首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磷是农作物生长发育的必需元素,为了保证我国粮食安全,提高农作物的产量,提高磷肥有效性十分重要。本试验选取三种石灰性土壤(郑州潮土、周口褐土和昌图风沙土)为研究对象,通过90天的室内埋土试验,在三种土壤中研究氨基酸与磷酸一铵配施对提高土壤中磷肥有效性的影响。研究结果表明:(1)氨基酸在三种石灰性土壤中均能够提高磷酸一铵的有效性,郑州潮土、周口褐土和昌图风沙土的磷肥有效性与单施磷酸一铵相比分别提高了21.16%、10.87%和4.06%;(2)氨基酸的加入降低了土壤中Ca2-P向Ca8-P或其他难溶形态磷的转化,通过对三种土壤进行相关性和通径分析的得出在郑州潮土、周口褐土和昌图风沙土中主要决策因子是Ca2-P,决策系数分别到达了0.836、0.946和0.712(P < 0.05),郑州潮土、周口褐土主要限制因子是Ca8-P,决策系数分别为?0.066、?0.401(P < 0.05),昌图风沙土主要限制因子是Ca8-P和Fe-P,决策系数分别为?0.080和?0.105(P < 0.05);(3)氨基酸的加入能够降低三种石灰性土壤的pH和CaCO3含量,有利于提高磷肥有效性;(4)通过对三种土壤的有效磷含量与土壤理化性质进行冗余分析,得出有机质(SOM)和碳酸钙 (CaCO3)是影响磷肥在三种土壤中固定速率差异的主要原因,SOM和CaCO3分别解释了有效磷含量全部变异的36.5%和25.6% (P < 0.05)。氨基酸在三种石灰性土壤中均能够提高磷肥有效性,主要途径是降低土壤的pH和CaCO3含量,抑制Ca2-P的快速转化。在三种石灰性土壤中,氨基酸作用有差异的主要原因是三种土壤中SOM和CaCO3含量的差异,提高SOM,降低土壤中CaCO3能够降低土壤对磷的固定,提高磷肥有效性。  相似文献   

2.
Soil degradation processes may be of various kinds, including soil compaction. The present study was carried out with the objective of assessing the sensitivity of agricultural or recently abandoned soils in Maputo province of Mozambique to compaction. The assessment is based on the maximum of bulk density attained using the Proctor test (MBD).

In this study the soil texture is expressed by silt plus clay (S + C) or clay (C). The relations between the soil texture and MBD, and between soil texture and critical water content (CWC—soil water at which MBD is attained) were determined. Selected soils range from 10 to 74% of S + C and 9 to 60% of C.

The results suggest there is a relationship between the considered parameters, being that between S + C and MBD or CWC, the best. For MBD the relationship is represented by two quadratic equations with the boundary in between these being a S + C value of 25% and C value of 20%.

Based on the obtained results, one can conclude that the selected parameters may be a useful basis for estimation of the sensitivity to compaction of the Maputo province's soils. It is recommended that similar studies be carried out for soils under forest land and for soil of other provinces to establish the national physical degradation hazard as a function of soil parameters determined routinely and at low cost. The suggested parameters are texture and soil organic matter (SOM).  相似文献   


3.
Experimental investigations were conducted over three years to test the hypothesis that soil compaction affects the physical and mechanical properties of corn ears and corn cobs. Field experiments were made on sub-drained clay and sandy loam soils at Macdonald College Farm in Quebec Province of Canada. The mechanical properties of corn ears and corn cobs were determined from quasi-static force-deformation analysis performed with a universal Instron testing machine.

The results showed that soil compaction treatments did not significantly influence corn cob elastic modulus and strength in simple bending nor in radial compression. Cob moisture content did not significantly change as a result of the application of various traffic treatments. However, corn cob diameter and pith diameter were both significantly affected by soil compaction.

Corn ear moisture content and bending strength were not significantly affected by soil compaction. However, corn ear yield in all three years was found to be dependent on the amount of soil compaction applied.

