首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to determine the effects of DMI restriction on diet digestion, ruminal fermentation, ME intake, and P retention by beef steers. In Exp. 1, twelve Angus x steers (average initial BW = 450 +/- 18 kg) were assigned randomly to 1 of 3 diets that were formulated to promote a 1.6-kg ADG at intake levels corresponding approximately to 100% (ad libitum, AL), 90% (IR90), or 80% (IR80) of ad libitum DMI. In Exp. 2, twelve crossbred steers (average initial BW = 445 +/- 56 kg) fitted with ruminal cannulae were randomly assigned to 1 of 2 diets that were formulated to promote a 1.6-kg ADG at AL or IR80. All diets delivered similar total NE, MP, Ca, and P per day. During both experiments, fecal DM output by IR80 was less (P /= 0.20) among treatments during both experiments, whereas P retention was similar (P >/= 0.46) among treatments during Exp. 1. Total VFA and the molar proportion of acetate of AL were greater (P 相似文献   

2.
Nine crossbred beef steers (344 +/- 26 kg) fitted with ruminal cannulas were used in a randomized complete block design to evaluate the effects of feeding frequency and feed intake fluctuation on total tract digestion, digesta kinetics, and ruminal fermentation profiles in limit-fed steers. In Period 1, steers were allotted randomly to one of four dietary treatments: 1) feed offered once daily at 0800; 2) feed offered once daily at 0800 with a 10% fluctuation in day-to-day feed intake; 3) feed offered twice daily at 0800 and 1700; and 4) feed offered twice daily at 0800 and 1700 with a 10% fluctuation in a day-to-day feed intake. In Period 2, steers were reallocated across treatments. The 90% concentrate diet was fed at 90% of the ad-libitum consumption by each steer. Chromium-EDTA and Yb-labeled steam-flaked corn were intraruminally infused at 0800 on d 1 and 3 and Co-EDTA and Er-labeled steam-flaked corn were infused on d 2 and 4 of the 4-d collection period. Ruminal samples were collected at 0, 3, 6, 9, 12, 15, 18, and 24 h after the 0800 feeding, and total feces were collected for 4 d. Total tract digestibilities of OM, N, and starch were lowest (fluctuation x frequency, P < .05) when feed was offered twice daily with a 10% fluctuation in intake. Ruminal fluid volume and passage rate were not affected (P > .10) by feeding frequency or intake fluctuation. A frequency x fluctuation x sampling time interaction occurred (P < .01) for ruminal pH. Steers fed a constant amount of feed once daily had higher (P < .05) ruminal pH at 0, 3, 18, and 24 h than steers fed once daily with a 10% fluctuation in feed intake. Total VFA concentration was greater (P < .01) at 9 h after the 0800 feeding when feed was offered once vs twice daily. Feeding twice daily increased (P < .05) the molar proportion of acetate and decreased (P < .05) the molar proportion of propionate. Increasing feeding frequency resulted in a more stable ruminal environment; however, the increased acetate:propionate ratio with twice-daily feeding might result in lower efficiency of energy utilization by limit-fed steers.  相似文献   

