首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined water use by maturing Eucalyptus regnans, growing with or without an mid-storey stratum of Acacia spp. (Acacia dealbata or A. melanoxylon), for >180 consecutive days. Study sites were located in the Upper Yarra catchment area in south-eastern Australia. Depending on their contribution to stand basal area, mid-storey Acacia spp. increased total stand water use by up to 30%. Monthly water use in such stands reached more than 640,000 L ha−1 (compared to 545,000 L ha−1 in stands where acacias were absent) in early spring. Water use was curvilinearly related to sapwood area of Acacia spp. and logistically related to sapwood area of E. regnans. Water use of all three species showed a strong relation to daily maximum air temperatures. Distinct and simple relationships provide clear guides to the likely impacts of climate change and forest management on water yield. We compared a traditional up-scaling approach, from individual tree water use to stand water use, to a new approach that incorporates variation in temperature. Development of this approach can lead to greater precision of stand water use estimates – and in turn catchment water yield – under current climate change scenarios, which predict a rise in air temperatures of 0.6–2.5 °C by 2050 for the study area. Our temperature-dependent approach suggests that under conditions of non-limiting water availability, stand water use will rise by 2% for every 0.25 °C increase in maximum air temperatures during winter, and possibly more than that during summer.  相似文献   

2.
We tested the hypothesis that overstorey of eucalypt forest dominated by tall, large diameter trees uses less water than regrowth stands in the high rainfall zone (>1100 mm year−1) of the northern jarrah (Eucalyptus marginata) forest in southwestern Australia. We measured leaf area, cover, sapwood area and sapwood density at three paired old and regrowth stands. We also measured sapflow velocity at one paired stand (Dwellingup) from June 2007 to October 2008. Old stands had more basal area but less foliage cover, less leaf area and slightly thinner sapwood. The ratio of sapwood area to basal area decreased markedly as tree size increased. Sapwood area of the regrowth forest stands (6.6 ± 0.30 m2 ha−1) was nearly double that of the old stands (3.4 ± 0.17 m2 ha−1), despite larger basal area at the old stands. Leaf area index of the regrowth stands (2.1 ± 0.26) was only one-third larger than that at the old stands (1.5 ± 0.15); hence, the ratio of leaf area to sapwood area was larger in old stands than in regrowth stands (0.45 ± 0.022 m2 cm−2 versus 0.32 ± 0.045 m2 cm−2). Our results are consistent with theories that trees have evolved to optimize carbon gain rather than maintain stomatal conductance. Neither sapwood density (540–650 kg m−3) nor sap velocity differed greatly between regrowth and old stands. At the old forest site, daily transpiration rose from 0.5 mm day−1 in winter to 0.9 mm day−1 in spring–summer, compared to 0.9 mm day−1 and 1.8 mm day−1 at the regrowth site. Annual water use by the overstorey trees was estimated to be ∼230 mm year−1 for the old stand and ∼500 mm year−1 at the regrowth stand, or 20% and 44% of annual rainfall. The overwhelming role of stand sapwood area in determining stand water use, combined with the marked changes in the ratio of sapwood area to basal area with tree age and size, suggest that stand overstorey structure can be managed to alter overstorey water use and catchment water yield. Silviculture to promote old-forest-like attributes may be a viable means of delivering multiple water and conservation benefits.  相似文献   

