首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Wetlands, carbon, and climate change   总被引:3,自引:0,他引:3  
Wetland ecosystems provide an optimum natural environment for the sequestration and long-term storage of carbon dioxide (CO2) from the atmosphere, yet are natural sources of greenhouse gases emissions, especially methane. We illustrate that most wetlands, when carbon sequestration is compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing. We show by dynamic modeling of carbon flux results from seven detailed studies by us of temperate and tropical wetlands and from 14 other wetland studies by others that methane emissions become unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and radiative sinks. Furthermore, we estimate that the world’s wetlands, despite being only about 5–8 % of the terrestrial landscape, may currently be net carbon sinks of about 830 Tg/year of carbon with an average of 118 g-C m?2 year?1 of net carbon retention. Most of that carbon retention occurs in tropical/subtropical wetlands. We demonstrate that almost all wetlands are net radiative sinks when balancing carbon sequestration and methane emissions and conclude that wetlands can be created and restored to provide C sequestration and other ecosystem services without great concern of creating net radiative sources on the climate due to methane emissions.  相似文献   

2.

Context

Playa wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.

Objective

To develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.

Methods

We examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.

Results

We identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).

Conclusions

Our findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.
  相似文献   

3.
We quantified fluctuations in the status of individual patches (wetlands) in supporting connectivity within a network of playas, temporary wetlands of the southern Great Plains of North America that are loci for regional biodiversity. We used remote sensing imagery to delineate the location of surface waters in >8,000 playa basins in a ~31,900 km2 portion of Texas and quantified connectivity in this region from 2007 to 2011. We ranked playas as stepping-stones, cutpoints, and hubs at different levels of environmental conditions (regionally wet, dry, and average periods of precipitation) for dispersal distances ranging from 0.5 to 34 km, representing a range of species’ vagilities, to provide baseline dynamics within an area likely to experience disrupted connectivity due to anthropogenic activities. An individual playa’s status as a stepping-stone, cutpoint, or hub was highly variable over time (only a single playa was a top 20 stepping-stone, cutpoint, or hub in >50 % of all of the dates examined). Coalescence of the inundated playa network usually occurred at ≥10 km dispersal distance and depended on wetland density, indicating that critical thresholds in connectivity arose from synergistic effects of dispersal ability (spatial scale) and wet playa occurrence (a function of precipitation). Organisms with dispersal capabilities limited to <10 km routinely experienced effective isolation during our study. Connectivity is thus a dynamic emergent landscape property, so management to maintain connectivity for wildlife within ephemeral habitats like inundated playas will need to move beyond a patch-based focus to a network focus by including connectivity as a dynamic landscape property.  相似文献   

4.
Degradation of coastal systems has led to increased impacts from hurricanes and storm surges and is of concern for coastal endemics species. Understanding the influence of disturbance on coastal populations like the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) is important to understanding long-term dynamics and for recovery planning. We evaluated the effect of disturbance on the rabbits by determining which patch, habitat, and landscape characteristics influenced habitat use following Hurricane Wilma. We determined patch-level occurrence 6–9 months prior to Hurricane Wilma, within 6 months following the hurricane, and 2 years after the storm to quantify rates of patch abandonment and recurrence. We observed high patch abandonment (37.5% of used patches) 6 months after Hurricane Wilma and low rates of recurrence (38.1% of abandoned patches) 2 years after the storm, an indication that this storm further threatened marsh rabbit viability. We found the proportion of salt-tolerant (e.g., mangroves and scrub mangroves) and salt-intolerant (e.g., freshwater wetlands) vegetation within LKMR patches were negatively and positively correlated with probability of patch abandonment, respectively. We found patch size and the number of used patches surrounding abandoned patches were positively correlated with probability of recurrence. We suggest habitat use following this hurricane was driven by the differential response of non-primary habitats to saline overwash and habitat loss from past development that reduced the size and number of local populations. Our findings demonstrate habitat use studies should be conducted following disturbance and should incorporate on-going effects of development and climate change.  相似文献   

5.

