首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five soils from semi-arid regions of India and 5 soils from England were compared with regard to their ability to sorb Cd and Pb when mixed with sewage sludge and as unsludged controls. The application of sewage sludge at 150t ha?1 significantly increased the amount of Cd retained by the soils. The sorption data were statistically best-fit to the linearized Freundlich equation and the slopes of the isotherms were steeper with sludge application, indicating an increased affinity for Cd in the soil-sludge mixtures. A similar trend in Pb sorption was also observed for the English soils following the sludge treatment. In contrast, most of the Indian soils showed a decline in Pb sorption following the sludge application. Liming an acidic English soil to pH 7.0 was shown to increase its metal sorption capacity. The longer-term persistence of these observed effects of sewage sludge addition on metal sorption by soils was investigated in two sludge-soil mixtures maintained under experimental conditions for up to 450 days. Samples of these soils taken 1,60 and 450 days after the mixing with the sludge were batch equilibrated with Cd and Pb and it was found that the metal retention in both soils decreased significantly over this time period.  相似文献   

2.
Abstract

City sewage sludge was applied to the surface layer (0–10 cm) of two sandy soils, slightly calcareous with 8.9% CaCO3 and moderately calcareous with 26.7% CaCO3, at the rates of 0, 25, 50, 75, and 100 Mg ha‐1. The effects of sewage sludge and its rates on total soluble salts, pH of soils and concentration and movement of some heavy metals within soils were investigated. Soil samples were packed at bulk density of 1.5 g cm‐3 in PVC columns and incubated for 19 weeks. The results indicated that total soluble salts (EC) of the treated layer increased with increasing sewage sludge rates. Soluble salts also increased with an increase in soil depth for both soils. The pH values of treated layers in two soils decreased with increasing sewage sludge rates. With increasing sewage sludge rates, concentrations of heavy metals [cobalt (Co), nickel (Ni), cadmium (Cd), and leaf (Pb)] increased in the treated layers compared to the untreated layers and their mobility was restricted mostly to the upper 30‐cm depth. Movement of Co and Pb in both the soils was predominately limited up to a depth of 40 cm for Co and 5 cm for Pb below the treated soil layer. Nickel and Cd movement was mostly limited to a depth of 10 cm in slightly calcareous soil and 5 cm in moderately calcareous soil. Metal movement in the respective soils is ranked as Co>Ni=Cd>Pb and Co>Ni=Cd>Pb. The low concentrations of heavy metals and the restricted mobility with soil depth, suggest that this material may be used for agricultural crop production without any toxic effect on plants.  相似文献   

3.
Trace metals such as Pb, Zn, Cu, Ni, Cd and Fe were determined in sewage sludge produced at a sewage treatment plant in Bahrain (Tubli) and soils. The soils, both untreated and treated with the sludge, are used for agricultural purposes in Bahrain. The Trace-metals level showed the following range (μg g?1 dry weight); Pb, 242 to 609; Zn, 704 to 836, Cu, 329 to 512; Ni, 23 to 41; Cd, 1.8 to 3.9 and Fe, 1867 to 4284. The data show the degree to which untreated soils have already been contaminated with trace elements. The level of trace-elements found in sludge showed the following range (μg g?1 dry weight); Pb, 140 to 186; Zn, 597 to 836; Cu, 348 to 449; Ni, 47 to 53; Cd 5.7 to 9.2 and Fe, 5950 to 8520. Mean levels were generally close or lower than mean concentration reported in the United Kingdom and the United States for sludge. They were also lower than the suggested concentration limits for application of sludge on agricultural land, which is one of the most cost effective and attractive techniques for sludge disposal. Soils treated with this sludge (after 1 yr) were also analyzed and showed substantial enhancement of the available level of trace elements in the soil. This eventually will lead to an increase in the trace-element level in plants grown for human or animal consumption. This could have phytotoxic effects, and the possibility of toxic effects on live-stocks and human beings.  相似文献   

4.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

5.
A pot experiment was conducted to compare the behaviour and bioavailability of Cd and Pb from two soils mixed with sewage sludge at three rates (0, 50 and 150 t ha?1) and maintained at two contrasting ambient temperatures (15°C and 25°C) over a period of one year following the treatments. Ryegrass (Lolium perenne) accumulated Cd and Pb in the sewage sludge treated soils, although accumulation was significantly lower in the soils treated at the high rate (150 t ha?1) compared to the low rate (50 t ha?1). Ryegrass grown in the warm environment (25°C) accumulated significantly higher levels of Cd and Pb than that grown in cooler conditions (15°C). Samples of the soils spiked with nitrate salts of Cd and Pb at equivalent rates of metal loading resulted in the ryegrass accumulating much higher levels of both the metals than on the sludge treated soils. Metal uptake by the ryegrass from the sludge treatments increased over successive harvests while that from metal salt treatments decreased. The observed trend of increasing plant metal uptake over time coincided with a trend of decreasing pH in the sludge treatments. However, the concentrations of Cd and Pb extracted by DTPA failed to predict the changes in plant metal uptake. The importance of sewage sludge as both a source and a sink of pollutant metals and the trend of increasing bioavailability over time shown by this experiment are discussed.  相似文献   