3.
Degraded land within the irrigated areas of the Aral Sea Basin is characterized by high soil salinity, shallow saline groundwater (GW), low irrigation water availability and thus is often unsuitable for crop cultivation. Afforestation is one option for mitigating such degraded land but to be successful it requires the selection of appropriate tree species and irrigation techniques for tree establishment. In a two factorial split–plot experiment the survival, dry matter production, root growth, and biomass partitioning of Elaeagnus angustifolia L., Ulmus pumila L., and Populus euphratica Oliv. were compared under three irrigation regimes for two consecutive years. During the third year, the response of the plantations to the cessation of irrigation was evaluated. A “deficit” and “full” water treatment, respectively amounting to 80 and 160 mm year−1 was applied via drip irrigation. Traditional furrow irrigation supplied at the deficit rate, served as the control. Mixed linear model analysis showed significantly enhanced growth of P. euphratica under drip irrigation exceeding 7–14 times that under the control. Drip irrigation was not advantageous for the other species which effectively used the shallow (0.9–2.0 m deep) GW with a salinity ranging between 1.2 and 4.8 dS m−1. After cessation of irrigation, all species at the deficit-irrigated plots retained or increased their growth rates. In contrast, formerly full-irrigated P. euphratica slowed down by about 50%, indicating that deficit watering created better pre-conditions for coping with the termination of irrigation. E. angustifolia produced about 30 t ha−1 year−1 of above-ground biomass more than twice that of the other species, thus showing in the short-run its high potential on marginal land. U. pumila showed stable, albeit moderate growth rates and could be mixed with the short-living, fast-growing E. angustifolia plantations to optimize the yields. Low initial survival (57%) of P. euphratica was compensated for by its strong regeneration and drastically increasing growth rates. Initially high root-zone salinity exceeding 30 dS m−1, stabilized over time within the medium range even in the absence of irrigation. The application of costly drip irrigation for plantation establishment appears unnecessary in the Aral Sea region Khorezm where a shallow, slightly-to-moderately saline GW table prevails throughout the growing season.  相似文献   

4.
Nitrogen fertilizer inputs increased sharply over the last decade in Brazilian eucalypt plantations. Due to the economic and potential environmental cost of fertilizers, mixed plantations with N-fixing species might be an attractive option to improve the long-term soil N status. A randomized block design was set up in southern Brazil, including a replacement series and an additive series design, as well as a nitrogen fertilization treatment. The development of mono-specific stands of Eucalyptus grandis (0A:100E) and Acacia mangium (100A:0E) was compared with mixed plantations in proportions of 1:1 (50A:50E), and other stands with different densities of acacia for the same density of eucalypts. The objective was to assess the effect of inter-specific interactions on the early development of the two species. Aboveground biomass was measured 6, 12, 18 and 30 months after planting, sampling 6–10 trees of each species per treatment at each age, and allometric equations were established in 0A:100E, 100A:0E, 50A:50E and 50A:100E. The height and basal area of E. grandis seedlings were enhanced by 12% and 30%, respectively by N fertilization at age 1 year. Inter-specific competition led to a stratified canopy, with suppression in acacia growth earlier for basal area than for height. The mean number of stems per acacia tree at 36 months after planting was significantly higher in pure stands (3.7), than in 50A:50E (2.7) and in the additive series (between 1.6 and 1.8). H/D ratios were highly sensitive to inter-tree competition for the two species. The suppressed acacia understorey in mixed-species stands did not influence biomass production and partitioning within eucalypts. This pattern led to biomass accumulation combining the two species in 50A:100E that was about 10% higher than in 0A:100E, from age 12 months onwards. Aboveground net primary production (ANPP) amounted to 25 Mg ha−1 and 37 Mg ha−1 from age 18 to 30 months in 100A:0E and 0A:100E, respectively. Acacia ANPP in 50A:100E amounted to 2 Mg ha−1 over the same period, as a result of substantial inter-specific competition. An increment in biomass production in these very fast-growing eucalypt plantations was achieved introducing acacia as an understorey and not in the 50A:50E design, as observed in other studies.  相似文献   

5.
We used an isotopic approach to evaluate the effects of three afforestation methods on the ecophysiology of an Aleppo pine plantation in semiarid Spain. The site preparation methods tested were excavation of planting holes (H), subsoiling (S), and subsoiling with addition of urban solid refuse to soil (S + USR). Five years after plantation establishment, trees in the S + USR treatment were over three times larger than those in the S treatment, and nearly five-fold larger than those planted in holes. Differences in tree biomass per hectare were even greater due to disparities in initial planting density and pine tree mortality among treatments. Pine trees in the S + USR treatment showed higher foliar P concentration, δ13C and δ15N than those in the S or H treatments. Foliar δ15N data proved that trees in the S + USR treatment utilized USR as a source of nitrogen. Foliar δ13C and δ18O data suggest that improved nutrient status differentially stimulated photosynthesis over stomatal conductance in the pine trees of the S + USR treatment, thus enhancing water use efficiency and growth. In the spring of 2002, trees in the S + USR treatment exhibited the most negative predawn water potentials of all the treatments, indicating that the rapid early growth induced by USR accelerated the onset of intense intra-specific competition for water. The results of this study have implications for the establishment and management of Aleppo pine plantations on semiarid soils. Planting seedlings at low density and/or early thinning of pine stands are strongly recommended if fast tree growth is to be maintained beyond the first few years after USR addition to soil. Foliar C, O and N isotope measurements can provide much insight into how resource acquisition by trees is affected by afforestation techniques in pine plantations under dry climatic conditions.  相似文献   

