首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Four field trials (spring wheat and oats) were conducted (one on clay soil, one on loam soil and two on silt soil) for three years in important cereal growing districts, to investigate the influence of tillage regimes (ploughing versus reduced tillage in either autumn or spring) and straw management (removed and retained) on plant residue amounts, weed populations, soil structural parameters and cereal yields. The effect of tillage on soil structure varied, mainly due to the short trial period. In general, the amount of small soil aggregates increased with tillage intensity. Reduced soil tillage, and in some cases spring ploughing, gave significantly higher aggregate stability than autumn ploughing, thus providing protection against erosion. However, decreasing tillage intensity increased the amounts of weeds, particularly of Poa annua on silt soil. Straw treatment only slightly affected yields, while effects of tillage varied between both year and location. Reduced tillage, compared to ploughing, gave only small yield differences on loam soil, while it was superior on clay soil and inferior on silt soil. Our results suggest that shallow spring ploughing is a good alternative to autumn ploughing, since it gave comparable yields, better protection against erosion and was nearly as effective against weeds.  相似文献   

2.
Long-term soil cultivation at the same depth affects soil characteristics and crop productivity. The aim of the study was to investigate the impact of a long-term different intensity soil tillage methods and deep loosening on weed number, weed agrobiological group and soil seed bank changes in till Bathygleyic Dystric Glossic Retisol soil under the climatic conditions of the Western Lithuania (geographical coordinates 55°43′38″N, 21°27′43″E). The study included different soil tillage methods (conventional ploughing, shallow ploughing and shallow ploughless tillage) and deep loosening. During investigational years, the greatest weed number in crops and the greatest weed seed number in the seed bank were determined in the soil reduced tillage (shallow ploughing and shallow ploughless tillage). The weed number in crops of conventional ploughing soil was 35.8% lover compared to reduced tillage soil. The weed seed number in the seed bank of conventional ploughing was 49.6% lover compared to reduced tillage Decreasing soil tillage intensity resulted in weed seeds concentration in the upper topsoil. A one-time deep loosening had a significant effect during the crop rotation: the weed number in crops and weed seed number in the seed bank were determined to have increased by 26.6% and 51.6% in conventional ploughing soil and by 11.9% and 23.2% shallow ploughless soil respectively. However, after deep loosening, the number of Poa annua in crops decreased 2.9 times in plots of conventional ploughing and 1.7 times – in plots of shallow ploughing soil.  相似文献   

3.
Chisel ploughing is considered to be a potential conservation tillage method to replace mouldboard ploughing for annual crops in the cool-humid climate of eastern Canada. To assess possible changes in some soil physical and biological properties due to differences in annual primary tillage, a study was conducted for 9 years in Prince Edward Island on a Tignish loam, a well-drained Podzoluvisol, to characterize several mouldboard and chisel ploughing systems (at 25 cm), under conditions of similar crop productivity. The influence of primary tillage on the degree of soil loosening, soil permeability, and both organic matter distribution throughout the soil profile and organic matter content in soil particle size fractions was determined. At the time of tillage, chisel ploughing provided a coarser soil macrostructure than mouldboard ploughing. Mouldboard ploughing increased soil loosening at the lower depth of the tillage zone compared to chisel ploughing. These transient differences between primary tillage treatments had little effect on overall soil profile permeability and hydraulic properties of the tilled/non-tilled interface at the 15–30 cm soil depth. Although soil microbial biomass, on a volume basis, was increased by 30% at the 0–10 cm soil depth under chisel ploughing, no differences were evident between tillage systems over the total tillage depth. Mouldboard ploughing increased total orgainc carbon by 43% at the 20–30 cm soil depth, and the carbon and nitrogen in the organic matter fraction ≤ 53 μm by 18–44% at the 10–30 cm soil depth, compared to chisel ploughing.  相似文献   