Context

The Rainwater Basin region in south-central Nebraska supports a complex network of spatially-isolated wetlands that harbor diverse floral and faunal communities. Since European settlement, many wetlands have been lost from the network, which has increased distances among remaining wetlands. As a result, populations of wildlife species with limited dispersal capabilities may have become isolated and face greater local extinction risks.

Objectives

We compared the pre-European settlement and current extent of the Rainwater Basin network to assess the effects of wetland losses on network connectivity for a range of maximum dispersal distances.

Methods

We constructed network models for a range of maximum dispersal distances and calculated network metrics to assess changes in network connectivity and the relative importance of individual wetlands in regulating flow.

Results

Since European settlement, the number of wetlands in the Rainwater Basin has decreased by?>?90%. The average distance to the nearest neighboring wetland has increased by 150% to ~?1.2 km, and the dispersal distance necessary to travel throughout the whole network has increased from 3.5 to 10.0 km. Last, relative importance of individual wetlands depended on the maximum dispersal distance. Which wetlands to preserve to maintain connectivity might therefore depend on the dispersal capabilities of the species or taxa of interest.

Conclusions

To preserve a broad range of biodiversity, conservation efforts should focus on preserving dense clusters of wetlands at fine spatial scales to maintain current levels of network connectivity, and restoring connections between clusters to facilitate long-range dispersal of species with limited dispersal capabilities.
  相似文献   

6.
Jansson  Åsa  Folke  Carl  Langaas  Sindre 《Landscape Ecology》1998,13(4):249-262
We estimate the nitrogen retention capacity of natural wetlands in the 1.7 million km2 Baltic Sea drainage basin, using a wetland GIS data base. There are approximately 138,000 km2 of wetlands (bogs and fens) in the Baltic Sea drainage basin, corresponding to 8% of the area. The input of nitrogen to natural wetlands from atmospheric deposition was estimated to 55,000–161,000 ton y1. A map of the deposition of both wet and dry nitrogen is presented. The input from the human population was estimated to 255,000 ton y1 in terms of excretory release in processed sewage water. There may also be leakage from forests and agricultural land into the wetlands. Due to lack of data on hydrology and topography, such potential nitrogen sources are not accounted for here. The capacity of the wetlands to retain the atmospheric deposition of nitrogen was estimated to 34,000–99,000 ton y1. The potential retention by wetlands was estimated to 57,000–145,000 ton y1 when the nitrogen input from the human population was added. If drained wetlands were to be restored and their area added to the present wetland area, the nitrogen retention capacity was estimated to increase to 196,000–261,000 ton y1. Our results indicate that existing natural wetlands in the Baltic Sea drainage basin annually can retain an amount of nitrogen which corresponds to about 5–13% of annual total (natural and anthropogenic) nitrogen emissions entering the Baltic Sea. The ecosystem retention service performed by wetlands accounts for a substantial nitrogen removal, thereby reducing the eutrophication of the Baltic Sea.  相似文献   

7.
A central theme in landscape ecology is that of understanding the consequences of landscape heterogeneity for ecological processes. The effects of landscape heterogeneity on parasite communities are poorly understood, although it has been shown that anthropogenic impacts may contribute to outbreaks of both parasites and pathogens. We tested for effects of landcover type, composition, configuration, and urbanisation on avian diversity and avian malaria prevalence in 26 communities of wetland-associated passerines in the Western Cape of South Africa. We predicted that avian malaria prevalence would be influenced by the pattern of farmland and urban areas in the surrounding landscapes and the sizes of the wetlands in which birds were sampled. We quantified landscape pattern using a six-class simplification of the National Landcover data set at 35 × 35 m resolution and five extents of between 1 and 20 km from each wetland. The bird community was sampled using point counts and we collected blood samples from birds at each site. We screened these for malaria using PCR and molecular techniques. Passerine species richness and infection prevalence varied significantly between different landcover types. Host richness and parasite prevalence were highest in viticultural and cropping sites respectively and lowest in urban sites. Wetlands located in indigenous vegetation had intermediate numbers of bird species and intermediate parasite prevalence. Landscape composition and habitat type surrounding wetlands emerged as useful correlates of infection prevalence. Anthropogenic landscape modification appears to have both direct and indirect effects on avian communities and their associated parasite assemblages, with attendant consequences for avian health.  相似文献   