6.
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001–2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase residual tree growth and vigor. Our study: (1) compared bark beetle-caused conifer mortality in forested areas thinned from 1985 to 1998 to similar, non-thinned areas and (2) identified site, stand and individual tree characteristics associated with conifer mortality. We sampled ponderosa pine (Pinus ponderosa var ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) trees in pre-commercially thinned and non-thinned plantations and ponderosa pine and white fir (Abies concolor var lowiana Gordon) in mixed conifer forests that were commercially thinned, salvage-thinned, and non-thinned. Clusters of five plots (1/50th ha) and four transects (20.1 × 100.6 m) were sampled to estimate stand, site and tree mortality characteristics. A total of 20 pre-commercially thinned and 13 non-thinned plantation plot clusters as well as 20 commercially thinned, 20 salvage-thinned and 20 non-thinned mixed conifer plot clusters were established. Plantation and mixed conifer data were analyzed separately. In ponderosa pine plantations, mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) caused greater density of mortality (trees ha−1 killed) in non-thinned (median 16.1 trees ha−1) compared to the pre-commercially thinned (1.2 trees ha−1) stands. Percent mortality (trees ha−1 killed/trees ha−1 host available) was less in the pre-commercially thinned (median 0.5%) compared to the non-thinned (5.0%) plantation stands. In mixed conifer areas, fir engraver beetles (Scolytus ventralis LeConte) (FEN) caused greater density of white fir mortality in non-thinned (least square mean 44.5 trees ha−1) compared to the commercially thinned (23.8 trees ha−1) and salvage-thinned stands (16.4 trees ha−1). Percent mortality did not differ between commercially thinned (least square mean 12.6%), salvage-thinned (11.0%), and non-thinned (13.1%) mixed conifer stands. Thus, FEN-caused mortality occurred in direct proportion to the density of available white fir. In plantations, density of MPB-caused mortality was associated with treatment and tree density of all species. In mixed conifer areas, density of FEN-caused mortality had a positive association with white fir density and a curvilinear association with elevation.  相似文献   

7.
We examined the potential growth of clonal Eucalyptus plantations at eight locations across a 1000+ km gradient in Brazil by manipulating the supplies of nutrients and water, and altering the uniformity of tree sizes within plots. With no fertilization or irrigation, mean annual increments of stem wood were about 28% lower (16.2 Mg ha−1 yr−1, about 33 m3 ha−1 yr−1) than yields achieved with current operational rates of fertilization (22.6 Mg ha−1 yr−1, about 46 m3 ha−1 yr−1). Fertilization beyond current operational rates did not increase growth, whereas irrigation raised growth by about 30% (to 30.6 Mg ha−1 yr−1, about 62 m3 ha−1 yr−1). The potential biological productivity (current annual increment) of the plantations was about one-third greater than these values, if based only on the period after achieving full canopies. The biological potential productivity was even greater if based only on the full-canopy period during the wet season, indicating that the maximum biological productivity across the sites (with irrigation, during the wet season) would be about 42 Mg ha−1 yr−1 (83 m3 ha−1 yr−1). Stands with uniform structure (trees in plots planted in a single day) showed 13% greater growth than stands with higher heterogeneity of tree sizes (owing to a staggered planting time of up to 80 days). Higher water supply increased growth and also delayed by about 1 year the point where current annual increment and mean annual increment intersected, indicating opportunities for lengthening rotations for more productive treatments as well as the influence of year-to-year climate variations on optimal rotations periods. The growth response to treatments after canopy closure (mid-rotation) related well with full-rotation responses, offering an early opportunity for estimating whole-rotation yields. These results underscore the importance of resource supply, the efficiency of resource use, and stand uniformity in setting the bounds for productivity, and provide a baseline for evaluating the productivity achieved in operational plantations. The BEPP Project showed that water supply is the key resource determining levels of plantation productivity in Brazil. Future collaboration between scientists working on silviculture and genetics should lead to new insights on the mechanisms connecting water and growth, leading to improved matching of sites, clones, and silviculture.  相似文献   

