首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

2.
Ascochyta blight (AB) and botrytis grey mould (BGM) are the most devastating fungal diseases of chickpea worldwide. The wild relative of chickpea, C. reticulatum acc. ILWC 292 was found resistant to BGM whereas, GPF2 (Cicer arietinum L.) is resistant to AB. A total of 187 F8 Recombinant Inbred Lines (RILs) developed from an inter-specific cross of GPF2 × C. reticulatum acc. ILWC 292 were used to identify quantitative trait loci (QTLs) responsible for resistance to AB and BGM. RILs along with parents were evaluated under artificial epiphytotic field/laboratory conditions for two years. Highly significant differences (P < 0.001) were observed for reaction to both pathogens in both years. Parents and RILs were genotyped-by-sequencing to identify genome wide single nucleotide polymorphism (SNPs). A total of 1365 filtered and parental polymorphic SNPs were used for linkage map construction, of which, 673 SNPs were arranged on eight linkage groups. Composite interval mapping revealed three QTLs for AB and four QTLs for BGM resistance. Out of which, two QTLs for AB and three QTLs for BGM were consistent in both years. These QTLs can be targeted for further fine mapping for deployment of resistance to AB and BGM in elite chickpea cultivars using marker-assisted-selection.  相似文献   

3.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

4.
Head blight of wheat (FHB, scab) caused by Fusarium spp. has been associated with yield and quality losses in many wheat-growing regions. In tetraploid wheat sources of resistance are scarce. In the search for novel sources of resistance, 151 Triticum dicoccoides genotypes, originating from 16 habitats in Israel and one habitat in Turkey together with several control genotypes, were evaluated for reaction to fungal spread (Type II resistance) in replicated greenhouse experiments. Significant genetic diversity was found among the tested genotypes, the broad sense heritability for Type II FHB resistance was 0.71. Most of the tetraploid accessions were highly susceptible, only a few showed moderate resistance. Among the eight T. dicoccoides lines with the lowest relative infection rates, five originated from the Mt. Gerizim population, and three from the Mt. Hermon population. None of the T. dicoccoides lines reached the level of resistance present in the common wheat cultivar Sumai3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Fusarium head blight (FHB), one of the most destructive diseases of wheat in many parts of the world, can reduce the grain quality due to mycotoxin contamination up to rejection for usage as food or feed. Objective of this study was to map quantitative trait loci (QTL) associated with FHB resistance in the winter wheat population ‘G16‐92’ (resistant)/‘Hussar’. In all, 136 recombinant inbred lines were evaluated in field trials in 2001 and 2002 after spray inoculation with a Fusarium culmorum suspension. The area under disease progress curve was calculated based on the visually scored FHB symptoms. For means across all environments two FHB resistance QTL located on chromosomes 1A, and 2BL were identified. The individual QTL explained 9.7% and 14.1% of the phenotypic variance and together 26.7% of the genetic variance. The resistance QTL on 1A coincided with a QTL for plant height in contrast to the resistance QTL on 2BL that appeared to be independently inherited from morphological characteristics like plant height and ear compactness. Therefore, especially the QTL on 2BL could be of great interest for breeding towards FHB resistance.  相似文献   

6.
Summary The short note describes the morphology and chromosome number of Cicer canariense Santos Guerra & Lewis. This taxon has been found to have a meiotic chromosome number of 2n<16 and not 2n<24, as reported earlier. At ICRISAT Center, while other perennial Cicers did not perform well, Cicer canariense flowered and produced seeds. The species grew vigorously and had multi-podded peduncles and multi-seeded pods. Such traits of Cicer canariense can be very useful in the genetic improvement of chickpeas.Submitted as JA 1456 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

7.
Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R 2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.  相似文献   