6.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   

7.
The monitoring of heavy metal deposition onto soils surrounding old Pb-Zn mines in two locations in the UK has shown that relatively large amounts of Cd, Pb, Zn and, in one case, Cu are entering the soil annually. Small particles of ore minerals in windblown mine tailings were found to be contributing up to 1.46 g m?2 yr?1 of Pb, 1.41 g m?2 yr?1 of Zn and 0.027 g m?2 yr?1 of Cd. However, when these inputs from bulk deposition are compared with the concentrations of the same metals within the soil profiles it is apparent that relatively little long-term accumulation is occurring. Metals are being lost from the soil profiles, probably through leaching. A calculated relative retention parameter gave values that ranged from 0.01 to 0.17 for Cd, 0.11 to 0.19 for Zn, 0.32 to 0.63 for Cu and over 1 for Pb. These relative retention values were found to follow the order of electronegativity of the elements concerned: Pb>Cu>Zn>Cd. Distribution coefficient (Kd) values quantifying the adsorptive capacity of the mine soils for Cd and Pb showed marked differences for the two metals (12 to 69 cm3 g?1 for Cd and 14 to 126 cm3 g?1 for Pb) and may, in part, account for the two to one hundred-fold variation in the relative retention parameter for the different metals within these soils.  相似文献   

8.
Heavy metals in soil of a sewage sludge experimental field The total amounts of Zn, Cd, Pb, Cu, Cr and Ni were determined in different depths of soils which have obtained sewage sludges in amounts between 180 and 1620 dt dry matter/ha. The elements Zn, Cd. Pb and Cu have been most enriched in the first twenty cm of the soils. The contents of Zn, Cd and Pb in the depth of 40–60 cm also showed a significant increase. The treshold values for Zn and Cd in soils were almost attained respectivly slightly exceeded in the first twenty cm of the soil which has obtained 1440 dt dry matter sewage sludge per ha.  相似文献   

9.
Sewage sludge is increasingly used as an organic amendment to soil, especially to soil containing little organic matter. However, little is known about the utility of this organic amendment in the reclamation of soil polluted with heavy metals. We studied the effects of adding sewage sludge on enzymatic activities of a semi-arid soil contaminated with Cd or Ni in the laboratory. The activities of urease, phosphatase, β-glucosidase and protease-BAA were measured in soil containing concentrations of Cd or Ni in the range 0–8000 mg kg−1 soil, and their inhibition was compared with those of the enzymatic activities in the same soil amended with sewage sludge and containing similar concentrations of the heavy metals. The inhibition was tested for three different incubation times to determine changes in the effect of the heavy metals on hydrolase activity with the time elapsed after contamination. Ecological dose (ED) values of Cd and Ni were calculated from three mathematical models which described the inhibition of the enzymatic activities with increasing concentrations of heavy metal in the soil. For urease and phosphatase activities, the ED values for Cd and Ni increased after application of sewage sludge to soil, indicating a decrease in Cd and Ni toxicity. The other two enzymes (β-glucosidase and protease-BAA) were less sensitive to Cd or Ni contamination, and it was more difficult to determine whether addition of sewage sludge had affected the inhibition of these enzymes by the heavy metals.  相似文献   