8.
Although much is known about drivers of productivity in Douglas-fir and red alder stands, less is known about how productivity may relate to stand transpiration and water use efficiency. We took advantage of a 15-year-old experiment involving Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) in the western Cascade Range of western Oregon to test the following hypotheses: (a) more productive stands transpire more water, (b) the relationship between productivity and transpiration differs between species, and (c) the relationship between productivity and transpiration differs between sites varying in soil moisture and fertility. Furthermore, the experimental design included alder, a facultative nitrogen-fixing species, which could also affect fertility. Fixed area plots (20 × 20 m) were planted as monocultures of each species or in mixtures at a common density (1100 trees ha−1) in a randomized-block design. Transpiration of Douglas-fir and red alder was measured using heat dissipation sensors installed in eight trees per plot and scaled to the plot level based on sapwood basal area for each species. Although up to 53% of the variability in tree transpiration was explained by basal area, irrespective of species or site conditions, the two stands with the highest biomass and sapwood basal area did not transpire the most. Instead of more productive stands transpiring more water, the greatest variability in both productivity and transpiration was determined by site conditions and to a lesser degree, species composition. For example, 70% of the variation in tree biomass increment (TBI) was determined by leaf area index, which was much higher at the site with higher fertility and soil moisture (p < 0.05). Despite marked phenological and physiological differences, Douglas-fir and red alder performed similarly. Only 19% of annual water use of Douglas-fir occurred between October and March when alder was leafless. Also, there was no evidence of a fertilization effect of the nitrogen-fixing red alder on the Douglas-fir: the nitrogen concentration and N-isotopic ratio of Douglas-fir needles did not differ whether trees were grown in monoculture or in mixtures with red alder. We conclude that lower soil fertility and contrasting microclimate at one site relative to the other suppressed NPP while maintaining higher transpiration, thus reducing water use efficiency.  相似文献   

9.
We developed site specific component (stem, branch, and foliage) biomass functions for two sites in Sweden (64° and 57° North latitude) where four treatments (control, irrigated, fertilized, irrigated plus fertilized) were applied in the existing Norway spruce stands (Picea abies L. Karst.) for 17 years. We tested for site effects in the component biomass equations and compared site specific biomass estimates to those generated using published functions ( 19 and 39). Site effects were significant for all components and indicated it would be unlikely to generate equations that well estimate biomass across the Norway spruce range as implicitly indicated in our efforts to generate species biomass expansion factors. We rejected our hypothesis that the published functions would well estimate component biomass for control plots. The published functions did not compare well with site specific component biomass estimates for the other treatments; both published functions well estimated stem mass up to stem mass of 25 Mg ha−1, beyond which stem mass was overestimated, and both functions over and under estimated foliage and branch mass. Nor did the published functions compare well with each other, with stem, foliage and branch mass estimate differences of 12, 55, −8% and 11, 77, and 59% for the southern and northern sites, respectively, when averaged over all treatments and years. Adding limiting resources through fertilization increased stem, foliage and branch mass 57, 11, 18% and 120, 37, and 69% at the southern and northern sites, respectively, which would increase carbon sequestration and available stemwood and bioenergy materials. We recommend that more effort is spent in process-based modeling to better predict mass at a given site and ultimately provide better estimates of carbon sequestration and bioenergy material production changes.  相似文献   