4.
为了明确深耕对水田土壤理化性质及水稻产量影响,该文在黑土型水稻土上开展深耕研究,应用自主研发的水田深翻犁,开展深翻、浅翻与旋耕大区对比研究。结果表明:浅翻和深翻可以降低土壤固相比率和容重,与旋耕相比,土壤固相比率降低幅度分别为0.74%~4.80%和1.86%~3.90%;10~20 cm土层土壤容重分别下降0.09 g/cm~3和0.08 g/cm~3,20~30 cm土层深翻处理土壤容重比旋耕下降0.03 g/cm~3;10~20 cm土层土壤的通气系数和饱和透水系数浅翻处理比旋耕分别提高4.04倍和2.71倍,深翻提高4.42倍和2.14倍;20~30 cm深翻比旋耕提高1.86倍和2.87倍,2年趋势一致;深翻可使土壤养分指标在各层趋于平均化;深耕可促进水稻根系生长,根系的生长量与根长增加幅度为6.53%~16.33%和10.81%~21.62%,深翻好于浅翻;深耕提高水稻产量,2015年浅翻和深翻处理水稻实测产量分别比旋耕增产6.91%和9.81%,2016年增产6.59%和7.84%,2年增产趋势一致。  相似文献   

5.
土壤耕作方式对双季稻产量构成与穗镉积累的影响   总被引:1,自引:0,他引:1  
为比较研究不同土壤耕作方式(翻耕、旋耕、免耕)对南方双季稻区水稻产量构成与稻穗镉积累分配特性的影响,探讨镉污染稻田双季稻最优土壤耕作方式,2015—2017年,以"陵两优211"与"威优46"为早、晚稻供试品种,在湖南省湘潭县易俗河镇中度镉污染稻田(全镉含量0.86 mg/kg)开展定位试验,比较研究了双季免耕、双季翻耕、双季旋耕、早旋晚免、早翻晚免5种土壤耕作方式下土壤有效镉含量、双季稻的产量构成与穗镉积累分配情况。结果表明:(1)双季稻产量以双季翻耕处理最高,早翻晚免处理次之,双季旋耕与早旋晚免处理再次之,双季免耕处理最低;翻耕处理产量最高的原因在于其有效穗数与每穗粒数较高。(2)齐穗期至成熟期,穗镉含量一般呈增长趋势;第1年早晚稻齐穗期穗镉含量以免耕处理最高,但免耕能明显降低水稻齐穗至成熟期穗镉含量的增长速率;早晚稻成熟期穗镉含量一般以翻耕处理较高,免耕与旋耕处理较低,免耕与旋耕处理有差异但在不同年份与季别间表现不尽相同。(3)成熟期稻穗各部位镉含量趋势表现为枝梗谷壳糙米;第1年糙米镉含量以免耕处理较高,但第2,3年呈现免耕处理低于翻耕与旋耕处理的趋势。(4)第1年早、晚稻穗镉累积量均以旋耕处理较低,但第2,3年均以免耕处理较低。(5)较其他处理而言,双季免耕明显提高了土壤有效镉含量,双季旋耕则降低了土壤有效镉含量。3年定位试验表明,土壤耕作方式对镉污染稻田土壤有效镉含量、双季稻产量构成与稻穗镉积累分配有明显影响,从保证双季稻产量、降低稻米镉含量与轻简省工的角度出发,早翻晚免是中度镉污染双季稻田的最优土壤耕作方式。  相似文献   

6.
不同土壤水吸力与耕作方式对土壤压缩—回弹特性的影响   总被引:2,自引:0,他引:2  
[目的]合理耕作方式是缓解土壤压实、提升土壤生产能力的有效措施,而土壤水分是影响土壤机械物理性能的重要因素,直接影响土壤耕作质量.通过研究不同土壤水吸力和耕作方式下土壤压缩曲线及模型拟合效果,分析土壤回弹—再压缩曲线变化及机械力学参数(预固结压力、压缩指数和回弹指数)差异,以期为农田土壤耕作和培肥提供科学依据.[方法]...  相似文献   

