首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cotton was grown under sprinkler irrigation on a silty clay soil at Keiser, Arkansas, for the 1987, 1988 and 1989 growing seasons. Irrigation treatments consisted of maximum soil water deficits (SWD) of 25, 50 and 75 mm and a nonirrigated control. While the irrigated treatments were significantly different from the control for plant height and total seedcotton yield, significant differences among the three irrigated treatments were only observed for plant height. Yields were significantly lower in 1989 than in the other two years of the study, due in part to later planting. The 3-year averages for total seedcotton yield were 3280 and 2870 kg ha–1 for irrigated and nonirrigated, respectively, for an average increase corresponding to irrigation of 416 kg ha–1 or 14.5% of the nonirrigated yield. The maximum increase was observed in 1988 as 602 kg ha–1 or 20.6% of the nonirrigated yield for that year. The 75 mm allowable SWD was the most efficient treatment and resulted in a 3-year average of 3.85 kg ha–1 additional seedcotton (above the nonirrigated) harvested for each 1 mm of irrigation applied. Maintaining the SWD below a 75 mm maximum required an average of four irrigations and 110 mm of irrigation water per year.  相似文献   

2.
Summary Empirical functions to predict the nitrogen uptake, increase in LAI and minimum leaf water potential (LWP) of cotton were incorporated into a water balance model for the Namoi Valley, N.S.W. A function was then developed to describe the lint yield of irrigated cotton as a function of water stress days at 4 stages of development, total nitrogen uptake and days of waterlogging. A water stress day was defined as predicted minimum leaf water potential less than -1.8 MPa up to 90 days after sowing and -2.4 MPa there-after; stress reduced yield by up to 40 kg lint ha–1 d–1 with greatest sensitivity at 81–140 days after sowing and when N uptake was highest. Nitrogen uptake was reduced by 0.98 kg per ha and yield reduced by 33.2 kg lint ha–1 for each day of waterlogging. The model was used to evaluate various irrigation strategies by simulating production of cotton from historical rainfall data. With a water supply from off farm storage, net returns ($ M1–1) were maximized by allocating 7 Ml ha–1 of crop. The optimum practice was not to irrigate until 60 days from sowing and until the deficit in the root zone reached 50%. When the supply of water was less than 7 Ml ha–1 there was no advantage in either delaying the start of irrigation or irrigating at a greater deficit; it was economically more rational to reduce the area shown or, if already sown, to irrigate part with 6 Ml ha–1 and leave the rest as a raingrown crop. Irrigation decisions are compromises between reducing the risk of water stress and increasing the risk of waterlogging. The simulation showed that there is no single set of practices that is always best in every season; in a number of seasons practices other than those which on average are best, give better results.  相似文献   

3.
Summary A field trial was conducted to determine the response of rapeseed (Brassica napus cv. Marnoo) to two irrigation treatments and six nitrogen fertilizer treatments. Response to nitrogen was greater with than without irrigation. Oil content was increased with irrigation but decreased under increasing nitrogen application, and was inversely related to seed nitrogen concentration. Oil yields averaged 1,168 kg ha–1 under irrigated treatments compared with 835 kg ha–1 under rainfed treatments. Maximum oil yield (approx. 1,557 kg ha–1) was obtained from the irrigated treatment fertilized with 100 kg N ha–1 applied at sowing.  相似文献   