Also studied were the effects of various tillage methods in ameliorating the deleterious effects of soil compaction on crop yield and crop quality. It is concluded that a judicious choice of tillage machinery system can minimize the reductions in ear yield due to soil compaction.  相似文献   


4.
The Atterberg limits and the Proctor compaction test are used by engineers for classifying soils and for predicting stability of building foundations. Field capacity and wilting point (agronomic limits) are used to indicate available water for plant uptake. Few studies have related the engineering criteria to the agronomic ones with regard to compaction hazard for soils. This study investigated the relationships between Atterberg limits, agronomic limits and the critical moisture content (moisture content at Proctor maximum density) for three disturbed soils (sandy loam and clay loam soils from a reclaimed Highvale mine site, and a silt loam soil from a grazing site at Lacombe) of different textures. Relationships between bulk density, moisture content and penetration resistance for these soils were also investigated. For the sandy loam and loam soils, the field capacity was close to the critical moisture content but lower than the plastic limit. Therefore, cultivation of these two soils at moisture contents close to field capacity should be avoided since maximum densification occurs at these moisture contents. Overall, the critical moisture content or field capacity would be a better guide for trafficking of sandy loam and loam textured soils than the Atterberg limits. For the clay loam, field capacity was within the plastic range. Thus trafficking this soil at field capacity would cause severe compaction. In conclusion, either field capacity or plastic limit, whichever is less, can be used as a guide to avoid trafficking at this moisture content and beyond. For the sandy loam and loam soils penetration resistance significantly increased only with increased bulk density (P≤0.05). For the clay loam soil, penetration resistance was positively related to bulk density and negatively related to moisture content.  相似文献   

5.
Determination of the gas diffusion coefficient D s of peat soils is essential to understand the mechanisms of soil gas transport in peatlands, which have been one of major potential sources of gaseous carbons. In the present study, we aimed at determining the D s of peat soils for various values of the air-filled porosity a and we tested the validity of the Three-Porosity Model (Moldrup et al. 2004) and the Millington-Quirk model (1961) for predicting the relative gas diffusivity, the ratio of D s to D 0, the gas diffusion coefficient in free air. Undisturbed peat soil cores were sampled from aerobic layers in the Bibai mire, Hokkaido, Japan. The MQ model reproduced the measured D s/ D 0 curves better than the TPM. The TPM, a predictive model for undisturbed mineral soils, overestimated the D s/ D 0 values for peat soils, implying that in the peat soils the pore pathways were more tortuous than those in the mineral soils. Since the changes in the D s/ D 0 ratios with the a values of a well-decomposed black peat soil tended to be more remarkable than those of other high-moor peat soils, the existence of a positive feedback mechanism was assumed, such that peat soil decomposition itself would increase the soil gas diffusivity and promote soil respiration.  相似文献   

6.
Cost‐effective strategies for using chemically amended organic fertilizers need to be developed to minimize nutrient losses in surface and groundwater. Coupling specific soil physical and chemical characteristics with amendment type could increase their effectiveness. This study investigated how water‐extractable phosphorus (P) was affected by chemical amendments added to pig slurry and how this effect varied with soil properties. A 3‐month incubation study was conducted on 18 different mineral soils, stored at 10 °C and 75% humidity and treated with unamended and amended slurry which was incorporated at a rate equivalent to 19 kg total P (TP )/ha. The amendments examined were commercial‐grade liquid alum, applied at a rate of 0.88:1 [Al:TP ], and commercial‐grade liquid poly‐aluminium chloride (PAC ), applied at a rate of 0.72:1 [Al:TP ]. These amendments were previously identified by the authors as being effective in reducing incidental losses of P. The efficacy of the amendments varied with the soil test P, the degree of P saturation (DPS ) and the Mehlich aluminium, iron and calcium, but not soil texture. Chemical amendments were most effective in soils with DPS over approximately 20%. Due to their high cost, the incorporation of amendments into existing management practices can only be justified as part of a holistic management plan where soils have high DPS .  相似文献   

7.
Abstract. The phosphorus (P) sorption and desorption dynamics of eleven major agricultural grassland soil types in Ireland were examined using laboratory techniques, so that soils vulnerable to P loss might be identified. Desorption of P from soil using the iron-oxide paper strip test (Pfeo), water extractable P (Pw) and calcium chloride extractable P (Pcacl2) depended on soil P status in all soils. However, soil types with high organic matter levels (OM), namely peat soils (%OM >30), had lower Pfeo and Pw but higher Pcacl2 values compared to mineral soils at similar soil test P levels. Phosphorus sorption capacity remaining (PSCr) was measured using a single addition of P to soils and used to calculate total P sorption capacities (PSCt) and degree of P saturation (DPS). Phosphorus sorption capacities correlated negatively with % OM in soils indicating that OM may inhibit P sorption from solution to soil. High organic matter soils exhibited low P sorption capacities and poor P reserves (total P, oxalate extractable P) compared to mineral soils. Low P sorption capacities (PSCt) in peat soils were attributed to OM, which blocked or eliminated sorption sites with organic acids, therefore, P remained in the soil solution phase (Pcacl2). In this work, peat and high organic matter soils exhibited P sorption and desorption characteristics which suggest that these soils may not be suitable for heavy applications of manure or fertilizer P owing to their low capacities for P sorption and storage.  相似文献   