8.
The objective of the MSc project was to improve fruit quality, i.e. fruit firmness, colour and size, by mechanical blossom thinning. Ten-year-old slender spindle apple cv. ‘Gala, Mondial’ trees at Campus Klein-Altendorf near Bonn, Germany with an intense flowering of 7–8 on the 0–9 scale were blossom-thinned on 21 April 2009; unthinned trees served as control. Rotor speeds were 360 rpm or 420 rpm at 5 or 7.5 km/h tractor speed using the new mechanical thinning device developed at the University of Bonn in 2004–2006. Therein, a vertical mast supports three horizontal rotors, whose vertically rotating tines remove excessive flowers; the device was mounted on the front three point hitch of the tractor with the following results:
  1. Mechanical thinning reduced the number of apple fruit from 18 per branch section in the un-thinned control, 12–13 in the medium to 8 fruit in the strongest thinning (420 rpm, 5 km/h).
  2. Similarly, the number of singlets (one fruitlet/flower cluster) nearly doubled from ca. 2 per branch in the control to 3–4 after mechanical thinning, as intended.
  3. The natural June drop after mechanical thinning resembled that in the un-thinned control.
  4. Mechanical thinning increased fruit mass by 20 g—48 g relative to the un-thinned control.
  5. Mechanical thinning with 420 rpm increased the portion of premium fruit >?70 mm (class I) by 43?% (7.5 km/h) and 63?% (5 km/h); combined mechanical and hand-thinning yielded the largest portion of fruit >?70 mm (70?%), but with a dramatic loss in yield (55?%).
  6. Mechanical and manual thinning improved the portion of well coloured fruit (75–100?% coloured) (78–98?%) when compared to the un-thinned control fruits with 55?%, probably due to selective removal of shaded fruits from the inner tree canopy.
  7. Overall, mechanical thinning alone gave better results than hand thinning alone or its combination with hand-thinning in cv. ‘Gala’; mechanical thinning waived the need for hand thinning in this experiment.
  8. Mechanical thinning improved fruit firmness from 9.4 kg/cm2 in the un-thinned control to 10.4 kg/cm2.
  9. Neither vegetative growth nor subsequent fruit drop were stimulated by this type of mechanical thinning.
  10. The risk of both alternate bearing and over-sized fruit was waived due to the variety employed.
  11. An economic evaluation showed a net profit of € 220/ha in the weak (420 rpm—7.5 km/h) aνô € 1,844/ha in the intermediate (360 rpm—5 km/h), but a net loss of € 1,120/ha (420 rpm—5 km/h) for the strongest thinning treatment, assuming a cost of € 120/ha for the mechanical treatment and a saving of € 200 for reduced hand thinning.
Overall, the positive results of a better fruit quality (size, colour and firmness) offer the potential of mechanical blossom thinning in cv. ‘Gala’, which is difficult to blossom-thin chemically.  相似文献   

9.
Although wetland condition assessment procedures have been developed, validated, and calibrated in the continental United States, they have not yet been fully developed or field-tested for wetlands in Hawai‘i. In order to address the need for comprehensive assessment methods for Hawaiian coastal wetlands, our research compared three indicators of landscape condition (landscape development intensity, road density, and forest cover) with wetland condition as measured by rapid assessment methods (RAM) and detailed field data collected on soil and water quality. We predicted that wetlands located in the least developed landscapes would have more nutrient rich soils, yet lower nutrient levels in the surface water, and would receive the highest rapid assessment scores. The hypotheses of our study were generally supported. However, while the correlations between landscape variables and δ15N isotopes and CRAM scores were relatively strong, the correlations between the landscape indicators and the other Level II and III field indicators were not very strong. These results suggest that further calibration and refinement of metrics is needed in order to more accurately assess the condition of Hawaiian coastal wetlands. A more detailed land use map, in addition to more comprehensive assessments of wetland water quality and biotic integrity would likely improve the relationships between indicators of landscape condition and wetland condition. Nonetheless, our research demonstrated that landscape analysis at larger scales (1,000 m buffers and watersheds) could provide managers with valuable information on how regional stressors may be affecting wetland water quality (measured as δ15N in plant tissue) as well as overall wetland condition (RAM scores).  相似文献   

10.