8.
Summary There are few estimates of genetic variability within and among populations of the nine annual Cicer species and for the wild species this information is based on few accessions. The present study was undertaken to examine genetic variation within and between annual Cicer species. One hundred and thirty-nine accessions of nine annual Cicer species were used for electrophoretic analysis at ICARDA. High levels of polymorphism in all eight wild annual Cicer species was found. This is in contrast to earlier research which had shown high polymorphism only in C. reticulatum. Cicer reticulatum had the highest proportion of polymorphic loci. However, for the cultigen, among 14 loci assayed, only two were polymorphic, ADH and PGD2. The nine species formed four phylogenetic groups based on the neighbor-joining method. The first group comprised C. arietinum, C. Reticulatum and C. echinospermum, the second C. bijugum, C. judaicum and C. pinnatifidum, the third C. chorassanicum and C. yamashitae; and the fourth group consisted of one species, C. cuneatum. The phylogenetic tree developed from the neighbor-joining technique illustrated that C. reticulatum is the probable progenitor of C. arietinum and that C. echinospermum split off from a common ancestor at an earlier stage in the evolutionary history of Cicer. Genetic diversity data showed that the greatest diversity was within C. reticulatum and the lowest with the cultigen, C. arientinum. With the exception of C. reticulatum, genetic diversity increased with genetic distance from the cultigen. Little geographic variation in genetic diversity was found.  相似文献   

9.
RAPD and SCAR markers for resistance to acochyta blight in lentil   总被引:3,自引:0,他引:3  
Resistance to ascochyta blight of lentil (Lens culinaris Medikus),caused by the fungus Ascochyta lentis, is determined by a single recessive gene, ral 2, in the lentil cultivar Indian head. Sixty F2 individuals from a cross between Eston (susceptible) and Indian head (resistant) lentil were analyzed for the presence of random amplified polymorphic DNA (RAPD) markers linked to the ral 2gene, using bulked segregant analysis (BSA). Out of 800 decanucleotide primers screened, two produced polymorphic markers that co-segregated with the resistance locus. These two RAPD markers, UBC2271290and OPD-10870, flanked and were linked in repulsion phase to the gene ral 2 at 12 cm and 16 cm, respectively. The RAPD fragments were converted to SCAR markers. The SCAR marker developed from UBC2271290 could not detect any polymorphism between the two parents or in the F2. The SCAR marker developed from OPD-10870 retained its polymorphism. The polymorphic RAPD marker UBC2271290 and the SCAR marker developed from OPD-10870 can be used together in a marker assisted selection program for ascochyta blight resistance in lentil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Late blight caused by the oomycete Phytophthora infestans (Mont.) de Bary (Pi) is the most important foliar disease of potato worldwide. An intraspecific hybrid between individuals of a resistant and a susceptible S. pinnatisectum accession was backcrossed to the susceptible parent to generate a segregating population for late blight resistance consisting of 84 plants. In detached‐leaflet assays, reaction to late blight segregated in a 1r:1s manner in BC1 progeny indicating the presence of a single dominant resistance gene. A genetic map was constructed based on 1,583 DArT/SSR markers which were allocated to 12 linkage groups, covering 1,793.5 cM with an average marker distance of 1.1 cM. The late blight resistance locus derived from S. pinnatisectum was mapped on chromosome VII. In comparison with the previously reported resistance genes Rpi1 and Rpi2, the new target resistance locus most likely is located on the opposite arm of chromosome VII. Results of this study will serve as a basis for future fine mapping of the late blight resistance locus and the development of locus‐specific markers for marker‐assisted selection.  相似文献   

