首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
柑橘黄龙病蒸汽快速热处理升温特性及田间防治效果   总被引:1,自引:1,他引:0  
为了深入了解柑橘黄龙病湿热蒸汽快速热处理时韧皮部的升温特性,针对柑橘黄龙病细菌位于韧皮部的特点,构建了室内和田间试验装置,主要包含加热罩、湿热蒸汽发生装置、树体表面和韧皮部温度采集装置。通过比较热处理前后韧皮部温度变化,作物恢复程度差异和黄龙病病菌浓度变化,分析获取湿热蒸汽快速热处理合理参数组合。室内试验选用1 a生柑橘树,研究了树体表面温度为55~65℃,蒸汽输送压力为0.015和0.03 MPa,不保温和保温处理30 s对于韧皮部升温和作物恢复的影响。试验结果:树体表面温度为65℃及以上时,作物都因热损而死亡,采用60℃作为热处理温度阈值,有利于韧皮部温度提高。较高的蒸汽输送压力(如0.03 MPa),虽有利于作物所在环境温度的快速升高,但其作用于韧皮部的传热时间短,韧皮部温度并没有得到有效提高,而加热后的30 s保温处理普遍有利于韧皮部温度提高。田间试验选用9 a生柑橘树,研究了树体表面温度为60℃,蒸汽输送压力为0.03 MPa,保温时间30 s的组合参数对于黄龙病病菌浓度和作物恢复的影响。试验结果:4棵染病柑橘树经过热处理,其中2棵恢复到未染病状态,2棵病菌浓度降低。2棵未经过热处理的染病柑橘树,其病菌浓度没有变化。室内和田间试验结果表明:湿热蒸汽快速热处理能有效促进染病柑橘树的生命力恢复,明显降低病菌浓度;对于柑橘黄龙病田间湿热蒸汽快速热处理,不能只关注树体表面温度的快速提高,而应关注韧皮部温度的有效提高;热处理应考虑直接蒸汽加热和关闭蒸汽后保温的综合影响,为了增加韧皮部传热,应尽量选取较高升温上限和较低输送压力。研究结果为柑橘黄龙病田间热处理防治提供参考。  相似文献   

2.
为探索黄龙病防治途径,开展微波热处理对黄龙病的防控效果研究。该研究搭建了微波热处理平台,对长春花微波热处理参数(转盘转速、单个磁控管的微波功率、磁控管数量)进行优化,并用优化后的参数组合对感病长春花进行热处理,处理后90 d内跟踪检测长春花叶片中黄龙病菌的浓度、淀粉和类黄酮的含量。结果表明,长春花微波热处理的最优参数组合为单个磁控管的微波功率150 W、3个磁控管、转速15 r/min;热处理90 d后,感病长春花叶片中的黄龙病菌Ct值(阈值循环数,该值低于32时为阳性)由阳性(17.01±0.97)转至近阴性(31.91±2.35),病菌浓度下降了99.98%,淀粉含量和类黄酮含量恢复至正常水平,植株的活性恢复较好。研究表明,微波热处理有效抑制植物体内的黄龙病菌,可为黄龙病的规模化防治提供新思路。  相似文献   

3.
黄龙病一直危害着柑橘生产,做好黄龙病的识别和防治是柚子生产中的一项重要任务。亚洲柑橘木虱和非洲木虱是黄龙病传播的主要媒介,科学适量释放捕食性天敌瓢虫等,与化学防治相结合可有效防控木虱。对于疑似黄龙病病株,可采取简易的"黄龙病检测试剂"检测,该方法简单易行、成本低廉、准确率高,对于普通种植户是经济可行的识别方法。  相似文献   

4.
廉江红橙黄龙病在田间的发生蔓延与田间的病株和柑橘木虱的发生有关,在不能完全清除田间病株的情况下,控制柑橘木虱在田间的转株扩散为害是防治黄龙病田间发生蔓延的重点工作。柑橘木虱发生与廉江红橙新梢的萌发有着十分密切的关系,传统的人工抹除不统一抽发新梢,在一定意义上会人为地造成柑橘木虱在田间的转株扩散为害,而采用药物杀梢的办法杀除不统一抽发的新梢,会大大降低柑橘木虱在田间转株扩散为害的可能性,减慢田间黄龙病的发生蔓延速度,应作为一项黄龙病防治措施加以推广。  相似文献   

5.
目前,我国很多省份都在种植柑橘,且有的省份种植面积很大,而柑橘黄龙病是威胁柑橘生产的重要病害之一,俗称柑橘"癌症",会给柑橘生产带来毁灭性的影响。基于此,根据对柑橘黄龙病的多年实践调查研究,就柑橘黄龙病的发病规律及防控关键技术进行了相关探讨,希望能够为防治黄龙病提供借鉴。  相似文献   