8.
Bijay Singh  G.S. Sekhon 《Geoderma》1978,20(3-4):271-279
Adsorption of the nitrate ion on calcium carbonate and its leaching in calcareous soils were examined by equilibrium and elution techniques. Nitrate ions adsorbed on the surface of CaCO3 fitted the Langmuir model well at an equilibrium concentration of 40 ppm NO3. Sulphate ions reduced adsorption of nitrate. Data for elution of surface-applied nitrate from laboratory soil columns, when plotted in the form of elution curves and semi-log plots, indicated interactions of nitrate with the soils. The elution curves had long trailing portions due to desorption of nitrate. The length of the trailing portion of a curve was determined by the amount of nitrate adsorbed which in turn seems to depend upon the total surface area of CaCO3. Sulphate ions when present in the displacing fluid seem to desorb nitrate ions from the surface of the CaCO3, whereas chloride ions have little or no effect.  相似文献   

9.
Soil compaction is recognized as an increasingly challenging problem for the agricultural, horticultural and forest production in many climatic regions. The Proctor test provides a standardized method to study compactibility of disturbed soils over a range of soil water contents. The objectives of our study were: (a) to determine values of the critical water content for compaction and maximum bulk density from Proctor compaction curves for soils different in their properties; (b) to study the correlation between the maximum bulk density and readily available soil properties. Thirty soil samples were taken from six different locations in Argentina between 58 and 64°W and 34 and 38°S. The degree of saturation at maximum bulk density varied from 73.2 to 96.8%. Comparison of our data with data of two studies in USA showed that relationships between the maximum bulk density and the critical water content were similar to these studies. However, the slope of the relationship between the maximum bulk density and the organic carbon content was 50% less in our study as compared with the two others. The maximum bulk density was highly correlated with the organic carbon content and the silt content, the determination coefficient of the multiple linear regression, r2, was 0.88.  相似文献   

10.
Research was conducted to develop a knowledge-based decision support system to assess the degree of compaction in agricultural soils. The experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely, clay, silty clay loam, and silty loam. The research was likewise aimed to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop compaction models for soil compaction assessment. Dimensional analysis technique was used in the development of the compaction models.

The soil compaction models were found to provide good predictions of the bulk density and cone index. Using the compaction models and other secondary data, the decision support system was developed to assess the compaction status of the soil in relation to crop yield. The predictions by the decision support system were validated with actual field data from earlier studies and high correlation was observed. Thus, the output of the decision support system may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems.  相似文献   


11.
不同改良剂与石膏配施对滨海盐渍土的改良效果研究   总被引:11,自引:5,他引:6  
针对江苏省滨海盐渍土的特点,采用4种土壤改良剂,通过改良剂单施和改良剂与石膏配施试验,分析测定了施用这些改良剂后的土壤含盐量和pH值,并测定了作物产量,筛选出适宜于滨海盐渍土的最佳改良剂及组合。试验结果表明,腐殖酸改良滨海盐渍土效果最好,经腐殖酸(300kg/hm2)处理后,0—5,5—20和20—40cm土层盐分含量相对降低量分别为38.2%,24.5%和13.9%。石膏能显著降低土壤盐分含量和提高作物产量,经石膏(300kg/hm2)处理后,0—5,5—20和20—40cm土层盐分含量相对降低量分别为18.8%,13.0%和4.9%,油菜较对照增产6.1%。腐殖酸与石膏配施是滨海盐渍土适宜的改良剂组合,腐殖酸(300kg/hm2)与石膏(300kg/hm2)配施,可使0—5,5—20和20—40cm土层盐分含量相对降低量分别达45.1%,38.9%和25.7%,使油菜较对照增产18.6%。  相似文献   