3.
Twelve ruminally cannulated steers (average initial BW 357 kg) were allotted to four treatments (three steers per treatment) in a replicated 4 x 4 Latin square design with 21-d periods (12 d for adaptation and 9 d for collection) to compare the effects of protein supplements that differed in percentage of CP and feeding level on low-quality forage utilization. Treatments were 1) control (C), ad libitum access to 5.6% CP prairie hay, 2) C +600 g of DM.steer-1.d-1 of a 43% CP supplement based on cottonseed meal (PS), 3) C + 1,200 g of DM.steer-1.d-1 of a 22% CP supplement based on corn grain and cottonseed meal (GS), and 4) C + 600 g of DM.steer-1.d-1 of a 22% CP supplement based on corn grain and cottonseed meal (LS). Ruminal total VFA concentrations were increased 8% (P less than .07) by PS vs GS 1 h after supplementation. Among supplemented steers, ruminal acetate (mol/100 mol) was decreased 1.2 mol/100 (P less than .03) by GS vs PS and LS; however, supplementation did not affect (P greater than .10) acetate proportions compared with C. Neither propionate nor butyrate was affected (P greater than .10) by supplementation, but among supplemented steers, butyrate proportions were 8% greater (P less than .03) for GS than for PS and 5% less (P less than .10) for LS than for the average of GS and PS. Ruminal pH did not differ (P greater than .10) among treatments. Ruminal ammonia concentrations were increased 1.4 to 4.8 mg/100 mL (P less than .07) by supplementation and typically were less for LS than for PS and GS at most sampling times. Prairie hay DMI (average = 16.3 g/kg BW) was not affected (P greater than .10) by supplementation. Fluid dilution rate was 8% faster (P less than .01) when steers were supplemented than when they were not fed supplement, and fluid dilution rate was increased 4% (P less than .04) by GS compared with PS. Particulate digesta passage rate was not affected (P greater than .10) by treatment, but total tract retention time was decreased (P less than .01) 10% by supplementation. Extent and rate of prairie hay NDF digestion in situ were not greatly affected by supplementation, but in situ disappearance of supplement N was 6 to 10 percentage units less (P less than .06) for GS than for PS and 2 to 6 percentage units less for LS than for the average of PS and GS supplements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Four ruminally and duodenally cannulated crossbred beef steers (397+/-55 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of increasing level of field pea supplementation on intake, digestion, microbial efficiency, ruminal fermentation, and in situ disappearance in steers fed moderate-quality (8.0% CP, DM basis) grass hay. Basal diets, offered ad libitum twice daily, consisted of chopped (15.2-cm screen) grass hay. Supplements were 0, 0.81, 1.62, and 2.43 kg (DM basis) per steer daily of rolled field pea (23.4% CP, DM basis) offered in equal proportions twice daily. Steers were adapted to diets on d 1 to 9; on d 10 to 14, DMI were measured. Field pea and grass hay were incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to evaluate the effects of increasing field pea level. Total DMI and OMI increased quadratically (P = 0.09), whereas forage DMI decreased quadratically (P = 0.09) with increasing field pea supplementation. There was a cubic effect (P < 0.001) for ruminal pH. Ruminal (P = 0.02) and apparent total-tract (P = 0.09) NDF disappearance decreased linearly with increasing field pea supplementation. Total ruminal VFA concentrations responded cubically (P = 0.008). Bacterial N flow (P = 0.002) and true ruminal N disappearance (P = 0.003) increased linearly, and apparent total-tract N disappearance increased quadratically (P = 0.09) with increasing field pea supplementation. No treatment effects were observed for ruminal DM fill (P = 0.82), true ruminal OM disappearance (P = 0.38), apparent intestinal OM digestion (P = 0.50), ruminal ADF disappearance (P = 0.17), apparent total-tract ADF disappearance (P = 0.35), or in situ DM disappearance of forage (P = 0.33). Because of effects on forage intake and ruminal pH, field peas seem to act like cereal grain supplements when used as supplements for forage-based diets. Supplementing field peas seems to effectively increase OM and N intakes of moderate-quality grass hay diets.  相似文献   

5.
Effects of increasing level of field pea (variety: Profi) on intake, digestion, microbial efficiency, and ruminal fermentation were evaluated in beef steers fed growing diets. Four ruminally and duodenally cannulated crossbred beef steers (367+/-48 kg initial BW) were used in a 4 x 4 Latin square. The control diet consisted of 50% corn, 23% corn silage, 23% alfalfa hay, and 4% supplement (DM basis). Treatments were field pea replacing corn at 0, 33, 67, or 100%. Diets were formulated to contain a minimum of 12% CP, 0.62% Ca, 0.3% P, and 0.8% K (DM basis). Each period was 14 d long. Steers were adapted to the diets for 9 d. On d 10 to 14, intakes were measured. Field pea was incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Bags were inserted in reverse order, and all bags were removed at 0 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to compare treatments. There were no differences in DMI (12.46 kg/d, 3.16% BW; P > 0.46). Ruminal dry matter fill (P = 0.02) and mean ruminal pH (P = 0.009) decreased linearly with increasing field pea level. Ruminal ammonia-N (P < 0.001) and total VFA concentrations (P = 0.01) increased linearly with increasing field pea level. Total-tract disappearance of OM (P = 0.03), N (P = 0.01), NDF (P = 0.02), and ADF (P = 0.05) increased linearly with an increasing field pea level. There were no differences in total-tract disappearance of starch (P = 0.35). True ruminal N disappearance increased linearly (P < 0.001) with increasing field pea level. There were no differences in ruminal disappearance of OM (P = 0.79), starch (P = 0.77), NDF (P = 0.21), or ADF (P = 0.77). Treatment did not affect microbial efficiency (P = 0.27). Field pea is a highly digestible, nutrient-dense legume grain that ferments rapidly in the rumen. Because of their relatively high level of protein, including field peas in growing diets will decrease the need for protein supplementation. Based on these data, it seems that field pea is a suitable substitute for corn in growing diets.  相似文献   