4.
Summary Irrigated winter barley (Hordeum vulgare L.) can be a profitable alternative to some low profit major crops in the Texas High Plains. A six-year evaluation of yield response related to total spring irrigation water, applied by surface methods (furrow), and seasonal precipitation resulted in a multivariate function explaining 74% of the yield variation. Predicted yields varied from a low of 3.69 Mg ha–1 to a maximum 6.18 Mg ha–1 with 0 and 389 mm, respectively, based on average monthly precipitation quantities. Precipitation is skewed to less than average in th semi-arid Texas High Plains. Using modal precipitation amounts of 40% of average precipitation, yield estimates were reduced to 2.29 Mg ha–1 with zero spring irrigation and to 5.63 Mg ha–1 at the peak with 450 mm. A second multivariate yield response function related to alternative timings of single and multiple spring irrigations explained 76% of the variation in yields. Among all combinations of 1, 2, 3, and 4 spring irrigations, irrigation water-use efficiency was estimated to be highest with one application at the boot stage of development. All other single and combinations of multiple irrigations resulted in lower water-use efficiencies. A comparison of enterprise budgets of four irrigation timing alternatives and levels of application indicated highest profit over variable costs, $ 287 ha–1, was attained by applying a total of 307 mm in three spring applications at the boot, head, and milk stages. A lower level of 217 mm applied at boot and milk stages was $ 12 ha–1 less profitable and a higher level of 425 mm was $ 24 ha–1 less profitable. When fixed costs of irrigation facilities, land, and machinery were considered, returns to management and risk were highest, $ 101 ha–1, with 217 mm. Using 40% of average precipitation, profits were reduced $ 65 ha–1 with 217 mm and $ 69 ha–1 with 307 mm spring irrigation levels.Respectively, agricultural economist, research scientist, and research associate, Texas Agr. Exp. Station, Amarillo, Texas; Emeritus Extension agronomist, Texas Agr. Ext. Service, Amarillo, Texas; agricultural engineer, Texas Agr. Exp. Station, Amarillo, Texas  相似文献   

5.
Summary Four irrigation treatments: no irrigation; early irrigation (150 mm); late irrigation (150 mm); and early+late irrigation (275 mm), with 363 mm of rain; and four basic applications of nitrogen (0, 60, 120, 180 kg ha–1), with and without an additional nitrogen top dressing of 60 kg ha–1, were applied to autumn-sown wheat.For any given total nitrogen rate, there was no difference between the single and the split application.Grain yields ranged from 3040 kg ha–1 for the unirrigated, zero-nitrogen treatment to 6340 kg ha–1 for the two irrigations, 180 kg ha –1 N treatment. There was a strong interaction of irrigation and nitrogen on grain yields which was due mainly to the late irrigation: in the absence of the late irrigation the optimal nitrogen rate was 120 kg hat, followed by a marked decline in yield with additional nitrogen, whereas the application of the late irrigation shifted the optimum nitrogen rate to 180 kg ha–1. In the absence of the late irrigation, increasing the nitrogen rate from 0 to 240 kg ha –1 reduced kernel weight from 42 to 32 mg, whereas late irrigation largely prevented this decrease (42 to 39 mg). The reduction in kernel weight was evident even at the first nitrogen increments, in the range where grain yield was still increasing. Lack of nitrogen reduced soil moisture extraction during the grain filling stage, particularly from soil layers deeper than 60 cm.Stomatal aperture in the irrigated treatments was markedly larger in nitrogen-supplied than in nitrogen-deficient wheat, although the leaf hydration was similar; in the unirrigated treatment, the nitrogen-supplied plants had a lower hydration and smaller stomatal aperture than nitrogen-deficient plants.Contribution from the Agricultural Research Organization, Bet Dagan, Israel, No: 282-E, 1977 series  相似文献   