Context

Tropical forest regeneration is increasingly prominent as agro-pastoral lands are abandoned. Regeneration is characterised as favouring ‘marginal’ lands; however, observations of its drivers are often coarse or simple, leaving doubt as to spatial dynamics and causation.

Objectives

We quantified the spatial dynamics of forest regeneration relative to marginality and remnant forest cover in a 3000 km2 pastoral region in northern tropical Australia.

Methods

Classification and regression trees related the extent and distribution of regeneration to soil agricultural potential, land-cover history, terrain slope, distance to primary forest, and primary forest fragment size, as defined by aerial photography.

Results

Secondary forest extent and distribution overwhelmingly reflect the proximity and size of primary forest fragments. Some 85 % of secondary forest area occurs <1 km of primary forest, and 86 % of secondary forest patches >50 ha are <400 m from primary forest and coincident with historic primary forest fragments. Where primary forest fragments are >8.5 ha, secondary forest area declines less rapidly with increasing distance from primary forest up to 1.5 km. Marginality inferred by soil potential and slope had no bearing on regeneration, except at the coarsest of spatial scales where regeneration is a proxy for primary forest cover.

Conclusion

Findings underline the need to conserve even modest rainforest patches as propagule reservoirs enabling regeneration. Marginality per se may have a limited role in regeneration. As most secondary forest was an extension of primary forest, its unique conservation value relative to that of primary forest may likewise merit reconsideration.
  相似文献   

11.
Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.  相似文献   

12.
Land area planted to row crops has expanded globally with increased demand for food and biofuels. Agricultural expansion in the Dakota Prairie Pothole Region (DPPR), USA affects a variety of agricultural and non-agricultural land-use types, including grasslands and wetlands that provide critical wildlife habitat and other ecosystem services. The purpose of this study was to quantify recent changes in rural land cover/land use, analyze trends, and interpret results in relation to climate, agronomic practice, and ethanol production. The primary data sources were 1980–2012 statewide cropland data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service, and the USDA Cropland Data Layer, produced annually for the DPPR from 2006 through 2012. Area planted to corn or soybean row crops increased, and small grain (e.g., wheat, barley) area decreased significantly over the analysis period. Corn and soybean expanded by 27 % in the DPPR between 2010 and 2012 alone, an areal increase (+15,400 km2) larger than the U.S. state of Connecticut. This expansion displaced primarily small grains and grassland (e.g., pastures, haylands, remnant prairies). Grassland regularly exchanged land with corn and soybean, small grains, and wetlands and water. Corn and soybean had high inter-annual self-replacement values (68–80 %), and continuous corn/soy row cropping was the second most common combination over a three-year period, ranking after continuous grassland. Small grain self-replacement values were only 22–35 %, indicating frequent relocation in the landscape. Temporary gains in wetland and grassland area were attributed to unusually wet climatic conditions and late snowfalls that prevented crop planting. Nearly all of the region’s ethanol refineries were located where corn and soybean crops constituted 50 % or more of the land area. Quantification of grassland losses in the U.S. Northern Plains requires evaluation of all land uses that interact with grasslands, and a longer term perspective that incorporates grassland as part of a normal land-use rotation.  相似文献   

13.