6.
Twelve 18-mo-old Debouillet ewes were used to determine the effect of ruminal glucose infusion on DMI, on urinary ammonium (NH4+) and urea N (UUN) concentrations, and on serum metabolite and hormone profiles. Ewes were limit-fed a 90% concentrate diet for 30 d, stratified by BW into three groups (average BW = 82.6+/-1.1 kg), and assigned randomly to receive 0, 5, or 10 g of glucose/kg of BW via esophageal intubation. Urine was collected hourly for 12 h and blood (jugular venipuncture) at 30-min intervals for 12 h. After 12 h, ewes were housed individually, allowed free access to the diet, and DMI was recorded for 5 d. Venous blood pH averaged 7.49, 7.48, and 7.48 at 0 h and decreased (linear [L], P < .01) at 12 h (7.41, 7.36, and 7.26) with increasing glucose. Serum glucose increased (L, P = .06) at 3 and 6 h. Serum L(+)-lactate increased (L, P = .08) at 3, 6, and 9 h, whereas serum D(-)-lactate increased linearly (P = .09) at 6 and 9 h and quadratically (P < .10) at 12 h. After the glucose challenge, DMI decreased (L, P < .05). Urinary pH and NH4+ were not influenced by glucose infusion; however, UUN increased at 3 (quadratic [Q], P < .05), 4, 5, 6 (L, P = .03), and 7 h (Q, P < .05) and decreased at 11 and 12 h (L, P = .09). As glucose infusion increased, serum creatinine increased at 9 (L, P < .01) and 12 h (Q, P = .02). Generally, serum Na and P increased (P = .09), whereas K decreased (P < .05), with glucose infusion. Lactate dehydrogenase activity increased with glucose infusion (Q, P < .10) at 3, 6, 9, and 12 h. Increasing glucose infusion increased serum globulin (Q, P = .06), albumin, and total protein (L, P = .08). Serum prolactin and vasopressin were not influenced (P = .22) by glucose infusion. Serum insulin and aldosterone increased quadratically (P = .08), whereas serum growth hormone decreased linearly (P = .08) as a result of increasing glucose infusion. Results suggest that UUN, serum insulin, aldosterone, and several serum constituents may serve as markers of organic acid load in ruminants fed high-concentrate diets.  相似文献   