6.
The development of different tools to evaluate the performance of Water Users Associations (WUAs) is an important practice for improving water and energy management, together with other production costs. One of these tools is the Benchmarking technique, which is based on the comparison between different WUAs to determine the best practices in each of them.In this paper, a Benchmarking process is applied to seven WUAs located in Castilla-La Mancha (Spain) during three irrigation seasons (2006-2008). The performance indicators developed by the International Programme for Technology and Research in Irrigation and Drainage (IPTRID) are used, while new indicators dealing with production and energy are proposed. The goals of this paper are to group WUAs with the same characteristics, using performance and energy indicators, and to reduce the set of indicators using statistical methods. The most important indicators, easy to obtain and yielding result in maximum information are retained for further use.Three proposals reducing the initial number of indicators were proposed, with an aim of being useful for future applications based on characterizing WUAs. Indicators results highlighted that irrigable areas can be grouped based on the application of drip irrigation systems and those with sprinkler irrigation systems. When using groundwater resources, no significant differences were observed for energy consumption between these irrigation systems. This can be explained by the indicator energy load index (ICE, m), which had similar values in all WUAs analyzed. According to annual irrigation water supply per unit irrigated area (VTSr, m3 ha−1), the highest values (between 5200 m3 ha−1 and 6800 m3 ha−1) were obtained in WUAs with sprinkler irrigation systems, which contained crops characterized by high water requirements, compared to the VTSr (less than 1800 m3 ha−1) of WUAs with drip irrigation systems, with crops that required less volume of irrigation water. Regarding production efficiency indicators, in drip irrigation systems the high presence of vineyards, almond and olive trees, crops with low water requirements, explained high values of gross margin per unit irrigation delivery (MBVs, € m−3)(close to 0.82 € m−3) in comparison with sprinkler irrigation systems (close to 0.36 € m−3).  相似文献   

7.
Halevy  J.  Kramer  O. 《Irrigation Science》1986,7(1):63-72
Summary A field experiment was carried out for two years on a grumusol (Typic chromoxerert) soil at Merhavya, Israel, to study the influence of different concentrations of N in soil solution on the growth and yield of drip-irrigated cotton (Gossypium hirsutum L.) var. Acala SJ-2. The N-concentrations in the soil solution used were: 0, 12.5, 25, 50, 75 and 100 ppm N. The soil was analyzed for moisture and NO3-N every two weeks and the concentration of NO3-N in the soil solution was calculated. When the NO3-N concentration was less than the above-mentioned levels, N-fertilizer was added in the irrigation water to match these concentrations. If the tested soils showed higher concentrations, no N fertilizer was applied.The maximum yields of seed cotton obtained were 6.3 ton h–1 in the first year, and 5.7 ton ha–1 in the second year. Concentrations below 25 ppm N in the soil solution reduced the cotton seed and lint yields, but concentrations of 50 ppm N and above did not increase the yields and sometimes even decreased them. Application of more nitrogen caused excessive vegetative growth and less seed-cotton and lint.The results show that soil nitrate analysis during the cotton season can be used to monitor the N supplied by drip irrigation.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1418-E, 1985 series  相似文献   

8.
A study was carried out to determine the efficiencies of water use in irrigation in the Jordan Valley Project. The study aimed to evaluate, the overall or project efficiency (Ep) which includes: the irrigation system efficiency, being the combined conveyance and distribution efficiency (Es); and the field application efficiency (Ea). Evaluation of these efficiencies includes the comparison of open canals with surface irrigation versus pressurized pipes with sprinkler or drip irrigation systems. Data was collected from different sources to achieve the above mentioned purposes, beside the field experiments which were carried out specially for this study.It was found that the overall or project efficiency (Ep) for open surface canal with surface irrigation under citrus was 53%. While it was 42% under vegetables. Whereas Ep for pressurized pipe systems was 68%, and 70% for sprinkler and drip irrigation methods, respectively.The Es for an open canal, (King Abdullah Canal, KAC) was 65%. While it was 77% for pressurized pipe projects during 1989–1991. Concerning the Ea, it was found to be equal to 82% and 64%, for surface irrigation on citrus and vegetables, respectively. Whereas it was 88% for citrus under sprinkler, and 91% for vegetables under drip irrigation. These values for the field application efficiency are acceptable according to Finkle (1982). The low Es value for the canal is due, mainly, to high evaporation and seepage, unreported deliveries, and unavoidable measurement losses. Whereas, in pressurized pipe projects, it is due to the unreported deliveries, unavoidable measurement losses, and leakage.  相似文献   