6.
柑橘黄龙病(Huanglongbing, HLB)是柑橘生产中的毁灭性病害,柑橘植株遭到黄龙病菌侵染后光合能力发生变化而后表现出相应的黄化症状。及早实现HLB的原位快速诊断是防控HLB的重要手段。为探究黄龙病菌侵染柑橘叶片的光合响应机制并实现HLB的原位诊断,该研究分析了健康(Healthy)、未显症HLB(asymptomatic HLB, aHLB)、显症HLB(symptomatic HLB, sHLB)以及黄斑病(Macular,症状与黄龙病相似)柑橘叶片的光合参数与光合色素含量差异。利用光谱技术与日光诱导叶绿素荧光(Sun-induced Chlorophyll Fluorescence, SIF)技术分析了4种类型柑橘叶片的反射率光谱与SIF光谱差异。采用竞争自适应重加权采样(Competitive Adaptive Reweighted Sampling, CARS)算法结合反射率光谱筛选出特征波段,采用SIF光谱的峰值位置(687和741 nm)构建了上行(Upward, Up)和下行(Downward, Dw)SIF产量指数(Up687, Up741, Dw687, Dw741, Up687/741, Dw687/741)。进一步分别利用特征波段的反射率和SIF产量指数,结合K最邻近(K-nearest Neighbor, KNN)分类算法构建了柑橘黄龙病的诊断模型。结果表明,黄龙病菌的侵染使柑橘叶片的光合作用明显减弱,在未显症时期已经表现出来,证明了SIF技术在诊断早期HLB的优势。基于特征波段反射率的KNN模型对未显症HLB和显症HLB的诊断精度为72.7%和75.6%,健康叶片和黄斑病叶片分别为82.2%和64.1%,而基于687和741 nm波长处的上行比值SIF产量指数Up687/741构建的KNN模型对未显症HLB和显症HLB的诊断精度为84.8%和91.1%,健康和黄斑病叶片分别为88.9%和82.1%,均优于反射率光谱模型。结果证明了SIF技术用于诊断柑橘HLB的潜力,为实现柑橘HLB的田间原位、快速、早期诊断提供了可能。  相似文献   

7.
柑橘黄龙病主要出现在盛产柑橘的地区,对柑橘生长具有毁灭性的打击,而其发病潜伏期也较长,柑橘黄龙病在柑橘生长的整个阶段都有可能发病,因此,种植户需要对柑橘黄龙病加强预防,降低柑橘黄龙病的发生率。  相似文献   

8.
2016年1月以来,开展柑橘黄龙病综合防控技术探讨,同时在广西农垦龙北总场先锋农场柑橘园推广应用柑橘黄龙病综合防控科学管理技术,有效地控制了柑橘黄龙病的发生传播,综合防控区发病率2.13%,比非综合防控区发病率降低14.52百分点。实施的柑橘黄龙病综合防控技术有:加强柑橘种苗引进管理;彻底挖除黄龙病树;加强木虱监测,及时防治柑橘木虱;加强柑橘树栽培管理;控制种植九里香、黄皮等芸香科植物。  相似文献   

9.
柑橘黄龙病是柑橘生产上的一种毁灭性的病害。近一个世纪以来,科学工作者对如何防治黄龙病这个问题做出了一系列的研究与实践工作。遗憾的是,至今还没找到一种能根本解决问题的办法,柑橘黄龙病仍在柑橘产业中不断蔓延,每年造成数10亿元的损失。柑橘黄龙病主要表现为新梢发黄,病根表皮脱离、腐烂,果实着色异常、果小、畸形。严重流行时,可使大片柑橘区数年之内趋于毁灭。而对于大部分的果农来说,生活经济来源和未来希望全在这片果园里,面对着收成逐年减少的情况,用什么方法打破这种持续亏损的状态,实现收益呢?通过对柑橘地条件的实地调查及对相关一些植物原理的研究,再加上一些成功案例的一些启发,有望能通过在柑橘树底下套种大球盖菇,在不影响柑橘现有的收成的条件下提高果农的收益。  相似文献   

10.
张仁 《南方农业》2012,(6):33-34
通过连续多年的防控示范实践,总结出柑橘黄龙病发生扩展与病(树)源基数、木虱数量、迁移速度密切相关,病树多、虫量大,迁移快,柑橘黄龙病发生蔓延快、为害重,反之则为害轻。为此,清除传染源病树和防治传媒木虱是防控关键。本文针对福建省建阳市柑橘黄龙病和木虱发生特点,提出"冬季清园彻底砍除病树,秋梢萌发重点防治木虱做到统一防控"的对策。  相似文献   