12.
Under semi-arid conditions, the properties of many soils are influenced by the presence of organic matter and calcium carbonate (CaCO3). However, the influence of different tillage systems on the development of these properties has scarcely been studied under semi-arid Mediterranean conditions. We studied the effect of long-term conservation tillage (CT) and traditional tillage (TT) on the stratification ratio of soil organic carbon and on CaCO3 content. The study was conducted in a wheat (Triticum aestivum L.)–sunflower (Helianthus annuus L.) crop rotation established in 1991 under rainfed conditions in Southwestern Spain. As is traditional in this area, wheat was fertilised, but sunflower was not. Conservation tillage was characterised by reduced number of tillage operations and leaving crop residues on the soil surface, while TT was with mouldboard ploughing. Stratification ratio of soil organic C was calculated from C contents in the 0–5 and 5–10 cm soil layers divided by that in the 25–40 cm. Stratification ratio of soil organic C under the CT (>2) was significantly greater than under TT (<2); values >2 indicating better soil quality. Our results show a loss of CaCO3 under both tillage systems. However, the loss of CaCO3 was significantly higher under TT than under CT. Also, P and K accumulated in the soil surface and stratification ratio for both nutrients was greater in CT than in TT.  相似文献   

13.
【目的】明确贵州烟田土壤pH、交换性钙(Ca2+)、交换性镁(Mg2+)和碳酸钙(CaCO3)的含量分布特征及其相互关系,指导土壤酸碱调节及钙镁肥料施用。【方法】采集贵州全省烟区500个典型烟田耕层(0~20 cm)土样,采用经典方法测定土壤p H、Ca2+、Mg2+和CaCO3含量,利用SPSS比较不同成土母质、土壤类型和区域之间pH、Ca2+、Mg2+和CaCO3的含量差异,定量分析pH与Ca2+、Mg2+和CaCO3之间的关系。【结果】土壤pH、Ca2+和Mg2+含量偏低的烟田分别占20.0%、18.2%和56.4%,偏高的烟田分别占37.0%、55.8%和29.6%。CaCO3低于10 g kg-1 烟田占88.4%。不同成土母质、...  相似文献   

14.
Field traffic may reduce the amount of air-filled pores and cavities in the soil thus affecting a large range of physical soil properties and processes, such as infiltration, soil water flow and water retention. Furthermore, soil compaction may increase the mechanical strength of the soil and thereby impede root growth.

The objective of this research was to test the hypotheses that: (1) the degree of soil displacement during field traffic depends largely on the soil water content, and (2) the depth to which the soil is displaced during field traffic can be predicted on the basis of the soil precompression stress and calculated soil stresses. In 1999, field measurements were carried out on a Swedish swelling/shrinking clay loam of stresses and vertical soil displacement during traffic with wheel loads of 2, 3, 5 and 7 Mg at soil water contents of between 11 and 35% (w/w). This was combined with determinations of soil precompression stress at the time of the traffic and predictions of the soil compaction with the soil compaction model SOCOMO. Vertical soil displacement increased with increased axle load. In May, the soil precompression stress was approximately 100 kPa at 0.3, 0.5 and 0.7 m depth. In August and September, the soil precompression stress at 0.3, 0.5 and 0.7 m depth was 550–1245 kPa. However, when traffic with a wheel load of 7 Mg was applied, the soil displacements at 0.5 m depth were several times larger in August and September than in May, and even more at 0.7 m depth. An implication of the results is that the precompression stress does not always provide a good indication of the risk for subsoil compaction. A practical consequence is that subsoil compaction in some soils may occur even when the soil is very dry. The SOCOMO model predicted the soil displacement relatively well when the soil precompression stress was low. However, for all other wheeling treatments, the model failed to predict that any soil compaction would occur, even at high axle loads.