9.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   

10.
Summary In this paper the soil water balance model developed and tested in Part III (Mason and Smith, 1980) for soybeans grown in the variable rainfall environment of the Namoi Valley of New South Wales was used to investigate the potential advantages of a computer-based system of irrigation scheduling. The advantages were evaluated using historical rainfall data for the 25 seasons from 1953/54 to 1977/78. The effects on irrigation efficiency of soil water holding capacity, the allowable soil water deficit prior to irrigation, and ordering irrigation water in advance were evaluated with the model. Reducing the allowed deficit prior to irrigation by 20% compared to the recommended level increased the number of irrigations by an average of 2.8 per year and irrigation requirements by 0.73 X 103 m3 ha–1. The need to order water 6 days in advance because of delays in delivery also increased requirements by 1.46 X 103 m3 ha–1 due to a reduced ability to utilize natural rainfall. Average farm irrigation efficiencies calculated from actual pumping records were found to be low by world standards for the 3-year period 1975/76 to 1977/78. It was concluded that if increased production per unit of water became a high priority in the Namoi Valley, then irrigation efficiency for the three year period discussed could have been increased from 35 to 47%, a saving of 1.3 X 103 m3 ha–1 year–1.  相似文献   

11.
When subsurface irrigation sources are lacking in humid and subhumid regions, high yearly precipitation may allow for storage of surface water in farm ponds and lakes for irrigation. Irrigation at selected growth stages may avoid critical stress for crops with some drought tolerance, such as grain sorghum [Sorghum bicolor (L.) Moench]. Because grain sorghum is responsive to N, injecting fertilizer N through the irrigation system also may improve production. The objective of this study was to determine the effect of timing of limited-amount irrigation and N fertigation on grain sorghum yield; yield components; grain N content; and N uptake at the 9-leaf, boot, and soft dough stages. The experiment was conducted from 1984 to 1986 on a Parsons silt loam (fine, mixed, thermic, Mollic Albaqualf). The experiment was designed as a 6 × 2 factorial plus two reference treatments. Six timings for irrigation were targeted at the 9-leaf (9L), boot (B), soft dough (SD), 9L-B, 9L-SD, and B-SD growth stages. N application systems were either 112 kg N ha–1 surface-banded preplant or 56 kg N ha-1 preplant and 56 kg N ha–1 injected through the irrigation at a rate of 28 kg N ha–1 per 2.5 cm of irrigation. Two reference treatments included were one receiving N but no irrigation and one receiving neither N nor irrigation. In 1984, irrigation generally increased grain sorghum yield by nearly 1 Mg ha–1. However, yield was not affected by selection of irrigation timing, N application method, or the interaction of the two factors. This was partly because early irrigations increased kernels/head, whereas later irrigations increased kernel weight. Above average rainfall during the growing season, especially just prior to the 9-leaf, boot, and soft dough growth stages, resulted in no irrigations in 1985. In 1986, yield was increased by early (9-leaf) irrigations as compared to soft dough irrigations. Early irrigations resulted in higher kernels/head; however, rainfall after the soft dough irrigation may have masked any treatment effect on kernel weight. As in 1984, N application method did not affect grain sorghum yields, even though yield was reduced to less than 3 Mg ha–1 with no N nor irrigation. In both 1984 and 1986, N uptake at succeeding growth stages appeared to respond to irrigations made at previous growth stages. Injecting half of the fertilizer N through the irrigation system did not affect N uptake compared to applying all N preplant. The lack of response to fertigation may be related to the low leaching potential of the soil used in this study.Contribution No. 92-606-J, Kansas Agricultural Experiment Station  相似文献   