10.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

11.
The efficiency with which trees convert photosynthetically active radiation (PAR) to biomass has been shown to be consistent within stands of an individual species, which is useful for estimating biomass production and carbon accumulation. However, radiation use efficiency (?) has rarely been measured in mixed-species forests, and it is unclear how species diversity may affect the consistency of ?, particularly across environmental gradients. We compared aboveground net primary productivity (ANPP), intercepted photosynthetically active solar radiation (IPAR), and radiation use efficiency (? = ANPP/IPAR) between a mixed deciduous forest and a 50-year-old white pine (Pinus strobus L.) plantation in the southern Appalachian Mountains. Average ANPP was similar in the deciduous forest (11.5 Mg ha−1 y−1) and pine plantation (10.2 Mg ha−1 y−1), while ? was significantly greater in the deciduous forest (1.25 g MJ−1) than in the white pine plantation (0.63 g MJ−1). Our results demonstrate that late-secondary hardwood forests can attain similar ANPP as mature P. strobus plantations in the southern Appalachians, despite substantially less annual IPAR and mineral-nitrogen availability, suggesting greater resource-use efficiency and potential for long-term carbon accumulation in biomass. Along a 260 m elevation gradient within each forest there was not significant variation in ?. Radiation use efficiency may be stable for specific forest types across a range of environmental conditions in the southern Appalachian Mountains, and thus useful for generating estimates of ANPP at the scale of individual watersheds.  相似文献   

12.
Plantations cover a substantial amount of Earth's terrestrial surface and this area is expected to increase dramatically in the coming decades. Pinus plantations make up approximately 32% of the global plantation estate. They are primarily managed for wood production, but have some capacity to support native fauna. This capacity likely varies with plantation management. We examined changes in the richness and frequency of occurrence of bird species at 32 plots within a Pinus radiata plantation (a management unit comprising multiple Pinus stands) in south-eastern Australia. Plots were stratified by distance to native forest, stand age class and thinning regime. We also assessed the landscape context of each plot to determine relationships between bird assemblages and stand and landscape-level factors. Bird species richness was significantly higher at plots ≥300 m from native forest and in mature (∼20 years since planting) and old (∼27 years since planting) thinned pine stands. We were able to separate the often confounding effects of stand age and thinning regime by including old stands that had never been thinned. These stands had significantly fewer species than thinned stands suggesting thinning regime, not age is a key factor to improving the capacity of pine plantations to support native species (although an age × thinning interaction may influence this result). At the landscape level, species richness increased in pine stands when they were closer to native riparian vegetation. There were no significant differences in species composition across plots. Our study indicates the importance of stand thinning and retention of native riparian vegetation in improving the value of pine plantations for the conservation of native fauna.  相似文献   

13.
The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH + CoF) and normal nitrogen-based (CH + F or WTH + F) fertilisation were also studied. A series of 22 field experiments were established during 1977-1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10-13 years at 11 experimental sites. Seven experiments were followed for 25 years.Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response.Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10-year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site.If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH + CoF), the volume increment was equal to that in the CH plots. Nitrogen (150-180 kg ha−1) or N + P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13 m3 ha−1, followed by a negative response of 5 m3 ha−1 during the second 10-year period. The fertilisation effect of WTH + F and WTH + CoF on basal area increment was both smaller and shorter than with CH + F.  相似文献   

14.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

15.
We tested the effects of species and spacing of nurse trees on the growth of Hopea odorata, a dipterocarp tree indigenous to Southeast Asia, in a two-storied forest management system in northeast Thailand. Eucalyptus camaldulensis, Acacia auriculiformis, and Senna siamea were planted as nurse trees in 1987 at spacings of 4 m × 8 m, 2 m × 8 m, 4 m × 4 m, and 2 m × 4 m in the Sakaerat Silvicultural Research Station of the Royal Forest Department, Thailand. Seedlings of H. odorata were planted in the nurse tree stands at a uniform spacing of 4 m × 4 m and in control plots (no nurse trees) in 1990. Stem numbers of some nurse trees were thinned by half in 1994. The stem diameter and height of all trees were measured annually until 1995 and again in 2007. The mean annual increment (MAI) in volume was estimated as 8.2–10.1 m3 ha−1 year−1 for E. camaldulensis and 0.9–1.2 m3 ha−1 year−1 for S. siamea, smaller than reported elsewhere. This suggests that the site properties were not suitable for them. The MAI of A. auriculiformis was 7.9–9.8 m3 ha−1 year−1, within the reported range. Survival rates of H. odorata in the S. siamea stands and the control plots decreased rapidly during the first 2 years but then stayed constant from 1992. In contrast, survival rates of H. odorata in the E. camaldulensis and A. auriculiformis stands were initially high (>70%), but then decreased after 1995. Stem diameter, tree height, and stand basal area of H. odorata were large in both the S. siamea stands and the control plots from then. The growth of H. odorata was largest in the 2 m × 8 m S. siamea stands. In contrast, it was restricted in the E. camaldulensis and A. auriculiformis stands owing to strong shading by their canopies. Thinning by 50% tended to facilitate the growth of H. odorata temporarily in the E. camaldulensis and A. auriculiformis stands. The stand basal areas of nurse trees and of H. odorata showed a trade-off. These results suggest that the growth of H. odorata was maximized in the S. siamea stands. We assume, however, that the growth of H. odorata could be improved even in the E. camaldulensis and A. auriculiformis stands by frequent or heavy thinning.  相似文献   