Disturbance is a well known modifier of landscapes. In marine systems hurricanes may not only remove or bury subtidal seagrasses but they may also impact the seed banks of these taxa. We ask whether seagrass landscape pattern and seed dispersal are influenced by physical disturbance in a subtropical deep water setting. We examined the spatial dynamics of an offshore landscape composed of the seagrass, Halophila decipiens in summer 1999 and again in 2000 after the passage of a hurricane. A towed video camera was used to collect data within a 1 km2 area and construct benthic maps of seagrass, macroalgae, hard bottom outcrops, and sediments from over 20,000 video frames. The appearance of sand and seagrass at a portion of the site in summer 2000 that was previously hard substrate verified sediment and seed movement. Although seeds released by this seagrass are deposited into sediments near parent plants, movement en masse of the seagrass seed reservoir appears to be an important component of dispersal. The generation of new landscape patches when disturbance is large and intense suggests that large-scale disturbance, resulting in the local redistribution of sediment and the seed bank, appears to mold the spatial signature of the resulting seagrass landscape in a MidShelf area. This impact of physical disturbance differs from that previously reported for factors influencing spatial arrangements of seagrass in shallow waters but has some features similar to those of large infrequent disturbances studied in terrestrial settings.

  相似文献   

14.
Disturbance is a well known modifier of landscapes. In marine systems hurricanes may not only remove or bury subtidal seagrasses but they may also impact the seed banks of these taxa. We ask whether seagrass landscape pattern and seed dispersal are influenced by physical disturbance in a subtropical deep water setting. We examined the spatial dynamics of an offshore landscape composed of the seagrass, Halophila decipiens in summer 1999 and again in 2000 after the passage of a hurricane. A towed video camera was used to collect data within a 1 km2 area and construct benthic maps of seagrass, macroalgae, hard bottom outcrops, and sediments from over 20,000 video frames. The appearance of sand and seagrass at a portion of the site in summer 2000 that was previously hard substrate verified sediment and seed movement. Although seeds released by this seagrass are deposited into sediments near parent plants, movement en masse of the seagrass seed reservoir appears to be an important component of dispersal. The generation of new landscape patches when disturbance is large and intense suggests that large-scale disturbance, resulting in the local redistribution of sediment and the seed bank, appears to mold the spatial signature of the resulting seagrass landscape in a MidShelf area. This impact of physical disturbance differs from that previously reported for factors influencing spatial arrangements of seagrass in shallow waters but has some features similar to those of large infrequent disturbances studied in terrestrial settings.  相似文献   

15.
Jamun (Syzygium cumini) is a tropical, underutilized fruit which is highly perishable in nature. It is a good source of vitamin C, tannins, gallic acid and anthocyanins and its beneficial effects are mostly due to the presence of bioactive compounds (pigments and phenolic compounds) in it. Due to astringent and fibrous nature, preparation of jam from jamun pulp is quite difficult, but other fruits (apple and kiwifruit) can be incorporated in it to improve its quality. This study aims to develop jam from blends of jamun with other fruits and analyse various physico-chemical, nutritional, textural and sensory properties. It was found that physico-chemical properties of jams were not found to vary greatly, but the jamun–kiwifruit jam was found to have fairly high amount of antioxidants(46.75 ± 0.67%), tartaric acid (26.24 ± 0.02 mg/100g sample), ascorbic acid (0.08 ± 0.01 mg/100 g sample) and lactic acid (23.95 ± 0.01 mg/100g sample) and lowest amount of 5-hydroxymethyl-2-furaldehyde (0.38 ± 0.04 mg/100 g sample). Jamun jam and jamun–kiwifruit jam possessed the texture required for jam while jamun–apple jam was found to be a relatively harder gel. Jam made with jamun and kiwifruit pulp was found to have highest acceptability on the basis of sensory evaluation.  相似文献   