11.
QTL analysis and mapping of pre-harvest sprouting resistance in Sorghum   总被引:2,自引:0,他引:2  
One of the most important agronomic problems in the production of sorghum [Sorghum bicolor (L.) Moench] in humid climates is pre-harvest sprouting (PHS). A molecular linkage map was developed using 112molecular markers in an F2 mapping population derived from a cross between IS 9530 (high resistance to PHS) and Redland B2 (susceptible to PHS). Two year phenotypic data was obtained. By means of interval mapping analysis, two significant QTL were detected in two different linkage groups with LOD scores of 8.77and 4.39. Each of these two QTL individually explained approximately 53% of the phenotypic variance, but together, in a two-QTL model, they explained 83% of the phenotypic variance with a LOD score of 12.37.These results were corroborated by a one-way ANOVA in which the four flanking markers of the most likely QTL positions displayed highly significant values in theF-test, and significant variation in trait expression was associated with marker genotypic classes. The four markers with highest effect in the one-way ANOVA were also detected in the second year replication of the F2 population, and significant genotype × environment interactions was observed. The putative relationship between PHS resistance in sorghum and the maize Vp1 gene is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Summary Simulated segregating barley populations were screened for resistance to scald (Rhynchosporium secalis) in the field at commercial seeding rates. A reduction in infection on the susceptible component occurred with increasing proportions of resistant genotypes. Similar trends were seen in space planted experiments but the use of susceptible buffer rows counteracted the effect, enhanced the infection in susceptible plants and greatly improved discrimination between resistant and susceptible. These results have been applied to the routine testing of F2 populations in the barley breeding programme.  相似文献   

13.
Ascochyta blight caused by the fungus Ascochyta lentis Vassilievsky and anthracnose caused by Colletotrichum truncatum [(Schwein.) Andrus & W.D. Moore] are the most destructive diseases of lentil in Canada. The diseases reduce both seed yield and seed quality. Previous studies demonstrated that two genes, ral1 and AbR1, confer resistance toA. lentis and a major gene controls the resistance to 95B36 isolate of C. truncatum. Molecular markers linked to each gene have been identified. The current study was conducted to pyramid the two genes for resistance to ascochyta blight and the gene for resistance to anthracnose into lentil breeding lines. A population (F6:7) consisting of 156 recombinant inbred lines (RILs) was developed from across between ‘CDC Robin’ and a breeding line ‘964a-46’. The RILs were screened for reaction to two isolates (A1 and 3D2) ofA. lentis and one isolate (95B36) ofC. truncatum. χ2 analysis of disease reactions demonstrated that the observed segregation ratios of resistant versus susceptible fit the two gene model for resistance to ascochyta blight and a single gene model for resistance to anthracnose. Using markers linked to ral1 (UBC 2271290), to AbR1(RB18680) and to the major gene for resistance to anthracnose (OPO61250),respectively, we confirmed that 11 RILs retained all the three resistance genes. More than 82% of the lines that had either or both RB18680 and UBC2271290markers were resistant to 3D2 isolate and had a mean disease score lower than 2.5. By contrast, 80% of the lines that had none of the RAPD markers were susceptible and had a mean disease score of 5.8. For the case of A1 isolate of A. lentis, more than 74% of the lines that carriedUBC2271290 were resistant, whereas more than 79% of the lines that do not have the marker were susceptible. The analysis of the RILs usingOPO61250 marker demonstrated that 11out of 72 resistant lines carried the marker, whereas 66 out of 84 susceptible lines had the marker present. Therefore, selecting materials with both markers for resistance to ascochyta blight and a marker for resistance to anthracnose can clearly make progress toward resistance in the population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Variation for resistance to Fusarium head blight in spring barley   总被引:3,自引:0,他引:3  
Fusarium head blight (FHB) is a fungal disease of barley and other cereals, causing substantial yield and quality losses, mainly due to the contamination of the harvest with mycotoxins. We aimed to evaluate genetic variation for resistance to FHB and its association with other plant characters in diverse barley germplasm in order to identify useful lines for resistance breeding. The 143 barley lines consisted of 88 current European spring barley lines and cultivars, 33 accessions from the genebank at IPK Gatersleben, and 22 lines obtained from North American institutions. We conducted artificially inoculated field experiments with Fusarium graminearum Schwabe during two seasons. FHB severity was evaluated by repeated assessment of visual symptoms. On a set of 49 lines several trichothecene mycotoxins were analyzed. Variation for FHB severity was quantitative. The lines with lowest FHB severity were 'CIho 4196' and 'PI 566203'. Also within the European spring barley collection variation for FHB severity was highly significant. There was a significant negative correlation between plant height and FHB severity (r=– 0.55). FHB severity assessed in the field and the amount of deoxynivalenol in the harvested grains were positively correlated (r= 0.87). Several lines with a useful level of FHB resistance were found or confirmed and are recommended as crossing partners.  相似文献   