The measured soil stresses were generally higher than the stresses calculated with the SOCOMO model. Neither the application of a parabolic surface load distribution nor an increased concentration factor could account for this difference. This was probably because the stress distribution in a very dry and strongly structured soil is different from the stress distribution in more homogeneous soils.  相似文献   


15.
Nitrogen from fertilisers and crop residues can be lost as nitrous oxide (N2O), a greenhouse gas that causes an increase in global warming and also depletes stratospheric ozone. Nitrous oxide emissions, soil chemical status, temperature and N2O concentration in the soil atmosphere were measured in a field experiment on soil compaction in loam and sandy loam (cambisols) soils in south-east Scotland. The overall objective was to discover how the intensity and distribution of soil compaction by tractor wheels or by roller just before sowing influenced crop performance, soil conditions and production and emissions of N2O under controlled traffic conditions. Compaction treatments were zero, light compaction by roller (up to 1 Mg per metre of length) and heavy compaction by loaded tractor (up to 4.2 Mg). In this paper we report the effects on production and emissions of N2O and relate them to soil and crop conditions. Nitrous oxide fluxes were substantial only when the soil water content was high (>27 g per 100 g). Fertiliser application stimulated emissions in the spring whereas crop residues stimulated emissions in autumn and winter. Heavy compaction increased N2O emissions after fertiliser application or residue incorporation more than light or zero compaction. The bulk densities of the heavily and lightly compacted soils were up to 89% and 82% of the theoretical (Proctor) maxima. Higher soil cone resistances, temperatures and nitrogen availability and lower gas diffusivities and air-filled porosities combined to make the heavily compacted soil more anaerobic and likely to denitrify than the zero or lightly compacted soil. Compaction sufficient to increase N2O emissions significantly corresponded with adverse soil conditions for winter barley (Hordeum vulgare L.) growth. Soil tillage, which ensures that soil compaction is no greater than in our light treatment and is confined to near the soil surface, may help to mitigate both surface fluxes of N2O and losses to the subsoil.  相似文献   

16.
Three arid soils (clay loam (CL), sandy clay (SC), and sandy loam (SL)) were amended with pecan waste products (ground pecan shells (PSHs), ground pecan husks (PHUs), and ground pecan shell biochar (PSB)), at a rate of 45 Mg/ha, packed inside cylindrical rings and kept in a humid chamber for 4 weeks. Measurements taken included volumetric moisture content as the soil dried out for 7 days, wet aggregate stability (WAS), permanganate oxidizable carbon (POXC), nitrate-nitrogen, extractable phosphorus (Olsen-P), and water-extractable potassium (K). Significant effects of soil texture, soil amendment, and their interaction were observed for all measurements. Generally, the amendments led to significant improvement in Olsen-P, K, POXC, and WAS, while amendments’ impacts on soils of different textures varied. Short-term moisture retention was dependent on soil texture, with PHU and PSB treatments having higher soil moisture retention in SL and CL soils but not in SC soil.  相似文献   

17.
The shrinkage of the peat soils that accompanies the soil moisture changes is an important feature of such soils and has strong influence on their physical attributes and soil water management. The relationships between soil moisture and volume are often described using shrinkage characteristic curves by relating void ratio (volume of voids per unit volume of solids) to moisture ratio (volume of water per volume of solids). For conversion of soil volume changes into cracks volume and subsidence, a dimensionless shrinkage geometry factor is used. The paper presents results of volumetric shrinkage behavior and the geometry factor at various loads in sedge and alder peat soils. The measurements were conducted on undisturbed soil samples without applying a load and with loads corresponding to field overburden. The shape of the shrinkage characteristics of such soils were completely different from those of clay soils. The application of loads did not significantly influence the shrinkage characteristics curve. The applied load strongly influenced on relationship between shrinkage geometry factor and the moisture ratio, showing higher values of subsidence and lower values of crack volume in comparison with unloaded conditions.  相似文献   

18.
The average size of rainfed and irrigated agricultural farms in Spain has grown steadily over the past two decades. This has called for the use of machinery of higher field capacity and greater weight that in turn requires a high drawbar power. All this has resulted in soil changes such as an increased compaction and compactibility. The confined uniaxial compression test was used to assess compaction and viscoelastic behavior of five soil samples from different agricultural areas of Spain. The bulk density–compression stress line was fitted to a three-parameter multiplicative compaction model and viscoelastic behavior was evaluated by means of stress-relaxation tests. The objectives were to determine to what extent the parameter coefficients of the compaction model equation and the relaxation of the stress induced in the compacted soil were influenced by the type of soil, its water content and the compression stress applied. Gravimetric water contents of 5, 10, 15, 20 and 25% were considered, and maximum normal stresses of 50, 100, 200 and 400 kPa were applied to the soils in a universal testing machine. The soil samples considered differed in texture, sandy loam (SL), sandy clay loam (SCL), loam (L), clay (C) and silt-loam (SiL), and organic matter content.