7.
The effects of ploughness tillage (stubble cultivation with a disc tiller or a spring tine cultivator, or with both in combination, replacing mouldboard ploughing) on evaporation were investigated using undisturbed soil lysimeters (height = 350 mm, diameter = 300 mm) excavated after spring cultivation in May from field experiments in eastern Sweden. The evaporation process was measured on ploughed and unploughed soil lysimeters, both with or without precipitation and with or without a seedbed. The effects on evaporation of incorporating crop residues with or without precipitation into a ploughed seedbed were also measured. The results from a heavy clay and from a silty clay loam showed that both ploughless tillage and incorporated straw reduced cumulative evaporation. The water-conserving effect was greater in irrigated treatments. The positive effect on water conservation was also greater on the silty clay loam than on the heavy clay. The soil structural changes brought about by ploughless tillage in layers under the seedbed acted to reduce the rate of evaporation from soil.  相似文献   

8.
不同耕作深度对红壤坡耕地耕层土壤特性的影响   总被引:2,自引:0,他引:2  
红壤坡耕地不同耕作深度对耕层质量和作物产量具有重要影响。以江西红壤坡耕地示范区耕层为研究对象,从土壤属性角度,对红壤坡耕地不同耕作深度处理下垂直深度土壤水分、容重、孔隙度、土壤紧实度、土壤抗剪强度、土壤有机质、有效磷和速效钾等进行分析。结果表明:(1)不同耕作深度对土壤孔隙度、饱和含水量和田间持水量的影响为免耕翻耕20 cm翻耕10 cm常规耕作翻耕30 cm,对容重的影响为翻耕30 cm常规耕作翻耕10 cm免耕翻耕20 cm;与常规耕作比较,翻耕30 cm使土壤饱和含水量、田间持水量和土壤孔隙度分别提高了18.17%,12.67%,5.94%,土壤容重降低6.90%。(2)不同耕作深度下土壤紧实度表现为翻耕30 cm翻耕10 cm翻耕20 cm免耕常规耕作,土壤抗剪强度表现为翻耕30 cm常规耕作翻耕10 cm免耕翻耕20 cm;与常规耕作对照,翻耕30 cm使土壤紧实度和抗剪强度分别降低27.07%和24.82%。(3)土壤有机质含量以翻耕20 cm处理下最高(13.48 g/kg),免耕处理含量最低(9.39 g/kg),土壤速效养分主要集中分布在0-20 cm土层,但20-40 cm土层中翻耕处理较免耕处理有不同程度的增加,以翻耕20 cm和常规耕作表现显著。(4)主成分分析结果表明,翻耕30 cm处理对红壤坡耕地土壤的综合改善效果最好。研究结果可为红壤坡耕地耕层土壤改善和合理耕层构建提供技术参考。  相似文献   

9.
Studies were conducted to determine changes in organic matter and microbial biomass carbon in comparison with structural stability at the surface soil (0–5 cm) of a Charlottetown fine sandy loam, an Orthic Podzol, at three tillage and grassland sites situated in Prince Edward Island. The tillage experiments, established for 3–5 years, included comparisons of mouldboard ploughing, direct drilling, shallow tillage, and chisel ploughing. Two indices of soil structural stability were used: mean weight diameter (MWD) and aggregation index (AI). The latter index assigns a weight factor to aggregate size ranges based on their value for plant germination and root growth.Direct drilling and reduced tillage increased the level of soil organic carbon by 10–17%, relative to mouldboard ploughing. Organic carbon was more enriched in 1–2 mm and 4.75–9.00 mm macroaggregates, especially the former, compared with whole soil. The MWD of aggregates after wet sieving was 33% and 55%, relative to the grassland sites, for mouldboard ploughing and direct drilling, respectively. On these soils of similar mineralogy and particle size, a close linear relationship (r=0.942) was observed between organic carbon (r=0.947) and nitrogen (r=0.923). The AI was significantly correlated to both organic carbon and microbial biomass carbon using power regression. In contrast to MWD, the AI under direct drilling and reduced tillage, associated with an organic carbon level of 2.5%, approximated the AI under grass. Overall, the study showed that minimum tillage systems in humid climates can improve structural stability at the soil surface of fine sandy loams over a relatively short time frame.  相似文献   