7.
Concentrated separator by-product (CSB) is produced when beet molasses goes through an industrial desugaring process. To investigate the nutritional value of CSB as a supplement for grass hay diets (12.5% CP; DM basis), 4 ruminally and duodenally cannulated beef steers (332 +/- 2.3 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial arrangement of treatments. Factors were intake level: ad libitum (AL) vs. restricted (RE; 1.25% of BW, DM basis) and dietary CSB addition (0 vs. 10%; DM basis). Experimental periods were 21 d in length, with the last 7 d used for collections. By design, intakes of both DM and OM (g/kg of BW) were greater (P < 0.01; 18.8 vs. 13.1 +/- 0.69 and 16.8 vs. 11.7 +/- 0.62, respectively) for animals consuming AL compared with RE diets. Main effect means for intake were not affected by CSB (P = 0.59). However, within AL-fed steers, CSB tended (P = 0.12) to improve DMI (6,018 vs. 6,585 +/- 185 g for 0 and 10% CSB, respectively). Feeding CSB resulted in similar total tract DM and OM digestion compared with controls (P = 0.50 and 0.87, respectively). There were no effects of CSB on apparent total tract NDF (P = 0.27) or ADF (P = 0.35) digestion; however, apparent N absorption increased (P = 0.10) with CSB addition. Total tract NDF, ADF, or N digestion coefficients were not different between AL- and RE-fed steers. Nitrogen intake (P = 0.02), total duodenal N flow (P = 0.02), and feed N escaping to the small intestine (P = 0.02) were increased with CSB addition. Microbial efficiency was unaffected by treatment (P = 0.17). Supplementation with CSB increased the rate of DM disappearance (P = 0.001; 4.9 vs. 6.9 +/- 0.33 %/h). Restricted intake increased the rate of in situ DM disappearance (P = 0.03; 6.4 vs. 5.3 +/- 0.33 %/h) compared with AL-fed steers. Ruminal DM fill was greater (P = 0.01) in AL compared with RE. Total VFA concentrations were greater (P = 0.04) for CSB compared with controls; however, ammonia concentrations were reduced (P = 0.03) with CSB addition. At different levels of dietary intake, supplementing medium-quality forage with 10% CSB increased N intake, small intestinal protein supply, and total ruminal VFA.  相似文献   

8.
为了解肉牛发生亚急性瘤胃酸中毒时血液学和相应生化指标的变化,对瘤胃液pH在5.2~5.5、5.6~5.8和5.9~6.8之间的24头肉牛进行了血液学及相应生化指标的分析.结果表明:随着pH值的降低,血液中红细胞(RBC)数量、血红蛋白(Hb)浓度、红细胞压积(PCV)均显著增加;白细胞(WBC)总数上升,白细胞分类(WBC-DC)也有相应的变化,嗜酸性粒细胞和淋巴细胞呈下降趋势,中性杆状核粒细胞和中性分叶核粒细胞呈上升趋势,单核细胞略微升高;血气指标pO2显著增加,pCO2、HCO3-浓度显著减少;生化指标Ca2+、Cl-显著减少,Na+和尿素氮显著增加,K+差异不显著.肉牛发生轻度和中度亚急性瘤胃酸中毒时,pCO2以及HCO3-含量显著降低,表明机体碱储备不足,缓冲能力下降,存在代偿性酸中毒;同时根据水合状态和血象指标,表明亚急性瘤胃酸中毒病牛存在轻度脱水和炎性反应.  相似文献   

9.
10.
Two trials evaluated the effects of a monensin ruminal delivery device (MRDD) on steers grazing winter wheat pasture. In Trial 1, 60 Hereford steers (initial wt 238.5 kg) grazed a 21.9-ha paddock of Vona-variety winter wheat for 112 d. Steers were assigned to either MRDD or control (C) treatments in a randomized complete block design. In Trial 2, eight ruminally cannulated steers (avg wt 234.4 kg) grazed a 2.4-ha paddock of Vona-variety wheat and were assigned randomly to either MRDD or C treatments. Three 11-d collection periods were conducted during early February, early March and early April. Chromic oxide was dosed to determine fecal output, and ruminal samples were collected on d 6 of each period. Nylon bags containing ground wheat forage were incubated ruminally beginning on d 8. In Trial 1, steers with MRDD tended (P less than .11) to gain more weight than C steers (.44 vs .38 kg/d). In Trial 2, wheat forage intake, in situ DM disappearance, ruminal pH, ruminal ammonia concentrations and ruminal proportions of acetate and total VFA concentrations were not affected by treatment. Ruminal proportions of propionate were increased (P less than .05) slightly by MRDD (20.3 and 19.2 mol/100 mol for MRDD and C, respectively). Butyrate proportions in ruminal samples were decreased (P less than .05) by MRDD during March but not in other sampling periods. Ruminal fluid chlorophyll concentration was less (P less than .05) for MRDD-treated vs C steers during early March but was greater (P less than .10) for MRDD-treated steers during early April. The MRDD shows promise as a method of supplying monensin to cattle grazing winter wheat forage.  相似文献   