10.
贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究   总被引:3,自引:1,他引:2  
张厦  宋静  高慧  张强  刘赣 《土壤》2017,49(2):328-336
农田土壤重金属的不同活性库分布和土壤-溶液分配模型能够提供重金属的生物有效性和浸出能力等信息,因而在风险评价和修复实践中非常重要。本研究采集毕节铅锌冶炼区30个历史污染农田土壤,同时在贵州省范围内采集5种类型背景土壤制成不同浓度Pb/Cd单一污染土壤;经3个月老化,分别测定由0.43 mol/L HNO_3、0.1 mol/L HCl和0.005 mol/L DTPA提取态表征的重金属反应活性库以及由0.01 mol/L CaCl_2提取态表征的直接有效库;分析铅锌冶炼区农田土壤Cd、Pb不同有效库的分布特征,建立土壤-溶液分配模型,并讨论土壤理化性质的影响。结果表明:历史污染土壤中Cd和Pb的直接有效库占全量比例分别比人工污染土壤低4倍和223倍,然而历史污染土壤Cd和Pb的反应活性库(0.43 mol/L HNO_3提取态)占全量比例要高于相应人工污染土壤中的比例。拓展Freundlich形式吸附方程能够准确描述各提取态表征的Cd和Pb活性库与土壤全量Cd和Pb的关系,尤其0.43 mol/L HNO_3提取方法能够克服土壤理化性质对土壤Cd和Pb提取的影响而与总量建立极显著的相关关系。pH依附性Freundlich吸附方程准确描述了Cd和Pb的总反应活性库分别与土壤溶液Cd和Pb的关系,对于Pb而言,还要考虑土壤有机质和有效磷的影响。本研究可为矿区农田土壤重金属污染评价、修复以及农田有效态标准的推导提供参考。  相似文献   

11.
Disposal of sewage sludge creates the potential for heavy metal accumulation in theenvironment. This study assessed nine soils currently used as Dedicated Land Disposal units(DLDs) for treatment and disposal of municipal sewage sludge in the vicinity of Sacramento,California. Adsorption characteristics of these soils for Cd, Cu, Ni, Zn, Pb, and Cr were studiedby simultaneously mixing these elements in the range of 0-50 µmol L-1 with sludgesupernatant and reacting with the soil using a soil:supernatant ratio of 1:30, pH = 4.5 or 6.5, andconstant ionic strength (0.01 M Na-acetate). The concentration of metals in the supernatant wasdetermined after a 24 hr equilibration period. Adsorption isotherms showed that metal sorptionwas linearly related to its concentration in the supernatant solution. The distribution coefficientKd (Kd = concentration on solid phase/concentration in solution phase) was computed as theslope of the sorption isotherm. The distribution coefficients were significantly correlated to soilorganic matter content for Ni, Cu, Cd, and Pb at pH 4.5 and for Ni, Cu, Zn, and Cd at pH 6.5.There was also a correlation between Kd and soil specific surface area but no relationship to othersoil properties such as CEC, clay content, and noncrystalline Fe and Al materials. Therefore, soilorganic carbon and surface area appear to be the most important soil properties influencing metaladsorption through formation of organo-metal complexes. The Kd values for all elements werehigher at pH 6.5 than at 4.5. Selectivity between metals resulted in the following metal affinitiesbased on their Kd values: Pb>Cu>Zn>Ni>Cd≈Cr at pH 4.5 andPb>Cu≈Zn>Cd>Ni>Cr at pH 6.5.  相似文献   

12.
肥料重金属含量状况及施肥对土壤和作物重金属富集的影响   总被引:61,自引:5,他引:56  
本文对肥料中重金属的含量状况以及施肥对土壤和农作物重金属累积影响的研究进展进行了系统分析和总结。过磷酸钙中锌(Zn)、 铜(Cu)、 镉(Cd)、 铅(Pb)含量高于氮肥、 钾肥和三元复合肥,有机-无机复混肥料中的Pb含量高于其他化肥。有机肥如畜禽粪便、 污泥及其堆肥中的重金属含量高于化肥,猪粪中的Cu、 Zn、 砷(As)、 Cd含量明显高于其他有机废弃物,鸡粪中铬(Cr)含量高;污泥和垃圾堆肥中Pb或汞(Hg)含量高。商品有机肥Zn、 Pb和镍(Ni)含量高于堆肥,Hg含量高于畜禽粪便。多数研究表明,氮磷钾配施与不施肥相比土壤Cd和Pb含量增加,施用有机肥比不施肥提高土壤Cu、 Zn、 Pb、 Cd含量。施用化肥对农作物重金属富集的影响不明确,而施用有机肥可提高作物可食部位Cu、 Zn、 Cd、 Pb 的含量,影响大小与有机肥种类、 用量、 土壤类型和pH以及作物种类等有很大关系。在今后的研究中应着重以下几个方面, 1)典型种植体系下土壤重金属的投入/产出平衡; 2)不同种植体系下长期不同施肥措施对土壤重金属含量、 有效性影响的动态趋势; 3)典型种植体系和施肥措施下土壤对重金属的最高承载年限; 4)现有施肥措施下肥料中重金属的最高限量标准。  相似文献   