10.
Reduced tillage is proposed as a method of C sequestration in agricultural soils. However, tillage effects on organic matter turnover are often contradictory and data are lacking on how tillage practices affect soil respiration in northern Europe. This field study (1) quantified the short-term effects of different tillage methods and timing on soil respiration and N mineralisation and (2) examined changes in aggregate size distribution due to different tillage operations and how these relate to soil respiration. The study was conducted on Swedish clay soil (Eutric Cambisol) and compared no-tillage with three forms of tillage applied in early or late autumn 2010: mouldboard ploughing to 20–22 cm and chisel ploughing to 12 or 5 cm depth. Soil respiration, soil temperature, gravimetric water content, mineral N and aggregate size distribution were measured. The results showed that respiration was significantly higher (P?<?0.001) in no-till than in tilled plots during the 2 weeks following tillage in early September. Later tillage gave a similar trend but treatments did not differ significantly. Soil tillage and temperature explained 56 % of the variation in respiration. In the early tillage treatment, soil respiration decreased with tillage depth. Mineral N status was not affected by tillage treatment or timing. Soil water content did not differ significantly between tillage practices and therefore did not explain differences in respiration. The results indicate that conventional tillage in early autumn may reduce short-term soil respiration compared with chisel ploughing and no-till in clay soils in northern Europe.  相似文献   

11.
Abstract

Results for 1998–2004 are reported from four long-term (25–28 years) tillage trials, comparing conventional autumn ploughing with reduced tillage, normally spring harrowing only. Plant residues were retained during the period studied. The weather was somewhat wetter than the 1961–1990 normal. Results with reduced tillage were mostly similar to those seen in earlier trial periods. In Trial 1, mean grain yield was 95% with spring harrowing only versus autumn ploughing, 96% when harrowing in autumn was performed as well and 97% when the soil was ploughed every third year. In Trial 2 positive crop rotation effects were found both with and without ploughing, and reduced tillage gave 5% lower grain yield also in this trial. In Trial 3, tillage system did not affect yields of cereals grown in rotation with potatoes, but reduced tillage gave 12% lower potato yield than ploughing. Little difference in response to N fertilizer was found. In Trial 4, reduced tillage on large-scale (0.7 ha) plots gave 11% lower grain yields than annual ploughing, partly due to shallow sowing depth. No long-term trend in yield responses to tillage was discernible in any trial, and between-year variability was similar with both ploughing and reduced tillage. Percentage yields with reduced tillage relative to annual ploughing correlated positively with rainfall in May and with mean air temperature in August. It is concluded that the reduced tillage systems studied are sustainable in terms of productivity, relative to labour, machinery and energy inputs. Likely benefits of such systems include higher levels of organic matter and aggregate stability in surface soil horizons, but a disadvantage is the need for frequent herbicide use to control perennial weeds.  相似文献   

12.
  目的  明确耕作深度对红壤坡耕地季节性干旱期土壤水分变化特征的影响。  方法  依托2015年设置的红壤坡耕地耕作深度试验,选择免耕(NT)、耕翻10 cm(P10)、耕翻20 cm(P20)和耕翻30 cm(P30)共4个处理,研究了耕作深度对红壤坡耕地季节性干旱期土壤水分变化特征的影响。  结果  强降雨后红壤坡耕地0 ~ 60 cm土层对雨水的接蓄能力在P30处理达到了最大值,P20处理次之,P10、NT处理相对较差。耕作深度对0 ~ 30 cm土层雨水接蓄能力有显著影响( P < 0.05),而对30 ~ 60 cm土层雨水接蓄能力无显著影响(P > 0.05)。多因素方差分析表明,耕作深度对季节性干旱期红壤坡耕地0 ~ 60 cm土层土壤水分含量产生了极显著影响(P < 0.01),耕作深度、土层深度和持续天数三个因素的交互作用对季节干旱期0 ~ 60 cm土层土壤水分含量也产生了极显著影响(P < 0.01)。从0 ~ 60 cm土壤储水量变化来看,P30处理造成季节性干旱期耕层和亚耕层土壤水分消耗过快,而NT和P10处理增加了季节性干旱期亚耕层土壤水分的消耗,P20处理土壤储水量变化最小,比其它处理低2.26% ~ 11.79%。  结论  耕翻20 cm有利于雨水接蓄且季节性干旱期水分消耗最少,最有利于红壤坡耕地季节性干旱期0 ~ 60 cm土层土壤水分含量的稳定,研究结果为红壤坡耕地季节性干旱期土壤水分调控耕作技术提供了一定的理论依据。  相似文献   