15.
Summary Populations of wild emmer wheat, Triticum dicoccoides, in Israel, originating from diverse habitats, and tested earlier for allozyme (Nevo et al., 1982) and disease resistance polymorphisms (Moseman et al., 1983a, 1983b; Nevo et al., 1984a, 1984b), were compared and contrasted for performance in agronomically important phenotypic traits. The traits compared involved 10 variables comparing germination, earliness, biomass and yield variables. The field experiments were conducted in 1980, 1981 and 1982 in two relatively standardized and contrasting environments: mesic (Mount Carmel, Haifa) and xeric (Acedat Farm, and Sede Boqer, in the northern Negev desert). The experimental design involved 12 population quadrangles at Avedat Farm in 1980, and rows of randomized genotypes of five populations in both Haifa and Sede Boqer in 1981 and 1982.The results indicate that the characters studied are partly genetically determined. Striking genetic variation was found between and, at least in some characters, also within populations in each site, whereas remarkable environmental variation including genetic-environmental interaction was found between the mesic and the xeric sites. We conclude that natural populations of wild emmer wheat in Israel vary not only in genetic polymorphisms of allozymes and disease resistance, but also in quantitative traits of agronomic importance. These traits are economically significant and should be conserved and utilized in wheat crop improvement.  相似文献   

16.
The pod borer, Helicoverpa armigera, is one of the major constraints to chickpea production worldwide. The levels of resistance to pod borer in the cultivated chickpea germplasm are moderate, and therefore, we studied the reaction of 32 accessions of wild relatives of chickpea for resistance to H. armigera under greenhouse conditions. Accessions ICC 17257, IG 70002, IG 70003, IG 70012, (Cicer bijugum), IG 69948 (C. pinnatifidum), IG 69979 (C. cuneatum), IG 70032, IG 70033, IG 70038, and IG 72931 (C. judaicum) showed lower leaf feeding, a drastic reduction in larval weight, and poor host suitability index at the vegetative and/or flowering stages of crop growth as compared to the cultivated chickpeas. Based on percentage pods damaged by 5th day (< 52% pods damaged compared to 90% pods damaged in Annigeri), and percentage weight gain by the larvae (< 35% weight gain compared to 366% weight gain on ICCV 2); accessions IG 69979 (C. cuneatum), IG 70003, IG 70022, IG 70016, IG 70013, IG 70012, IG 70010, IG 70001, IG 70018, and IG 70002 (C. bijugum), and IG 72953 (C. reticulatum) showed high levels of resistance to H. armigera. Larvae of H. armigera weighed < 50 mg when reared on C. pinnatifidum (IG6 9948 and IG 70039), and C. judaicum (IG 72931) compared to 301.95 mg on C. arietinum (ICCC 37 – the cultivated chickpea). Larval weights on many accessions of the wild relatives of chickpea were much lower than those on the cultivated chickpeas, indicating the existence of different mechanisms of resistance to H. armigera. There was no pupation and adult emergence when the larvae were reared on accessions of C. pinnatifidum (IG 69948 and IG 70039), and C. judaicum (IG 69980, IG 70032, IG 70033 and IG 72931). The wild relatives of chickpea showing high levels of antibiosis to H. armigera can be used to introgress diverse resistance genes into cultivated chickpea to increase the levels and diversify the basis of resistance to this insect. An erratum to this article is available at .  相似文献   