16.
Significant increases in aboveground biomass production have been observed when Eucalyptus is planted with a nitrogen-fixing species due to increased nutrient availability and more efficient use of light. Eucalyptus and Acacia are among the most popular globally planted genera with the area of Eucalyptus plantations alone expanding to over 19 Mha over the past two decades. Despite this, little is known about how nutrition and light availability in mixed-species tree plantations influence water use and water use efficiency (WUE). This study examined to what extent water use and WUE have been influenced by increased resource availability and growth in mixed-species plantations. Monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman and 1:1 mixtures of these species were planted. Growth and transpiration were measured between ages 14 and 15 years. Aboveground biomass increment (Mg ha−1) was significantly higher in mixtures (E. globulus; 4.8 + A. mearnsii; 0.9) than E. globulus (3.3) or A. mearnsii monocultures (1.6). Annual transpiration (mm) measured using the heat pulse technique was also higher in mixtures (E. globulus; 285 + A. mearnsii; 134) than in E. globulus (358) and A. mearnsii (217) monocultures. Mixtures exhibited higher WUE than monocultures due to significant increases in the WUE of E. globulus in mixtures (1.69 kg aboveground biomass per cubic metre water transpired) compared to monocultures (0.94). The differences in WUE appear to result from increases in canopy photosynthetic capacity and above- to belowground carbon allocation in mixtures compared to monocultures. Although further studies are required and operational issues need to be resolved, the results of this study suggest that mixed eucalypt–acacia plantations may be used in water-limited environments to produce a given amount of wood with less water than eucalypt monocultures. Alternatively, because mixtures can be more productive and use more water per unit land area (but use it more efficiently), they could be utilized in recharge zones where rising water tables and salinity result from the replacement of vegetation (fast growing trees) that uses higher quantities of water with vegetation (shallow rooted annual crops) that use lower quantities of water.  相似文献   

17.
In this study we analyzed the effect of silviculture on carbon (C) budgets in Pinus elliottii (slash pine) plantations on the southeastern U.S. Coastal Plain. We developed a hybrid model that integrates a widely used growth and yield model for slash pine with allometric and biometric equations determined for long-term C exchange studies to simulate in situ C pools. The model used current values of forest product conversion efficiencies and forest product decay rates to calculate ex situ C pool. The model was validated from a variety of sources, accurately simulating C estimates based on multiple measurement techniques and sites. Site productivity was the major factor driving C sequestration in slash pine stands. On high productivity sites, silvicultural schemes that promote sawtimber-type products are more suitable for increasing C storage (even not taking in account the consequent economical revenues associated with sawtimber production). When rotation length was increased from 22 to 35 years on unthinned and thinned stands, respectively, we estimated net increments of 26 and 20 MgC ha−1 in average C stock of the first five rotations. Even though in situ C pool in slash pine accounts for most of this net increment, C in sawtimber products increased from 8 and 14 to 23 and 24 MgC ha−1, on unthinned and thinned stands, respectively. Thinning effects on net C stock depended on intensity and timing of intervention, mainly due to changes in diameter classes that promote higher proportion of long-lived products. Emissions associated with silvicultural activities, including transportation of logs to the mill, are small compared to the magnitude of net C sequestration, accounting for between 2.2 and 2.3% of gross C stock. This slash pine plantation C sequestration model, based on empirical and biological relationships, is appropriate for use in regional C stock assessments or for C credit verification.  相似文献   