11.
Corn silage with high NDF concentration has the potential to reduce DMI because it has a greater filling effect in the rumen than low-NDF corn silage. Our objective was to determine whether ruminal fill influences DMI to the same extent with low- or high-NDF corn silage-based diets. Eight ruminally cannulated Holstein steers (198 +/- 13 kg) were randomly assigned to a 2 x 2 factorial arrangement of treatments in a replicated 4 x 4 Latin square design with 16-d periods. Treatments were diets containing corn silage from a normal hybrid (low-fiber; LF) or its male-sterile isogenic counterpart (high-fiber; HF), offered for ad libitum consumption to steers with or without rumen inert bulk (RIB). The LF and HF diets contained 33.8 and 50.8% dietary NDF, respectively. Rumen inert bulk was added at 25% of pretrial ruminal volume in the form of plastic-coated tennis balls filled with sand to achieve a specific gravity of 1.1 and a total volume of 7.5 L. No fiber level x inert bulk interactions were detected for DMI or NDF intake (P > 0.10), suggesting that DMI was limited to the same extent by physical fill at both levels of dietary fiber. Addition of RIB decreased DMI by an average of 10.7%, which was 65.5 g/L of added bulk. The HF diet depressed DMI by an average of 15.5%, increased NDF intake 27.1%, and reduced ruminal NDF turnover time by 21.0% compared to the LF diet (P < 0.01), with no effect on ruminal volume or amount of NDF in the rumen (P > 0.10). Addition of RIB also reduced ruminal NDF turnover time and amount of NDF in the rumen (11.8% and 20.7%, respectively; P < 0.01), with no change in ruminal digesta volume (P > 0.10). The HF treatment decreased digestibility of DM and GE (5.5 and 5.7%, respectively; P < 0.01) but increased NDF digestibility (10.4%; P < 0.01) compared to LF. Rumen inert bulk had no effect on digestibility of DM, NDF, or GE (P > 0.10). The lack of reduction in digesta volume with addition of inert fill suggests that DMI of light-weight steers receiving corn silage-based diets within a wide range of NDF concentrations was not regulated by ruminal distension alone.  相似文献   

12.
Prairie hay supplemented with various amounts of corn and soybean meal was fed to steers in two experiments. Effects of supplementation on hay OM intake, digestion, and ruminal fermentation and kinetics were measured. A preliminary study was conducted to attain accurate values for OM intake and digestibility of prairie hay to be used in ration formulation using the NRC (1996) level 1 model. Ten steers (284 +/- 9 kg) given ad libitum access to chopped prairie hay (75% NDF, 6% CP) were supplemented with dry-rolled corn (0.75% of BW/d) plus soybean meal (0.25% of BW/d). Hay OM intake was 1.85% of BW and hay OM digestibility was 48%. Based on results from the preliminary study, eight ruminally cannulated beef steers (317 +/- 25 kg) received a sequence of eight different supplementation combinations (2 x 4 factorial arrangement of treatments). These supplements consisted of dry-rolled corn at either 0 or 0.75% of BW (DM basis) daily combined with one of four amounts of added soybean meal to provide between 0 and 1.3 g of degradable intake protein (DIP)/kg of BW. After supplements had been fed for 10 d, feces were collected for 4 d. Intake of hay and total OM increased quadratically (P < 0.01) in response to added DIP with or without supplemental corn. Hay OM digestibility increased quadratically (P = 0.03) as DIP was added when corn was fed in the supplement. Intake of digestible OM was greater (P < 0.01) with than without corn supplementation. Increasing DIP increased (P < 0.01) digestible OM intake regardless of whether corn was fed. Inadequate ruminally degraded protein in grain-based supplements decreased forage intake, digestibility, and energy intake of cattle fed low-quality prairie hay. Providing adequate supplemental DIP to meet total diet DIP needs seemed to overcome negative associative effects typically found from supplementing low-quality forages with large quantities of low-protein, high-starch feeds.  相似文献   