13.
Tillage is an important agricultural practice, influencing the physical, chemical and biological soil characteristics. In this paper the influence of various tillage systems combined with or without a cover crop under different nitrogen fertilization levels on silage maize yield and soil fertility was investigated. Based on a field trial in Bottelare (Belgium), during the period 2007–2015, it was concluded that for each tillage system higher nitrogen levels resulted in a higher yield. In addition, the highest yield was achieved for the conventional tillage system, the yield gain for mouldboard ploughing varied between 13% (2015) and 71% (2012) compared to zero tillage. In case reduced tillage was adopted, the yield loss compared to mouldboard ploughing varied between 6% (2013 and 2015) and 24% (2012). Furthermore, it seemed that the accumulated temperature during the growing season and rainfall around flowering were decisive in determining maize yield. Additionally, rainfall in the period 60 days post sowing was significantly negatively correlated with the yield from the zero tillage plots, whereas in case tillage was adopted no correlations with rainfall 60 days post sowing were detected. Concerning the soil organic carbon content and the amount of earthworms, no clear trends could be observed. Zero tillage resulted in high weed pressure and caused soil compaction. So, in this trial, under humid conditions, the less labor intensive zero tillage system did not result in competitive maize yields. In conclusion, reduced tillage methods offer opportunities for maize cultivation in Belgium. This method of farming resulted in a lower yield, however, the difference with mouldboard ploughing was not significant. Therefore, adopting a reduced tillage system can be seen as a valid alternative for ploughing as this tillage system ensures a sustainable environment.  相似文献   

14.
Soil porosity and organic matter content influence the hydrology, thermal status and productivity of agricultural soils. Shape, size and continuity of soil pores are determined by tillage practices. Thus appropriate tillage and mulch management can conserve residual soil moisture during the post rainy season. This can play a key role in enhancing productivity under the rainfed ecosystem of subhumid region in eastern India. A field study was carried out on a fine loamy soil from 1993–1994 to 1995–1996. Two tillage treatments were conventional ploughing (150 mm depth) and shallow ploughing (90 mm) depth. Each tillage practice was tested with three mulch management viz., no mulch, soil dust mulch and rice (Oryza sativa L.) straw mulch. Soil organic carbon, bulk density, moisture retentivity, soil temperature with productivity and water use pattern of barley (Hordium vulgare L.) were measured.Reduction in ploughing depth resulted in nominal increase in profile (0.0–1.2 m) moisture status, yield, and soil thermal status at 14:00 and water use efficiency (WUE). However, it decreased the magnitude of soil temperature in the morning (07:00). Straw mulch conserved 19–21 mm of moisture in the profile (1.2 m) over the unmulched condition. Both soil dust and rice straw mulching elevated soil thermal status at 07:00 as compared to unmulched condition, but this trend was reversed at 14:00. Straw mulching significantly increased grain yield and WUE over soil dust mulch and unmulched condition. Impact of straw mulch was more pronounced under shallow ploughing depth. Shallow tillage with rice straw mulching is recommended to the farmers to obtain higher level of yield and water use efficiency.  相似文献   