13.
辽西滨海矿集区重金属污染与评价   总被引:12,自引:4,他引:12  
周秀艳  王恩德  王宏志 《土壤》2004,36(4):387-391
对辽西滨海矿集区的金属矿产开发区、冶炼厂以及污灌区土壤重金属污染状况进行研究与评价。结果表明,土壤重金属含量绝大多数高于土壤背景值,尤其 Cd、Pb、Zn 的污染状况更应该引起足够的重视。重金属总量及其有效态含量间存在着一定的伴生规律。按地累积指数法评价的结果是,金属矿山开采区重金属污染程度较为严重;根据次生相与原生相分布比法评价的结果是,金属冶炼厂附近人为污染程度更重。污染物主要来源于矿产开发、废岩、尾矿泥、选矿废水以及大气飘尘等。  相似文献   

14.
Purpose

While organic waste amendments can initially improve soil physicochemical properties, including nutritional benefits to plants and increased microorganism activity, long-term application of excessive amounts of organic wastes can cause accumulation of heavy metals (HMs). Thus, the current study examined the accumulation of HMs in agricultural soil profiles following organic waste application.

Materials and methods

Three common organic sludge, including municipal sewage sludge (MSS), industrial sewage sludge (ISS), and leather sludge (LS), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 25 and 50 t ha?1 year?1. Subsequently, when organic sludge amendments were ceased, the experimental plots were cultivated without any treatments for another 12 years (2001–2012) and the changes in HM concentrations along the soil depth profile were monitored together with soil pH, dissolved organic carbon (DOC), and dehydrogenase activity (DHA).

Results and discussion

Significant increases in Cu, Pb, and Zn concentrations were observed down to a depth of 80 cm in soils treated with ISS and LS, where sludge application also increased the levels of Cd, Cr, Pb, and Zn and their movement down the soil profile. However, with the exception of Cu, no significant changes in HM concentrations were observed following treatment with MSS. At a depth of 80 cm, soils which had received 25 and 50 t ha?1 LS showed, respectively, 4 and 14 times higher Cr levels than the control soil.

Conclusions

Organic sludge induced changes in soil pH and soil DOC concentration which were the key factors influencing HM movement and accumulation following organic sludge treatment.

  相似文献   

15.
Sewage sludge (SS) or sewage sludge compost (SSC) were applied to soil under controlled conditions, at rates of 0 or 200 Mg ha?1, to investigate changes in dissolved organic matter (DOM), humic acids (HA), and Pb and Zn sorption in the soil. Infrared spectroscopy, visible spectrophotometry, and sorption isotherms (mono-metal and competitive sorption systems) methods were used to assess the changer. The E4/E6 ratio (λ at 465 / λ at 665 nm) and the infrared spectra of DOM and HA showed aromatic behaviour in compost-soil (SSC-S); in contrast sewage sludge-soil (SS-S) showed an aliphatic behaviour. Application of either SS or SSC increased the Pb and Zn sorption capacity of soil. The Pb and Zn sorption increased in soil and soil mixtures with a competitive metal system. The metal affinity sequence for soil, SS-S, and SSC-S was compared with the predicted affinity sequences obtained from metal properties. Poor correspondence was observed between the metal affinity sequence and the metal affinity sequence predicted by ionic potential, indicating that metals bonding to soils were not predominantly electrostatic. An affinity sequence based on Pearson's theory agreed with the metal affinity sequences for soils. A statistical analysis showed that the bands assigned to esters (1080 cm?1) of DOM, phenolic OH (1420 cm?1), amide I (1650 cm?1), carboxyl and carbonyl C=O stretches of different nature, C=O stretch of aromatic esters, aliphatic cetone, aldehyde (1720 cm?1), ethers and esters (1230 cm?1), aliphatic alcohols (1125 cm?1), and lignin (1380 cm?1) of HA were correlated with Zn constants of Langmuir adsorption isotherm (P < 0.05).  相似文献   

16.
保定市污灌区土壤的Pb、Cd污染与土壤酶活性关系研究   总被引:58,自引:0,他引:58  
刘树庆 《土壤学报》1996,33(2):175-182
本文应用一元线性与非线性回归事寻优模型,着重研究了保定市污灌区土壤重金Pb、Cd污染与土壤酶活性之间的关系。结果表明,污灌区土壤Pb、Cd含量比清灌区有明显的增加,且均高于国内外重点城市的土壤背景值,已接近或达到轻度污染程度。  相似文献   