12.
This paper evaluates the performance of the first drip irrigation scheme in commercial tea production in Tanzania with a view to making recommendations for improved management and providing data for investment decisions. Uniformity, efficiency and adequacy of irrigation were calculated and the scheduling of irrigation water was reviewed. Operators were interviewed to highlight the main benefits and problems of the system. Investment and recurrent costs of drip and overhead sprinkler systems were quantified and compared. Root development was assessed qualitatively using excavation pits. Irrigation uniformity DU and efficiency ranged between 88 and 95% in the 10 out of 14 irrigation blocks where endline pressures were at least 0.5 bars, and between 77 and 89% in the four blocks were endline pressure was less than 0.5 bars. Scheduling drip irrigation using tensiometers offered potential water savings of 26% in comparison to a water balance schedule, but these are not currently realised. Gross marginal income was very sensitive to tea price and yield. Economically optimal fertilizer rates vary in dependence of tea price and yield and appear to be lower than the current level of 300 kg N ha−1. The higher costs under drip, compared to overhead sprinklers, were mainly for purchase and installation and fertilizer. The costs of labour for applying water and fertilizer were reduced by nearly 50%. At average 2002 tea prices of 1.31 US$ kg−1, drip irrigation would improve the grower’s gross margin if an additional yield of at least 411 kg ha−1 was achieved. The main threats to drip system performance are discussed. Future research efforts should aim at establishing the yield response of tea to water and fertilizer under drip irrigation.  相似文献   

13.
The fate of nitrogen applied to sugarcane by trickle irrigation   总被引:1,自引:0,他引:1  
Fertigation can be a more efficient means of applying crop nutrients, particularly nitrogen (N), so that nutrient application rates can be reduced in fertigated crops. However, there is little information on the extent of the possible reduction in N application rate for fertigated sugarcane, one of the major row crops grown under trickle irrigation, nor the fate of N in fertigated sugarcane systems if N application rates are not reduced. An experiment was established to determine the response of cane and sugar production to different N rates (0–240 kg ha–1 year–1) spanning that recommended for conventional irrigation systems (160 kg ha–1 year–1). As well as yield, N removed in the crop and changes in soil mineral N were determined annually for four crops (a plant and three ratoon crops). 15N values were also measured in selected treatments at selected times to assess possible N inputs to the experiment via biological N fixation (BFN). Yields of cane and sugar responded to application of N fertiliser in the three ratoon crops, but they were not significantly increased by applying more than 80 kg ha–1 of N. There were no N responses in the plant crop, as there was >200 kg ha–1 of soil mineral N (SMN) to 2 m depth at the site prior to planting, and much of this SMN was depleted in the treatment receiving no N. There was no evidence of N input from BFN in the experiment. During the 4-year study period, net removal of N from the treatment with no applied N totalled 207 kg ha–1. When 80 or 120 kg ha–1 year–1 of N was applied to ratoon crops, outputs of N from the harvested crop approximately balanced inputs from fertiliser and depletion of SMN during the experiment. Inputs clearly exceeded output at higher N application rates. Assuming that the net removal of N from the treatment with no applied N was the same as the net mineralisation of N from soil organic matter in all treatments in the experiment, 204–639 kg ha–1 of N was unaccounted for in the treatments with applied N over the duration of the experiment. While some of this N (e.g. 45 kg ha–1) may have resulted in small (and undetectable) increases in total soil N, much of it would have been lost to the environment. We suggest that the high soil water contents maintained with daily application of irrigation water through the trickle system promotes mineralisation of soil organic matter and hence losses of N to the environment. Thus, particular care is required to avoid over-application of N in fertigated sugarcane.Communicated by K. Bristow  相似文献   