15.
Tillage trials were established on a poorly drained silty loam overlying silty clay loam and on a freely drained sandy loam overlying medium sand, in 1988 and 1989, respectively. Autumn and spring ploughing and two ploughless systems were compared for 12–13 years, with three replications at each site. The ploughless treatments comprised deep versus shallow spring harrowing until 1999, and thereafter autumn plus spring harrowing versus spring harrowing only. In 6 years, treatments with and without fungal spraying of the cereal crops were included. In other years, fungicides were not used. Perennial weeds were controlled by herbicides as necessary, on nine occasions up until 2001. Average spring barley (Hordeum vulgare L.) and spring oat (Avena sativa L.) yields were similar with spring ploughing as with autumn ploughing at both sites. In treatments without ploughing, average yields on the silty loam over clay were 93% of those obtained with ploughing, and on the sandy loam over sand they were 81%. Smaller and non-significant yield differences were found between spring harrowing versus deep spring harrowing, and between autumn plus spring harrowing versus spring harrowing only. Fungal spraying increased yields markedly at both sites (25%), but there was no significant interaction between this treatment and tillage system. Oat was compared with barley in 2 years, with oat performing better under ploughless tillage. At both sites increases in penetrometer resistance occurred in the topsoil of unploughed treatments. These were considered particularly limiting on the sandy loam. On the silty loam there was an increase in surface horizon porosity in the absence of ploughing, which was associated with an increase in topsoil organic matter content. On this soil there was also a tendency toward lower penetrometer resistance at >30 cm depth on autumn plus spring harrowed soil than on ploughed soil, indicating that the plough pan may have diminished. This was supported by observations of greater earthworm activity on unploughed soil. Soil chemical analyses revealed that mineral N and plant-available P and K accumulated in the upper horizon under ploughless tillage. The percentage yields obtained in individual years with autumn as opposed to spring ploughing, were positively correlated with air temperature during 0–4 weeks after planting on the silty loam, and with precipitation during 0–12 weeks after planting on the sandy loam. In the case of yields obtained with spring harrowing only, relative to spring ploughing, positive correlations were found with 0–4 week temperature on both soil types, suggesting that low early season temperatures may limit yields under ploughless tillage.  相似文献   

16.
17.
The poor physical, chemical and biological properties make Stagnic Luvisol highly susceptible to water erosion on sloping terrains. The objective of this paper is to estimate the effect of different tillage treatments and crops (maize, soybean, winter wheat, spring barley, oilseed rape) on water erosion. The highest erosion in investigation period (1995–2014) was recorded in the control treatment with fallow, followed by the treatment that involved ploughing and sowing up and down the slope. Significantly, lower soil losses were recorded in no-tillage and treatments with ploughing and sowing across the slope. Regarding the crops significantly higher soil losses were recorded in spring row crops (maize and soybean) compared to high-density winter crops (wheat and oilseed rape) and double crop (spring barley with soybean). In the studied period, an average loss of 46 mm of the plough layer was recorded in the control treatment, while in treatment with ploughing and sowing up and down the slope average annual soil loss was 10 mm. According to the results of this study no-tillage and tillage across the slope are recommended as tillage which preserves soil for the next generations in agro-ecological conditions of continental Croatia.  相似文献   