17.
Three diverse field-moist soil samples were treated with five sewage sludges (applied at five loading rates) containing high concentrations of heavy metals. Urease activity was assayed after 0, 3, 7, 14 and 30 days of incubation. Results showed that when soils were treated with the sewage sludges, urease activity was often inhibited at the lower loading rates (2.2 and 8.9mg sludge g?1 soil), but was enhanced substantially with the higher application rates (22.2, 44.4 and 100 mg sludge g?1 soil). Inhibition of urease activity in the sewage sludge amended-soils ranged from 4 to 37% (Domino soil), 8–27% (Hesperia soil), and 3–49% (Ramona soil) at various times of incubation. Inhibition of the enzyme activity was attributed to the presence of heavy metals in the sludges. The increased activity of urease in the sludge-amended soils at the highest application rate (100 mg sludge g?1 soil) ranged from 1.13 to 5.00-fold (Domino soil), 1.20–4.04-fold (Hesperia soil), and 1.13–5.40-fold (Ramona soil). Enhanced urease activity was believed to be due to the additional source of organic matter and nutrients supplied by the sludge which stimulated microbial activity and subsequent urease synthesis.  相似文献   

18.
A long-term field experiment was carried out in the experiment farm of the Sao Paulo State University, Brazil, to evaluate the phytoavailability of Zn, Cd and Pb in a Typic Eutrorthox soil treated with sewage sludge for nine consecutive years, using the sequential extraction and organic matter fractionation methods. During 2005-2006, maize (Zea mays L.) was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. The treatments consisted of four sewage sludge rates (in a dry basis) : 0.0 (control, with mineral fertilization), 45.0, 90.0 and 127.5 t ha-1, annually for nine years. Before maize sowing, the sewage sludge was manually applied to the soil and incorporated at 10 cm depth. Soil samples (0-20 cm layer) for Zn, Cd and Pb analysis were collected 60 days after sowing. The successive applications of sewage sludge to the soil did not affect heavy metal (Cd and Pb) fractions in the soil, with exception of Zn fractions. The Zn, Cd and Pb distributions in the soil were strongly associated with humin and residual fractions, which are characterized by stable chemical bonds. Zinc, Cd and Pb in the soil showed low phytoavailability after nine-year successive applications of sewage sludge to the soil.  相似文献   

19.
The survival of free-living rhizobia in soil is sensitive to elevated heavy metals in soil and can explain adverse effects of metals on symbiotic nitrogen fixation in soils. A survival experiment was set-up to derive critical cadmium (Cd) and zinc (Zn) concentrations in a range of field-contaminated soils in the absence of their host plant (Trifolium repens L.). Soils applied with metal salts or sewage sludge >10 years ago were sampled and were inoculated with Rhizobium leguminosarum bv. trifolii (108 cells g−1 soil) and incubated outdoors for up to 6 months. The most probable number (MPN) decreased 1-2 orders of magnitude in uncontaminated soils during the incubation. There was no significant effect of total metal concentrations on rhizobia survival in soils contaminated with Cd salts or with high Ni/Cd sewage sludge with highest Cd concentrations between 18 and 118 mg Cd kg−1. In contrast, survival was strongly affected in soils contaminated by sewage sludge, where Zn was the principal metal contaminant. Neither total Cd nor soil solution Cd was large enough to attribute these effects to Cd when compared with the soil series, where Cd salts had been applied. The MPN decreased at least one order of magnitude above total Zn concentrations of 233 mg Zn kg−1 (soil pH 5.6) and 876 mg Zn kg−1 (soil pH 6.3). The EC50s of log MPN were 204 and 604 mg Zn kg−1, respectively, and were lower than those for the symbiotic nitrogen fixation measured in the pot trial on the same soils (respectively 602 and 737 mg Zn kg−1). This study corroborates the evidence that symbiotic nitrogen fixation is affected by Zn in the field when Zn decreases the free-living population of rhizobia to below a critical threshold.  相似文献   

20.
上海市浦东新区蔬菜地土壤重金属含量及评价   总被引:16,自引:3,他引:16       下载免费PDF全文
本文对上海市浦东新区非污灌区4个蔬菜园艺场和2个污灌区土壤中的7种重金属进行总量分析,以国家土壤环境质量二级标准评价其单项和综合污染指数,结果表明:4个蔬菜园艺场各个重金属的两项指数均<1,评价结果均为优良,这4个蔬菜园艺场符合无公害食品生产的土壤环境要求。污灌区9个土壤样的Pb、Cr、As单项污染指数<1,Cd、Cu、Zn、Hg的单项和综合污染指数均>1,尤其是Cd污染最为严重,单项污染指数最高达6.6,综合污染指数4.84;所调查的9个土壤样中33%为中污染,67%为重污染,该污灌区蔬菜地土壤污染主要来源于上世纪70年代应用黄浦江疏浚底泥(吹泥),污水灌溉和乡镇企业的化工污染物扩散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号