17.
Summary During a four year period, a total of 258 winter and spring wheat genotypes were evaluated for resistance to head blight after inoculation with Fusarium culmorum strain IPO 39-01. It was concluded that genetic variation for resistance is very large. Spring wheat genotypes which had been reported to be resistant to head blight caused by Fusarium graminearum were also resistant to F. culmorum. The resistant germplasm was divided into three gene pools: winter wheats from Eastern Europe, spring wheats from China/Japan and spring wheats from Brazil. In 32 winter wheat genotypes in 1987, and 54 winter wheat genotypes in 1989, the percentage yield reduction depended on the square root of percentage head blight with an average regression coefficient of 6.6. Heritability estimates indicated that for selection for Fusarium head blight resistance, visually assessed head blight was a better selection criterion than yield reduction.  相似文献   

18.
The comparison of different methods of estimating genetic diversity could define their usefulness in plant breeding and genetic improvement programs. This study evaluates and compares the genetic diversity of 70 spring wheat accessions representing a broad genetic pool based on molecular markers and parentage relationships. The sample was composed of 32 accessions from the International Maize and Wheat Improvement Center (CIMMYT) and 38 from other breeding programs worldwide. Eight AFLP-primer combinations and 37 pairs of SSR primers were used to characterize the accessions and the Coefficients of Parentage (COP) were calculated from registered pedigrees. The average genealogical (COP) similarity (0.09 with a range of 0.0–1.0) was low in comparison to similarity calculated using SSR markers (0.41 with a range of 0.15–0.88) and AFLP markers (0.70 with a range of 0.33–0.98). Correlation between the genealogical similarity matrix (excluding accessions with COPs = 0) and the matrices of genetic similarity based on molecular markers was 0.34≤r≤0.46 (p <0.05). It is concluded that AFLP and SSR markers are generally in agreement with estimates of diversity measured using COPs, especially when complete pedigree data are available. However, markers may provide a more correct estimate due to some unrealistic assumptions made when calculating COPs, such as absence of selection. Furthermore, both COP and marker distances indicate that CIMMYT accessions are different from the worldwide group of accessions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
A species level germplasm collection representing 76% of known taxa in the genus Vigna subgenus Ceratotropis was evaluated for resistance to two species of bruchid beetles, Callosobruchus chinensis and C. maculatus. Seven taxa consisting of 29 accessions were found to be resistant to C. chinensis and 4 taxa consisting of 24 accessions were found to be resistant to C. maculatus. This compared with no resistant accessions being found in several hundred landrace accessions of mungbean, V. radiata var. radiata, in the same subgenus. Sometimes resistance was found in all accessions of a particular taxon, such as complete resistance to both C. chinensis and C. macualtus in V. umbellata. Other taxa showed intra taxon variation for resistance such as V. reflexo-pilosa andV. minima. The levels and patterns of resistance among taxa were diverse. The results suggest that various factors cause resistance to bruchid in the subgenus Ceratotropis. While the number of eggs laid on seeds generally reflected seed size, one small seeded cultivar of V. mungo var. mungo, black gram, had an unusually high number of eggs laid per seed. No correlation was found between seed size and levels of resistance. The species level germplasm collection, which reflects the core collection concept in trying to maximize genetic diversity in a limited number of accessions, has enabled a large number of potentially useful sources of resistance to bruchid beetles to be found efficiently. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Random amplified polymorphic DNA (RAPD) markers have been successfully employed to analyse the genetic diversity among cultivated and subspontaneous accessions of Coffea arabica. The narrow genetic base of commercial cultivars was confirmed. On the other hand, a relatively large genetic diversity was observed within the germplasm collection demonstrating the importance of collecting missions. Results suggested an East-West differentiation in Ethiopia, the primary centre of diversification of C. arabica. The large heterosis effect reported in intergroup hybrids could be related to such genetic differentiation. RAPD method appeared to be effective in resolving genetic variations and in grouping germplasm in C. arabica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号