在农田土壤中的传输特性、科学部署传感器节点,以关中地区农田土壤为研究对象,采用模块化设计思想,将传感器、无线数传、处理器和能量供应等模块集于一体,设计了无线地下传感器网络(Wireless underground sensor networks,WUSN)节点和汇聚节点。采用单因素试验方法,分析了土壤含水率、WUSN节点埋深、节点间水平距离对WUSN节点信号传输的影响,建立了接收信号强度和误码率预测模型。结果表明,当WUSN节点信号在地下垂直方向上传输时,土壤含水率增加2.5个百分点,接收信号强度降低4~6dBm,通信误码率增加3~5个百分点;WUSN节点埋深增加5cm,接收信号强度降低3~5dBm,通信误码率增加3~4.5个百分点。当WUSN节点信号在地下水平方向上传输时,土壤含水率增加2.5个百分点,接收信号强度降低5~7dBm,通信误码率增加4~5个百分点;节点间水平距离在10~90cm范围内,节点间水平距离增加10cm,接收信号强度降低6~8dBm,通信误码率增加6.5~8个百分点;节点间水平距离在90~190cm范围内,节点间水平距离增加10cm,接收信号强度降低约1dBm,通信误码率增加1~1.5个百分点WUSN节点信号在垂直、水平两种传输方向上误码率和接收信号强度预测模型拟合优度R2最高为0.982,均方根误差RMSE为1.7%,拟合优度R2最低为0.942,均方根误差RMSE为5.136dBm。WUSN节点信号在土壤中传输受到土壤含水率、WUSN节点埋深和节点间水平距离的严重影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号