13.
Eastern gamagrass (Tripsacum dactyloides [L.] L.) has attracted attention as a forage crop, but information on its use is lacking. This 2-yr study compared diet quality, ingestive mastication, and ADG by steers grazing eastern gamagrass (GG), flaccidgrass (Pennisetum flaccidum Griseb.), and Tifton 44 bermudagrass (Cynodon dactylon [L.] Pers.). The design was a randomized complete block with two agronomic replicates. The diet selected by steers from GG in May did not differ from the diet selected by steers from flaccidgrass (FG) for IVDMD (77.3%), NDF (44.0%), CP (19.5%), and mean and median particle sizes of the ingesta (1.8 and 1.4 mm). In July, GG diets had three percentage units less IVDMD (P less than .05), 8.4 percentage units more NDF (P less than .05), and 4.5 percentage units less CP (P = .07) than the mean of FG and bermudagrass (BG). The canopy (July) of GG had the greatest proportion of its DM as leaf (59 vs 26% for FG and 22% for BG) and the least proportion as stem (25 vs 40% for FG and 59% for BG). Mean particle size (millimeters) of masticates differed (P = .05) among forages with GG greatest (2.2), followed by FG (1.6), and BG particles were smallest (1.2). Proportion of large (greater than or equal to 2.8 mm), medium (less than 2.8 greater than or equal to .5 mm), and small (less than .5 mm) particles of the masticate DM, and their IVDMD and NDF concentration, interacted with species (P less than .05). Gamagrass masticate had the greatest proportion (28%) of large particles and BG the greatest proportion (23%) of small particles. The least IVDMD occurred for large particles of BG (62.5%) and small particles of GG (63.8%). Digesta kinetics did not differ among species. Characteristics of GG yielded steer ADG of .82 vs .67 kg for FG and .30 kg for BG (P = .05).  相似文献   

14.

The objective of this study was to evaluate blood levels of various hormones and compounds related to energy metabolism in cows with subacute ruminal acidosis (SARA). We investigated 11 lactating cows presumed to have SARA based on duration of ruminal pH <5.6 and reticulum pH <6.3 in 2015–2016. Kraft pulp (KP) was used to supplement feed of 7 of the cows studied in an effort to reduce SARA. We continuously monitored ruminal pH and measured blood concentrations of hormones and metabolites related to energy metabolism. Blood measurements included glucose (GLU), total cholesterol (TC), free fatty acid (FFA), insulin, adiponectin (ADN), malate dehydrogenase (MDH), and lactate dehydrogenase (LDH). Additionally, we analyzed milk data (milk yield, milk fat percentage, milk protein percentage, milk urea nitrogen, and protein fat ratio) and reproduction data. The results demonstrated that ADN levels at 4 weeks post-parturition correlated with the total amount of time that the ruminal or reticulum fluid pH was under the threshold during 1 week post-parturition, as well as the numbers of days the cows were diagnosed with SARA (SARA-positive days) up to 30 days post-parturition. SARA-positive days in 2016 were higher than those in 2015. In both years, numbers of SARA-positive days for cows supplemented with KP were lower than those for cows without KP. Increased ADN levels may be a compensatory reaction to frequent SARA which modulates the inflammatory response against high LPS levels and improves insulin resistance caused by LPS. ADN may serve as an estimative index for SARA.