The slope of the bulk density-compression stress line at zero normal stress was strongly dependent on soil water content and plasticity index; whereas the slope of the curve at high applied normal stresses was influenced by soil moisture but not by soil plasticity. The viscoelastic behavior of the soils compared was dictated by their water content and plasticity index, as well as by the compression stress applied. The stress relaxation rate at time t=0 was scarcely influenced by water content. In fact, the rate remained constant over the water content range from 10 to 20% (w/w) at values that were higher than those obtained at 5 and 25% (w/w), which in turn were identical to each other. The stress-relaxation rate was also found to increase linearly with the logarithm of the compression stress. On the other hand, the residual stress decreased linearly with increasing water content. However, the latter increased linearly with compression stress. Increasing soil plasticity resulted in decreasing relaxation rate and increasing residual stress. Therefore, the more plastic the soil was the lower was the rate at which stress relaxation started and the smaller was the amount of stress dissipated.  相似文献   


19.
Subsoil compaction may reduce the availability and uptake of water and plant nutrients thereby lowering crop yields. Among the management options for remediating subsoil compaction are deep tillage and the selection of crop rotations with deep-rooted crops, but little is known of the effects of applications of organic amendments on subsoil compaction. The objectives of this study were to determine the effects of subsoil compaction on corn yield and N availability in a sandy-textured soil and to evaluate the use of deep tillage and surface applications of poultry manure to remediate subsoil compaction. A field experiment planted to corn (Zea mays L.) was conducted from 2000 to 2001 on a Reelfoot fine sandy loam (fine-silty, mixed thermic Aquic Argiudolls) formed in silty alluvium located in southeast Missouri near the Mississippi River. Treatments were arranged in a factorial design with three levels of subsoil compaction and subsoiling and four rates (averaging 0, 6, 11 and 18 Mg ha−1) of poultry manure. Subsoil tillage to a depth of 30 cm had multiple effects, including overcoming a natural or tillage-induced dense layer or pan and increasing volumetric soil water content and crop N uptake, especially in the 2001 cropping year with low early season precipitation. N recovery efficiency (NRE) was significantly higher in the subsoil treatment compared to the highest compaction treatment in 2001. No significant interactions between manure rates and compaction and subsoiling treatments were observed for corn grain and silage yields, N uptake and NRE. Average increases in corn grain yields over all manure rates due to subsoil tillage of compacted soil were 2002 kg ha−1 in 2000 and 3504 kg ha−1 in 2001. Application of poultry manure had a consistent positive effect on increasing grain yields and N uptake in 2000 and 2001 but did not significantly alter measured soil physical properties. The results of this study suggest that deep tillage and applications of organic amendments are management tools that may overcome restrictions in both N and soil water availability due to subsoil compaction in sandy-textured soils.  相似文献   

20.
Soil compaction is one of the major problems facing modern agriculture. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. Soil compaction occurs in a wide range of soils and climates. It is exacerbated by low soil organic matter content and use of tillage or grazing at high soil moisture content. Soil compaction increases soil strength and decreases soil physical fertility through decreasing storage and supply of water and nutrients, which leads to additional fertiliser requirement and increasing production cost. A detrimental sequence then occurs of reduced plant growth leading to lower inputs of fresh organic matter to the soil, reduced nutrient recycling and mineralisation, reduced activities of micro-organisms, and increased wear and tear on cultivation machinery. This paper reviews the work related to soil compaction, concentrating on research that has been published in the last 15 years. We discuss the nature and causes of soil compaction and the possible solutions suggested in the literature. Several approaches have been suggested to address the soil compaction problem, which should be applied according to the soil, environment and farming system.

The following practical techniques have emerged on how to avoid, delay or prevent soil compaction: (a) reducing pressure on soil either by decreasing axle load and/or increasing the contact area of wheels with the soil; (b) working soil and allowing grazing at optimal soil moisture; (c) reducing the number of passes by farm machinery and the intensity and frequency of grazing; (d) confining traffic to certain areas of the field (controlled traffic); (e) increasing soil organic matter through retention of crop and pasture residues; (f) removing soil compaction by deep ripping in the presence of an aggregating agent; (g) crop rotations that include plants with deep, strong taproots; (h) maintenance of an appropriate base saturation ratio and complete nutrition to meet crop requirements to help the soil/crop system to resist harmful external stresses.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号