18.
Many of the world's Eucalyptus plantations are grown on short rotations of 15 years or less, which often covers the most rapid phase of stand development and peaks in growth rates and leaf areas. Since transpiration is related to stand leaf area these short rotations that make use of rapid early growth rates, may also maximise plantation water use, which has implications for predicting their water requirements and impacts on catchment hydrology. This study examined the transpiration, leaf area and growth rates of Eucalyptus globulus Labill. plantations aged 2–8 years. Transpiration (E), estimated using the heat pulse technique, increased from 0.4 mm day−1 at age 2 years to a peak of about 1.6–1.9 mm day−1 in stands aged 5–7 years. This was associated with similar trends for stand leaf area index (LAI) and periodic annual increments of aboveground biomass, which both peaked at about age 4–6 years resulting in a linear relationship between E and LAI. While stand sapwood areas were continuing to increase at age 8 years, E was already declining due to reductions in sap velocity, from 13.5 cm h−1 at age 2 years to 6.3 cm h−1 at age 8 years and reduced sapwood area growth rates. Trees compensated for this reduction in sap velocity with declines in the leaf area (AL) to sapwood area (AS) relationship (AL:AS) with age. There was also a reduction in growth efficiency (aboveground biomass increment per LAI) with age. However, reductions in WUE were small after age 4 years, which explained the linear relationship between E and LAI. If E continues to decline successive short rotation lengths may not only make use of rapid early growth rates but could also increase plantation water use compared to longer rotations over the same period of time.  相似文献   

19.
Species choice is potentially an important management decision for increasing carbon stocks in forest ecosystems. The substitution of a slow-growing hardwood species (Quercus petraea) by a fast-growing conifer plantation (Pinus nigra subsp. laricio) was studied in central France. Simulations of carbon stocks in tree biomass were conducted using stand growth models Fagacées for sessile oak and PNL for Corsican pine. The changes in soil carbon were assessed using the Century model and data from two European soil monitoring networks: 16 km × 16 km grid and RENECOFOR. Carbon in wood products was assessed with life cycle analysis and lifespan of final products. However, only carbon stocks and their variation were accounted for: effects of energy-consuming materials or fossil fuel substitution are excluded from the analysis. To compare the growth of these two types of forest stands, an important part of the study was to assess the productivity of both species at the same site, using National Forest Inventory data.  相似文献   

20.
Rotation periods control not only the above-ground growth but also the assimilate transfer to the root systems in Short Rotation Coppice (SRC). Since assimilates are needed for the nutrient supply of associated mycorrhizal fungi, their control by rotation period length seems most probable. One poplar (Populus nigra × maximowiczii cv. Max 4) and one willow clone (Salix viminalis clone 78–101) cultivated as SRC were investigated on their ectomycorrhiza formation in response to 15 years of continuous different rotation periods (three and six years) at the same test site in Northern Germany. On the poplar clone the frequency of ectomycorrhizae was significantly lower in 6-year than in 3-year rotation. On the willow clone frequency of ectomycorrhizae was not significantly affected, but the portion of dead fine roots was significantly higher in the 6-year than in the 3-year rotation in autumn. In both rotation systems, the frequency of ectomycorrhizal (EM) colonisation was significantly higher in autumn than in spring. Five EM morphotypes were found on the poplar and seven on the willow clone. EM morphotypes which were common on both clones were formed with two fungal partners of the Pezizales (Geopora cervina, Tuber rufum), one of the Agaricales (Laccaria sp.) and one of the Thelephorales (Thelephoraceae). In spring G. cervina constituted the largest part of all observed EM morphotypes on P. nigra × maximowiczii and S. viminalis. The results indicated a selective promotion of EM formation of some Pezizales (Tuber and Peziza spp.) and some Agaricales (Laccaria spp.) due to shorter rotations, and a selective promotion of other Agaricales (Inocybe sp.) and Boletales (Scleroderma spp.) due to longer rotations. This might allow selective manipulation of the mycorrhizal diversity by the selection of the rotation system. A future challenge will be to select which mycorrhizal diversity might be more advantageous for the vitality and biomass production of poplar and willow clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号