  相似文献   

15.
Three trials were conducted to evaluate the effects of degree of barley and corn processing on performance and digestion characteristics of steers fed growing diets. Trial 1 used 14 (328 +/- 43 kg initial BW) Holstein steers fitted with ruminal, duodenal, and ileal cannulas in a completely randomized design to evaluate intake, site of digestion, and ruminal fermentation. Treatments consisted of coarsely rolled barley (2,770 microm), moderately rolled barley (2,127 microm), and finely rolled barley (1,385 microm). Trial 2 used 141 crossbred beef steers (319 +/- 5.5 kg initial BW; 441 +/- 5.5 kg final BW) fed for 84 d in a 2 x 2 factorial arrangement to evaluate the effects of grain source (barley or corn) and extent of processing (coarse or fine) on steer performance. Trial 3 investigated four degrees of grain processing in barley-based growing diets and used 143 crossbred steers (277 +/- 19 kg initial BW; 396 +/- 19 kg final BW) fed for 93 d. Treatments were coarsely, moderately, and finely rolled barley and a mixture of coarsely and finely rolled barley to approximate moderately rolled barley. In Trial 1, total tract digestibilities of OM, CP, NDF, and ADF were not affected (P > or = 0.10) by barley processing; however, total tract starch digestibility increased linearly (P < 0.05), and fecal starch output decreased linearly (P < 0.05) with finer barley processing. In situ DM, CP, starch disappearance rate, starch soluble fraction, and extent of starch digestion increased linearly (P < 0.05) with finer processing. In Trial 2, final BW and ADG were not affected by degree of processing or type of grain (P > or = 0.13). Steers fed corn had greater DMI (P = 0.05) than those fed barley. In Trial 3, DMI decreased linearly with finer degree of processing (P = 0.003). Gain efficiency, apparent dietary NEm, and apparent dietary NEg increased (P < 0.001) with increased degree of processing. Finer processing of barley improved characteristics of starch digestion and feed efficiency, but finer processing of corn did not improve animal performance in medium-concentrate, growing diets.  相似文献   

16.
The effects when adding cyclodextrin‐iodopropane complex (CD‐IP) to a diet, on ruminal fermentation and microbes, digestibility, blood metabolites and methane production, were evaluated using four Holstein steers in a cross‐over design. The steers were fed Sudangrass hay plus concentrate mixture at a ratio 1.5:1, and CD‐IP (1% of dry matter) was given twice daily by mixing with concentrate mixture. Rumen and blood samples were collected at 0, 2, and 5 h after morning dosing. Ruminal pH and numbers of protozoa were unaffected by CD‐IP treatment. Ruminal molar proportion of acetate was decreased (P < 0.05), and propionate was increased (P < 0.01) at 2 h after CD‐IP dosing. Proportion of butyrate was increased (P < 0.05) and ammonia‐N was decreased (P < 0.05) at 2 and 5 h after CD‐IP dosing. Adding CD‐IP had no effect on the feed intake and digestion of nutrients. Plasma glucose was increased and urea‐N was decreased (P < 0.05) at 2 and 5 h after CD‐IP dosing. Methane production was decreased (P < 0.05) by approximately 18% in the treatment steers. Numbers of methanogenic bacteria were decreased (P < 0.05), while total viable counts, cellulolytic, sulfate reducing and acetogenic bacteria were unaffected. The present results are the first to show that CD‐IP can partially inhibit in vivo ruminal methanogenesis without adverse effects on digestion of nutrients.  相似文献   

17.
本试验采用3×3因子试验设计,应用体外法研究可发酵糖、尿素及其互作对瘤胃发酵及干物质降解率(DMD)的影响.可发酵糖的添加量分别为0、1.5、3 g/L发酵液;尿素的添加量为底物DM的0、0.5%、1%.结果表明:(1)随可发酵糖添加量的增加,显著降低发酵液的pH值、发酵残渣DMD(P<0.05),显著增加细菌氮产量(P<0.05),而氨氮(NH3-N)浓度在可发酵糖添加量为1.5 g/L时最高.(2)随尿素添加量的增加,提高发酵液的pH值、NH3-N浓度(P<0.01)、细菌氮产量(P>0.05),而DMD在尿素添加量为0.5%时降低,1%时达到最高.(3)可发酵糖与尿素的互作对发酵液pH值、NH3-N浓度及细菌氮水平的影响不显著(P>0.05),但极显著影响DMD(P<0.01).  相似文献   