18.
In Scandinavia high losses of soil and particulate-bound phosphorus (PP) have been shown to occur from tine-cultivated and mouldboard-ploughed soils in clay soil areas, especially in relatively warm, wet winters. The omission in the autumn of primary tillage (not ploughing) and the maintenance of a continuous crop cover are generally used to control soil erosion. In Norway, ploughing and shallow cultivation of sloping fields in spring instead of ploughing in autumn have been shown to reduce particle transport by up to 89% on highly erodible soils. Particle erosion from clay soils can be reduced by 79% by direct drilling in spring compared with autumn ploughing. Field experiments in Scandinavia with ploughless tillage of clay loams and clay soils compared to conventional autumn ploughing usually show reductions in total P losses of 10–80% by both surface and subsurface runoff (lateral movements to drains). However, the effects of not ploughing during the autumn on losses of dissolved reactive P (DRP) are frequently negative, since the DRP losses without ploughing compared to conventional ploughing have increased up to fourfold in field experiments. In addition, a comprehensive Norwegian field experiment at a site with high erosion risk has shown that the proportion of DRP compared to total P was twice as high in runoff water after direct drilling compared to ploughing. Therefore, erosion control measures should be further evaluated for fields with an erosion risk since reduction in PP losses may be low and DRP losses still high. Ploughless tillage systems have potential side-effects, including an increased need for pesticides to control weeds [e.g. Elytrigia repens (L.) Desv. ex Nevski] and plant diseases (e.g. Fusarium spp.) harboured by crop residues on the soil surface. Overall, soil tillage systems should be appraised for their positive and negative environmental effects before they are widely used for all types of soil, management practice, climate and landscape.  相似文献   

19.
The structure of the soil in the arable layer is controlled by tillage, soil biota activities and weathering, whereas the structure below this layer is mainly the result of the activities of soil biota. Organic farmers tend to minimise the depth of the main tillage operation to encourage soil biota to create a soil structure with continuous biopores and a well crumbled topsoil. The best main tillage operation for preventive weed control, especially important in organic farming, is mouldboard ploughing. The shallow ploughing experiments described in this paper were conducted to ascertain the minimum ploughing depth for an ecologically accountable, sustainable tillage system with good weed control, good land qualities (in terms of workable days, aeration and soil moisture conditions) and finally with good yields. The “ecoplough” used for shallow ploughing was developed by Rumptstad Industries to meet the requirements of relatively shallow ploughing with good soil inversion for weed control. The plough has seven or eight bottoms for ploughing depths of 0.12–0.20 m, a working width of 2.1 m and a working speed of 1.7 m s−1. Its width is such that the tractor with wide low-pressure tyres runs on top of the land.

After using the plough for 6 years on Luvisols (>200 gkg−1<2 μm) in the IJsselmeer polders and on Luvisols (120–160 gkg−1<2 μm) in polders near the northern coast of The Netherlands, it was found that compared with conventional ploughing, shallow ploughing required less energy and labour and produced a relatively smooth surface. The latter facilitates the preparation of a seedbed consisting of relatively fine, strong, stable and moist aggregates. Organic matter, soil biota and nutrients were concentrated higher in the profile, influencing the workability of the soil, the growth of weeds and the growth of crops. Most of the yields were similar to yields after conventional ploughing, but weed populations increased when ploughing depth was <0.2 m. It was concluded that for organic farming on “active” soils (soils subject to shrink/swell with >200 g kg−1<2 μm), shallow ploughing seems to be the best reduced tillage system. It has several advantages. The main factor determining the minimum ploughing depth is control of weeds, especially of perennials.  相似文献   


20.
One of the key issues to increase soil productivity in the Sahel is to ensure water infiltration and storage in the soil. We hypothesised that reducing tillage from annual to biennial ploughing and the use of organic matter, like compost, would better sustain soil hydraulic properties. The study had the objective to propose sustainable soil fertility management techniques in the cotton–maize cropping systems. The effects of reduced tillage (RT) and annual ploughing (AP) combined with compost application (Co) on soil infiltration parameters were assessed on two soil types. Topsoil mean saturated hydraulic conductivities (Ks) were between 9 and 48 mm h−1 in the Luvisol, while in the Lixisol they were between 18 and 275 mm h−1. In the two soil types compost additions with reduced tillage or with annual ploughing had the largest effect on Ks. Soil hydraulic behaviour was in reasonable agreement with soil pore size distribution (mean values varied from 19.5 to 237 μm) modified by tillage frequency and organo-mineral fertilization. Already the first 3 years of this study showed that use of organic matter, improved soil infiltration characteristics when annual ploughing was used. Also biennial ploughing showed promising results and may be a useful strategy for smallholders to manage these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号