14.
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress.  相似文献   

15.
Irrigation for crops in a sub-humid environment   总被引:4,自引:0,他引:4  
Summary A four year study examined the effect of irrigating at various water deficits at different times in the growing season, in combination with a range of nitrogen fertilizer rates, on the growth, yield and quality of cotton. The major effect of irrigation treatment on growth was to increase leaf area and plant size; net assimilation rate in the vegetative phase was not affected by irrigation treatment. The initial rate of boll setting was slightly faster in low nitrogen and less frequent irrigation treatments, but by day 180 (immediately prior to defoliation), all treatments had 60% of total dry weight as bolls and 7% as leaf. The best irrigation strategy varied from year to year due to the variable rainfall pattern. Irrigation when 80% of the available soil moisture had been depleted in the first half of the season only decreased total lint yield by up to 12% in two of the four seasons. During the second half of the season the 80% level of depletion decreased yield by an average of 15% but gave an earlier crop. Yield was reduced by up to 17% if irrigation at 40–60% of available moisture depletion in the first half of the season was followed by irrigation at 80% of available moisture depletion in the second half of the season. A rainfed treatment yielded from 16 to 43% less than the heaviest yielding irrigation treatment. After irrigation there was evidence of poor aeration in the soil which was most severe and lasted the longest at 30 cm depth. Heaviest yields were obtained with 100–150 kgN ha–1, except in rainfed treatments where 0–50 kgN ha–1 was sufficient. Irrigation at only 40% of available moisture depletion decreased nitrogen uptake in all seasons. Treatment effects on fibre quality in these experiments were small and variable. Nitrogen fertilizer generally increased length and strength but decreased micronaire. Stress during boll filling decreased micronaire and length in two of the four seasons.  相似文献   

16.
Field experiments were conducted for 2 years to investigate the effects of various levels of nitrogen (N) and methods of cotton planting on yield, agronomic efficiency of N (AEN) and water use efficiency (WUE) in cotton irrigated through surface drip irrigation at Bathinda situated in semi-arid region of northwest India. Three levels of N (100, 75 and 50% of recommended N, 75 kg ha−1) were tested under drip irrigation in comparison to 75 kg of N ha−1 in check-basin. The three methods of planting tried were; normal sowing of cotton with row to row spacing of 67.5 cm (NS), normal paired row sowing with row to row spacing of 35 and 100 cm alternately (NP) and dense paired row sowing with row to row spacing of 35 and 55 cm alternately resulting in total number rows and plants to be 1.5 times (DP) than NS and NP. In NS there was one lateral along each row, but in paired sowings there was one lateral between each pair of rows. Consequently the number of laterals and quantity of water applied was 50 and 75% in NP and DP, respectively, as compared with NS in which irrigation water applied was equivalent to check-basin.Drip irrigation under NS resulted in an increase of 258 and 453 kg ha−1 seed cotton yield than check-basin during first and second year, respectively, when same quantity of water and N was applied. Drip irrigation under dense paired sowing (DP) in which the quantity of irrigation water applied was 75% as compared with NS, further increased the yield by 84 and 101 kg ha−1 than NS during first and second year, respectively. Drip irrigation under NP, in which the quantity of water applied and number of laterals used were 50% as compared with drip under NS, resulted in a reduction in seed cotton yield of 257 and 112 kg ha−1 than NS during first and second year, respectively. However, the yield obtained in NP under drip irrigation was equivalent to yield obtained in NS under check-basin during first year but 341 kg ha−1 higher yield was obtained during second year. The decrease in N applied, irrespective of methods of planting, caused a significant decline in seed cotton yield during both the years. Water use efficiency (WUE) under drip irrigation increased from 1.648 to 1.847 and from 0.983 to 1.615 kg ha−1 mm−1 during first and second year, respectively, when the same quantity of N and water was applied. The WUE further increased to 2.125 and 1.788 kg ha−1 mm−1 under DP during first and second year, respectively. The agronomic efficiency of nitrogen was higher in drip than check-basin during both the years when equal N was applied. The WUE decreased with decrease in the rate of N applied under fertigation but reverse was true for AEN. It is evident that DP under drip irrigation resulted in higher seed cotton yield, WUE and AEN than NS and also saved 25% irrigation water as well as cost of laterals.  相似文献   