16.
Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.  相似文献   

17.
Norwegian wild reindeer Rangifer tarandus tarandus are divided into 23 virtually isolated populations, primarily due to the abandonment of traditional migration and movement corridors caused by the development of infrastructures. By conducting a nation-wide, interdisciplinary pre-post study on a temporal scale spanning centuries, we modelled current reindeer movements with respect to archaeological findings to quantify long-term changes in area use related to anthropogenic disturbance. The location of 3,113 pitfall traps and hunting blinds, built 600–2000 years ago and used until 350–400 years ago, testified the location of traditional movement corridors. Current movement routes were delineated using Brownian Bridge Movement Models based on 147 reindeer GPS-monitored during 10 years. Using Path Analysis we quantified direct, indirect and total effects of different infrastructures within multiple scales (1, 5, and 10 km-radius buffers) on the current probability of use of ancient movement corridors. Tourist cabins and roads had the strongest long-term direct effects at most scales: 1 tourist cabin and 1 km road within a 1 km-radius buffer would lead, respectively, to complete area abandonment, and to a 46 % decrease in the probability of use. Power lines and private cabins had significant indirect effects on area use through their effect on roads, while hiking trails and, in particular, hydroelectric dams had highly variable effects, not significant at a nation-wide scale. Finally, we provide a flexible tool to estimate the potential long-term direct and cumulative effects of different types of infrastructures at the desired spatial scale to be used for the development of future sustainable land management plans.  相似文献   

18.
Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling.  相似文献   

19.

Context

Wildfire activity in boreal forests is projected to increase dramatically in response to anthropogenic climate change. By altering the spatial arrangement of fuels, land-cover configuration may interact with climate change to influence fire-regime dynamics at landscape and regional scales.

Objectives

We evaluate how land cover interacts with weather conditions to influence boreal-forest burning from 2012 to 2014 in Alaska.

Methods

Using geospatial fire and land-cover data, we quantify relationships between area burned and land cover, and test whether observed patterns of burning differ from random under varying weather conditions and fire sizes.

Results

Mean summer moisture index was correlated with annual area burned (ρ = ?0.78, p < 0.01), the total number of fires (ρ = ?0.68, p = 0.01), and the number of large fires (>500 km2; ρ = ?0.58, p = 0.04). Area burned was related positively to percent cover of coniferous forest and woody wetlands, and negatively to percent cover of shrub scrub, dwarf scrub, and open water and barren areas. Fires preferentially burned coniferous forest, which represented 50.1 % of the area burned in warmer/drier summers and 40.3 % of area burned in cooler/wetter summers, compared to the 34.5 % (±4.2 %) expected by random selection of land-cover classes. Overall vegetation tended to burn more similarly to random in warmer/drier than cooler/wetter years.

Conclusions

Land cover exerted greater influences on boreal fire regimes when weather conditions were less favorable for forest burning. Reliable projections of boreal fire-regime change thus require consideration of the interactions between climate and land cover, as well as feedbacks from land-cover change.
  相似文献   

20.
Landscape and site-scale data analyses aid the interpretation of biological data and thereby help us develop more cost-effective natural resource management strategies. Our study focused on environmental influences on stream assemblages and we evaluated how three classes of environmental variables (geophysical landscape, land use and cover, and site habitat), influence fish and macroinvertebrate assemblage richness in the Brazilian Cerrado biome. We analyzed our data through use of multiple linear regression (MLR) models using the three classes of predictor variables alone and in combination. The four MLR models explained dissimilar amounts of benthic macroinvertebrate taxa richness (geophysical landscape R 2 ≈ 35 %, land use and cover R 2 ≈ 28 %, site habitat R 2 ≈ 36 %, and combined R 2 ≈ 51 %). For fish assemblages, geophysical landscape, land use and cover, site habitat, and combined models explained R 2 ≈ 28 %, R 2 ≈ 10 %, R 2 ≈ 31 %, and R 2 ≈ 47 % of the variability in fish species richness, respectively. We conclude that (1) environmental variables differed in the degree to which they explain assemblage richness, (2) the amounts of variance in assemblage richness explained by geophysical landscape and site habitat were similar, (3) the variables explained more variability in macroinvertebrate taxa richness than in fish species richness, and (4) all three classes of environmental variables studied were useful for explaining assemblage richness in Cerrado headwater streams. These results help us to understand the drivers of assemblage patterns at regional scales in tropical areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号