11.
柑橘黄龙病热空气快速处理温度场分布特性试验研究   总被引:1,自引:1,他引:0  
针对柑橘黄龙病自然热罩热处理存在的处理周期长、效率低、对自然条件依赖大、处理罩内温差过大等不足,提出了一种柑橘黄龙病热空气快速处理方法。为解决热空气快速处理时罩内温差过大的问题,搭建了柑橘黄龙病热空气快速处理温度场分布特性试验平台,研究了有无回风道、风速、热空气入口位置、热空气出口位置、入风口热空气温度对处理罩内温度场分布的影响。试验结果表明:风速、热空气入口位置、热空气出口位置、入风口热空气温度对处理罩内各截面温度场均有显著影响(P0.05);回风道不仅能使处理罩内温度场更均匀,而且能够降低能耗。通过试验得出柑橘黄龙病快速热空气处理的优选参数为:有回风道,风速14.5 m/s,热空气入口位于处理罩下层,热空气出口位于处理罩上层,且与入口呈90?,入风口热空气温度90℃。在该优选参数下,处理罩内温度从32℃上升到48℃,耗时约为9 min,处理罩内的温度极差为3.9℃,比非优选参数下罩内的温度极差相比下降了14.1℃。并在此参数下对柑橘黄龙病进行快速热空气处理田间试验,处理后病菌浓度平均降低80.28%。研究结果为黄龙病热空气规模化处理设备的优化设计提供参考。  相似文献   

12.
柑橘黄龙病被称为柑橘的"癌症",具有极强的传染性,造成柑橘产业巨大的经济损失。为探究病原菌对宿主光合作用进程中对光能吸收、分配和利用的影响,并实现柑橘黄龙病的快速诊断,该研究利用叶绿素荧光成像技术对感染黄龙病不同程度柑橘叶片的叶绿素荧光特性和相应淀粉、蔗糖、葡萄糖和果糖含量进行研究,分析了叶片的叶绿素荧光图像与淀粉、蔗糖、葡萄糖和果糖含量之间的关系,并构建了柑橘黄龙病快速诊断模型。结果表明,染病叶片中的淀粉、蔗糖、葡萄糖和果糖出现异常累积,糖代谢异常与病原菌的侵染有关;宿主的叶绿体光系统Ⅱ(Photosystem Ⅱ, PSⅡ)反应中心遭受破坏,导致最小荧光产量上升,PSⅡ的最大光量子效率下降及PSⅡ中有活性的光反应中心数量减少,染病叶片的光化学反应的能力降低,激发能被转换成不可调制荧光淬灭的比例上升;叶绿素荧光参数能够精确地反演出叶片的淀粉、蔗糖、葡萄糖和果糖含量,两者具有很强的相关性。利用叶绿素荧光参数构建的随机森林模型对柑橘黄龙病诊断的总体识别正确率为97.50%。采用叶绿素荧光成像技术能够实现柑橘黄龙病快速无损检测,可为柑橘黄龙病的早期预警提供新方法。  相似文献   

13.
为了探究柑橘黄龙病病原菌对宿主叶片主脉显微结构的影响并建立基于叶片主脉显微图像的快速诊断方法,该研究以健康、染病未显症、染病显症和缺镁4类柑橘叶片主叶脉的显微图像为研究对象,提出了一个适用于小样本显微图像数据集的增强特征的无监督训练柑橘黄龙病检测模型(EnhancedHuanglongbingUnsupervisedPre-trainingDetect Transformer,E-HLBUP-DETR)。该模型首先采用无监督训练结合迁移学习构成上游网络(unsupervised pre-training model),再利用Yolact模型设计出增强特征网络(Enhanced Feature Network,EFN)与DETR(Detect Transformer)相结合构成下游网络,最终建立E-HLBUP-DETR诊断模型。研究结果表明,E-HLBUP-DETR模型检测的准确率可达96.2%,能够解决采用小规模数据集训练的模型存在过拟合和准确率低的问题。相较于未改进的DETR模型,E-HLBUP-DETR具有更高的检测准确率,识别准确率也优于CNN架构ResNext的92.1%与Mo...  相似文献   

14.
柑橘黄龙病高光谱早期鉴别及病情分级   总被引:1,自引:12,他引:1  
为实现柑橘黄龙病的早期、快速确诊,有效阻止病害蔓延,达到早期防治、保障柑橘生产的目的,该文研究基于高光谱成像的柑橘黄龙病早期无损检测及病情分级,并对多种预处理方法的建模结果进行探讨。试验获取370~1 000 nm健康、不同染病程度及缺锌共5类柑橘叶片的高光谱图像,用遥感图像处理平台(environment for visualizing images,ENVI)得到各类样本感兴趣区域的光谱反射率平均值。运用一阶微分、移动窗口拟和多项式平滑(savitzky-golay,SG)进行数据处理,结合偏最小二乘判别分析(partial least squares-discriminate analysis,PLS-DA)构建黄龙病的早期鉴别及病情分级模型。结果表明:建立的3个判别模型,验证集相关系数均不低于0.9548。其中,经SG平滑及一阶微分预处理所建立的模型分类效果最佳,总体预测准确率达96.4%,预测均方根误差0.1344。该研究为柑橘病害早期诊断和预警提供了新方法,也为黄龙病病害程度遥感监测提供了基础。  相似文献   