17.
The potato (Solanum tuberosum L.) is widely planted in the Middle Anatolian Region, especially in the Nigde-Nevsehir district where 25% of the total potato growing area is located and produces 44% of the total yield. In recent years, the farmers in the Nigde-Nevsehir district have been applying high amounts of nitrogen (N) fertilizers (sometimes more than 900 kg N ha−1) and frequent irrigation at high rates in order to get a much higher yield. This situation results in increased irrigation and fertilization costs as well as polluted ground water resources and soil. Thus, it is critical to know the water and nitrogen requirements of the crop, as well as how to improve irrigation efficiency. Field experiments were conducted in the Nigde-Nevsehir (arid) region on a Fluvents (Entisols) soil to determine water and nitrogen requirements of potato crops under sprinkler and trickle irrigation methods. Irrigation treatments were based on Class A pan evaporation and nitrogen levels were formed with different nitrogen concentrations.The highest yield, averaging 47,505 kg ha−1, was measured in sprinkler-irrigated plots at the 60 g m−3 nitrogen concentration level in the irrigation treatment with limited irrigation (480 mm). Statistically higher tuber yields were obtained at the 45 and 60 g m−3 nitrogen concentration levels in irrigation treatments with full and limited irrigation. Maximum yields were obtained with about 17% less water in the sprinkler method as compared to the trickle method (not statistically significant). On the loam and sandy loam soils, tuber yields were reduced by deficit irrigation corresponding to 70% and 74% of evapotranspiration in sprinkler and trickle irrigations, respectively. Water use of the potato crop ranged from 490 to 760 mm for sprinkler-irrigated plots and 565–830 mm for trickle-irrigated treatments. The highest water use efficiency (WUE) levels of 7.37 and 4.79 kg m−3 were obtained in sprinkle and trickle irrigated plots, respectively. There were inverse effects of irrigation and nitrogen levels on the WUE of the potato crops. Significant linear relationships were found between tuber yield and water use for both irrigation methods. Yield response factors were calculated at 1.05 for sprinkler methods and 0.68 for trickle methods. There were statistically significant linear and polynomial relationships between tuber yield and nitrogen amounts used in trickle and sprinkler-irrigated treatments, respectively. In sprinkler-irrigated treatments, the maximum tuber yield was obtained with 199 kg N ha−1. The tuber cumulative nitrogen use efficiency (NUEcu) and incremental nitrogen use efficiency (NUEin) were affected quite differently by water, nitrogen levels and years. NUEcu varied from 16 to 472 g kg−1 and NUEin varied from 75 to 1035 g kg−1 depending on the irrigation method. In both years, the NH4-N concentrations were lower than NO3-N, and thus the removed nitrogen and nitrogen losses were found to be 19–87 kg ha−1 for sprinkler methods and 25–89 kg ha−1 for trickle methods. Nitrogen losses in sprinkler methods reached 76%, which were higher than losses in trickle methods.  相似文献   

18.
Summary An irrigation experiment with water of different salinities (2.8, 7.6 and 12.7 mol Cl m–3) was carried out from 1982 to 1988 in a mature Shamouti orange grove in the coastal plain of Israel. Seasonal accumulation of salts in the soil solution of the root zone (EC of more than 4.0 dS m–1 at the end of the irrigation season) was almost totally leached during the winter. The average annual rainfall of 550 mm reduced EC values below 1.0 dS m–1. Tree growth, as measured by the increase in cross sectional area of main branches, was retarded by saline irrigation water (123, 107 and 99 cm2 growth per tree during six years for the 2.8, 7.6 and 12.7 mol Cl m–3 treatments, respectively). Potassium fertilization (360 kg K2O ha–1) increased yield at all salinity levels during the last three years of the experiment, mainly by increasing fruit size. Saline irrigation water slightly increased sucrose and C1 concentrations in the fruit juice. Salinity decreased transpiration, increased soil water potential before irrigation and decreased leaf water potential. However, the changes in leaf water potential were small. Leaf Cl and Na concentrations increased gradually during the experimental period, but did not reach toxic levels up to the end of the experiment (4.4 g Cl kg–1 dry matter in the high salt treatment vs. 1.7 in the control). Relatively more leaf shedding occurred in the salinized trees as compared to the control. The sour orange root-stock apparently provided an effective barrier to NaCl uptake; therefore, the main effect of salinity was probably osmotic in nature. No interactions were found between N or K fertilization and salinity. Additional N fertilization (160 kg N ha–1 over and above the 200 kg in the control) did not reduce Cl absorption nor did it affect yield or fruit quality. Additional K had no effect on Na absorption but yield and fruit size were increased at all salinity levels. No significant differences were obtained between partial and complete soil surface wetting (30% and 90% of the total soil area resp.) with the same amounts of irrigation water. The effect of salinity on yield over the six years of the experiment was relatively small and occurred only after some years. But, in the last three years salinity significantly reduced average yields to 74.6, 67.1, and 64.2 Mg ha–1 for the three levels of salinity, respectively.These results suggest that saline waters of up to 13 mol Cl m–3 primarily influence the tree water uptake and growth response of Shamouti orange trees, whereas yield was only slightly reduced during six years.  相似文献   