18.
Grazing trials were conducted for 2 yr using weanling Brahman crossbred beef steers to evaluate graded levels of salinomycin (0, 50, 100 or 150 mg. head-1.d-1) for 161 d and to evaluate salinomycin in a free-choice mineral supplement (99 d). The 40 and 48 steers in trials 1 and 2 had average initial weights of 198 and 285 kg, respectively. In trial 1, steers were group-fed to consume either 0, 50, 100 or 150 mg of salinomycin.head-1.d-1 in .9 kg ground corn while grazing bermudagrass pastures. Both linear (P less than .01) and quadratic (P less than .05) effects were observed for steer performance as salinomycin level increased from 0 to 150 mg.head-1.d-1. Linear increases (P less than .01) in ruminal NH3-N (mg/100 ml) and in the molar proportion of propionate and decreases (P less than .01) in butyrate and acetate/propionate were detected. In trial 2, mineral supplements with and without salinomycin were fed free-choice to steers on bermudagrass pasture. The mean salinomycin intake of 38 mg.head-1.d-1 was lower than anticipated as a result of the instability of salinomycin in the mineral supplement and the slightly lower intake (65 g/d) than anticipated (75 g/d). Performance of steers was not influenced by salinomycin supplementation in trial 2. The ionophore salinomycin at intakes over 50 mg.head-1.d-1 appears to increase the performance of steers grazing bermudagrass pasture.  相似文献   

19.
Objectives of this research were to evaluate effects of increasing level of barley supplementation on forage intake, digestibility, and ruminal fermentation in beef steers fed medium-quality forage. Four crossbred ruminally cannulated steers (average initial BW = 200 +/- 10 kg) were used in a 4 x 4 Latin square design. Chopped (5 cm) grass hay (10% CP) was offered ad libitum with one of four supplements. Supplements included 0, 0.8, 1.6, or 2.4 kg of barley (DM basis) and were fed in two equal portions at 0700 and 1600. Supplements were fed at levels to provide for equal intake of supplemental protein with the addition of soybean meal. Forage intake (kg and g/kg BW) decreased linearly (P < 0.01), and total intake increased linearly (P < 0.03) with increasing level of barley supplementation. Digestible OM intake (g/kg BW) increased linearly (P < 0.01) with increasing level of barley supplementation; however, the majority of this response was observed with 0.8 kg of barley supplementation. Treatments had only minor effects on ruminal pH, with decreases occurring at 15 h after feeding in steers receiving 2.4 kg of barley supplementation. Total-tract digestibility of DM, OM, NDF, and CP were increased (P < 0.04) with barley supplementation; however, ADF digestibility was decreased by 1.6 and 2.4 kg of barley supplementation compared with controls. Ruminal ammonia concentrations decreased linearly (P < 0.01) at 1 through 15 h after feeding. Total ruminal VFA concentrations were not altered by dietary treatments. Ruminal proportions of acetate and butyrate decreased (P < 0.10) in response to supplementation. Rate, lag, and extent (72 h) of in situ forage degradability were unaffected by treatment. Generally, these data are interpreted to indicate that increasing levels of barley supplementation decrease forage intake, increase DM, OM, and NDF digestibility, and indicate alteration of the ruminal environment and fermentation patterns.  相似文献   

20.
Two hundred eighty-eight beef steers (British x Continental x Brahman) were fed a 90% concentrate diet containing either no ionophore (control), laidlomycin propionate at either 6 or 12 mg/kg of dietary DM, or monensin plus tylosin (31 and 12 mg/kg of DM, respectively). Neither of the two levels of laidlomycin propionate nor monensin plus tylosin affected (P greater than .10) ADG or feed:gain ratio. Monensin plus tylosin reduced (P less than .01) daily DMI for the 161-d trial period compared with the other three treatments. Laidlomycin propionate at 6 mg/kg increased (P less than .05) DMI relative to the control, laidlomycin propionate at 12 mg/kg, and monensin plus tylosin diets during the 2nd wk of the trial and from d 57 to 84. Treatments did not affect carcass measurements. In a second experiment, 12 ruminally cannulated steers were fed diets containing no ionophore or laidlomycin propionate at either 6 or 12 mg/kg of DM. Samples were obtained for two consecutive days while the dietary concentrate level was 75%, after which the diet was switched abruptly to 90% concentrate, and samples were collected on several days during a 21-d period. The rate at which steers consumed their daily allotment of feed was not altered markedly by laidlomycin propionate. Likewise, laidlomycin propionate did not affect total ruminal VFA concentrations or proportions. Ruminal concentrations of D-lactate were reduced (P less than .10) by 6 but not by 12 mg/kg of laidlomycin propionate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号