15.
基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类   总被引:10,自引:5,他引:5  
柑橘黄龙病(Huanglongbing,HLB)是柑橘产业的毁灭性病害,及早发现并挖除病株是防治HLB的有效手段。通过无人机低空遥感监测大面积果园,可大大减少HLB排查工作量和劳动力。该文获取了无人机低空柑橘果园的高光谱影像,分别提取并计算健康和感染HLB植株冠层的感兴趣区域的平均光谱,并对初始光谱进行Savitzky-Golay平滑、异常数据剔除和光谱变换,得到原始光谱、一阶导数光谱和反对数光谱3种光谱,对这3种光谱采用主成分分析法进行降维,与全波段信息比较,分别采用k近邻(kNN)和支持向量机(SVM)进行建模和分类。结果表明,以二次核SVM判别模型对全波段一阶导数光谱的分类准确率达到94.7%,对测试集的误判率为3.36%。表明低空高光谱遥感监测HLB的手段具有可行性,可大大提高果园管理效率和政府防控病情力度。  相似文献   

16.
金卫  孙漱芗  骆倩  王贤裕 《核农学报》1990,4(3):129-134
水稻种子在极低温(-196℃)条件下进行(137)~Csγ射线辐照,然后进行热冲击(65℃)后处理。结果表明,极低温加热冲击处理的辐射防护效应大于极低温处理。在10—50krad剂量范围内,水稻主要性状的突变率,极低温加热冲击组及热冲击组大于常温组,而常温组又大于极低温组;在70—90krad范围内,极低温加热冲击组大于极低温组,其余两组全部死亡。各处理组在最适宜诱变剂量下的突变频率:极低温加热冲击组最高,常温组最低,其余两组居中。  相似文献   

17.
为了降低夏季蔬菜集约化育苗时幼苗的根区高温环境,利用地下水作为循环媒介,设计了用于根区降温的水冷苗床。试验分别采用金属梯形管(M)和塑料圆管(P)作为冷水管,以未采用根区降温的苗床为对照,研究两种水冷苗床的根区降温效果及其对番茄幼苗生长的影响。结果表明,两种水冷苗床番茄幼苗根区日均温、白天均温和最高温度均显著低于对照苗床(P<0.05)。M式和P式苗床番茄幼苗根区日均温分别为23.2℃和26.0℃,全天根区温度高于25℃的历时为8.3h和11.6h,分别比对照苗床减少7.5h和4.2h。水冷苗床显著促进了番茄幼苗生长和干物质积累,提高了番茄幼苗茎流速率、根系呼吸速率和光合能力,M式和P式水冷苗床番茄幼苗单株干质量依次为4.52和3.90mg,分别比对照(2.85mg)增加58.6%和36.8%(P<0.01)。两种水冷苗床番茄幼苗的壮苗指数和根冠比均显著高于对照。综合根区降温效果和番茄幼苗生长来看,M式水冷苗床更有利于番茄幼苗的生长。  相似文献   

18.
In traditional Chinese medicine, dried citrus fruit peels are widely used as remedies to alleviate coughs and reduce phlegm in the respiratory tract. Induction of inducible nitric oxide synthase (iNOS) in inflammatory cells and increased airway production of nitric oxide (NO) are well recognized as key events in inflammation-related respiratory tract diseases. Despite the fact that the enhancing effect of heat treatment on the antioxidant activity of citrus fruit peels has been well documented, the impact of heat treatment on citrus peel beneficial activities regarding anti-inflammation is unclear. To address this issue, we determined the anti-inflammatory activities of heat-treated citrus peel extracts by measuring their inhibitory effect upon NO production by lipopolysaccharide-activated RAW 264.7 macrophages. Results showed that the anti-inflammatory activity of citrus peel was significantly elevated after 100 degrees C heat treatment in a time-dependent fashion during a period from 0 to 120 min. Inhibition of iNOS gene expression was the major NO-suppressing mechanism of the citrus peel extract. Additionally, the anti-inflammatory activity of citrus peel extract highly correlated with the content of nobiletin and tangeretin. Conclusively, proper and reasonable heat treatment helped to release nobiletin and tangeretin, which were responsible for the increased anti-inflammatory activity of heat-treated citrus peels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号