19.
Summary 15N balances were compared in rice (Oryza sativa L., cv. Calrose) grown under continuous flood (CF) or sprinkler irrigation. Two sprinkler treatments with irrigation frequencies of once (S1W) and thrice (S3W) per week were studied. Five atom %15N-labelled urea (60 kg N ha–1) was applied to microplots either 36 or 84 days after emergence (DAE). An equivalent amount of unlabelled urea was applied at the other application time, so that each microplot received a total of 120 kg N ha–1 in an equal split. There was no significant effect of irrigation treatment on recovery of urea N by straw. Straw recovery from urea applied 36 DAE was almost half that from an application 84 DAE, and time of urea application produced a similar effect on recovery in grain. Grain recovery in S1W was less than half that in CF and S3W for both application times. Total plant recovery of urea N applied 36 DAE was similar for all irrigation treatments (average 29%), but for urea applied 84 DAE total plant recovery in CF (67%) was significantly higher than in S1W (49%). Total N uptake in the plant tops was considerably lower in both the sprinkler-irrigated treatments when compared with CF, and this was mostly due to reduced soil N uptake in S3W (one-half) and S1W (one-third). The proportion of N derived from fertilizer in the plant tops increased from 40% in CF to 60% in S1W. Immobilization of applied N in the soil of the sprinkler-irrigated treatments was greater than in CF by factors of 1.5 (S3W) and 2 (S1W). Immobilization of urea N applied 36 DAE was almost 50% greater than immobilization of urea N applied 84 DAE. There was a trend for lower losses of fertilizer N with sprinkler irrigation (mean loss 18% of the applied N) compared with CF (27%). Within all irrigation treatments, the loss from urea applied 36 DAE was more than double the loss from urea applied 84 DAE. An additional study in CF compared the 15N balance for split application versus a single dose applied 36 DAE (before permanent flood). Split application resulted in significantly increased plant recovery of applied 15N, and this was largely associated with increased recovery in the grain. Slightly more fertilizer N was immobilized in the soil with a single application. The effect of application method on N loss was not significant.  相似文献   

20.
The use of drainage systems for supplementary irrigation is widespread in The Netherlands. One of the operating policies is to raise the surface water level during the growing season in order to reduce drainage (water conservation) or to create subsurface irrigation. This type of operation is based on practical experience, which can be far from optimal.To obtain better founded operational water management rules a total soil water/surface water model was built. In a case study the effects of using the drainage system in a dual-purpose manner on the arable crop production were simulated with the model. Also, the operational rules for managing this type of dual-purpose drainage systems were derived.The average annual simulated increase in crop transpiration due to water conservation and water supply for subsurface irrigation are 6.0 and 5.4 mm.y–1, respectively. This is equivalent with 520 × 103 and 460 × 103 Dfl.y–1 for the pilot region (2 Dfl 1 US $). The corresponding investments and operational costs are 600 × 103 Dfl and 9 × 103 Dfl.y–1 for water conservation and 3200 × 103 Dfl and 128 × 103 Dfl.y–1 for subsurface irrigation. Hence, water conservation is economically very profitable, whereas subsurface irrigation is less attractive.Comparing the management according to the model with current practice in a water-board during 1983 and 1986 learned that benefits can increase with some 50 and 500 Dfl per ha per year, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号