首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tropical forests play an important role in the global carbon cycle. Despite an increasing number of studies have addressed carbon storage in tropical forests, the regional variation in such storage remains poorly understood. Uncertainty about how much carbon is stored in tropical forests is an important limitation for regional-scale estimates of carbon fluxes and improving these estimates requires extensive field studies of both above- and belowground stocks. In order to assess the carbon pools of a tropical seasonal forest in Asia, total ecosystem carbon storage was investigated in Xishuangbanna, SW China. Averaged across three 1 ha plots, the total carbon stock of the forest ecosystem was 303 t C ha−1. Living tree carbon stocks (both above- and belowground) ranged from 163 to 258 t C ha−1. The aboveground biomass C pool is comparable to the Dipterocarp forests in Sumatra but lower than those in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1–2 t C ha−1 to the total carbon stock. The mineral soil C pools (top 100 cm) ranged from 84 to 102 t C ha−1 and the C in woody debris from 5.6 to 12.5 t C ha−1, representing the second and third largest C component in this ecosystem. Our results reveal that a high percentage (70%) of C is stored in biomass and less in soil in this tropical seasonal forest. This study provides an accurate estimate of the carbon pool and the partitioning of C among major components in tropical seasonal rain forest of northern tropical Asia. Results from this study will enhance our ability to evaluate the role of these forests in regional C cycles and have great implications for conservation planning.  相似文献   

2.
西藏自治区森林枯落物碳储量估算   总被引:1,自引:0,他引:1  
利用典型样地采样,建立了枯落物碳密度与厚度关系方程,并结合森林资源连续清查的样地坡度与枯落物厚度因子,估算出西藏自治区森林枯落物碳储量.结果表明,西藏自治区丰富的森林植被生产了巨大的枯落物层碳库,有机碳分解和碳库消耗缓慢.研究该部分碳库状况,为估算和评价陆地生态系统碳储量并据此制定相应的对策提供了基础数据.  相似文献   

3.
本文利用土壤培养实验和双指数模型(把土壤有机碳划分为活性碳和缓效性碳库)的方法,来分析确定长白山和祁连山的土壤有机碳的动态变化。分析和拟合土壤有机碳矿化释放的CO2的速率。结果表明:活性碳库占总有机碳的1.0%–8.5%,平均驻留时间的平均值为24天;缓效性碳库占总有机碳的91%–99%,平均驻留时间的平均值为179年。根据缓效性碳的大小和平均驻留时间可以得知,祁连山森林土壤的有机碳较长白山的难分解。通过分析影响森林土壤有机碳矿化的因素––土壤粘粒含量、海拔和温度,结果显示两种森林土壤有机碳的分解快慢与其温度正相关,并且长白山和祁连山的累积的土壤有机碳和缓效性碳的含量随土壤粘粒含量的增加而呈线性增加,其相关系数分别为0.7033和0.6575,充分表明温度和土壤粘粒含量对土壤有机碳的矿化有较大的影响。  相似文献   

4.
Boreal forest carbon (C) storage and sequestration is a critical element for global C management and is largely disturbance driven. The disturbance regime can be natural or anthropogenic with varying intensity and frequency that differ temporally and spatially the boreal forest. The objective of this review was to synthesize the literature on C dynamics of North American boreal forests after most common disturbances, stand replacing wildfire and clearcut logging. Forest ecosystem C is stored in four major pools: live biomass, dead biomass, organic soil horizons, and mineral soil. Carbon cycling among these pools is inter-related and largely determined by disturbance type and time since disturbance. Following a stand replacing disturbance, (1) live biomass increases rapidly leading to the maximal biomass stage, then stabilizes or slightly declines at old-growth or gap dynamics stage at which late-successional tree species dominate the stand; (2) dead woody material carbon generally follows a U-shaped pattern during succession; (3) forest floor carbon increases throughout stand development; and (4) mineral soil carbon appears to be more or less stable throughout stand development. Wildfire and harvesting differ in many ways, fire being more of a chemical and harvesting a mechanical disturbance. Fire consumes forest floor and small live vegetation and foliage, whereas logging removes large stems. Overall, the effects of the two disturbances on C dynamics in boreal forest are poorly understood. There is also a scarcity of literature dealing with C dynamics of plant coarse and fine roots, understory vegetation, small-sized and buried dead material, forest floor, and mineral soil.  相似文献   

5.
Global vegetation models (GVMs) simulate CO2, water and energy fluxes at large scales, typically no smaller than 10 × 10 km. GVM simulations are thus expected to simulate the average functioning, but not the local variability. The two main limiting factors in refining this scale are (1) the scale at which the pedo-climatic inputs - temperature, precipitation, soil water reserve, etc. - are available to drive models and (2) the lack of geospatial information on the vegetation type and the age of forest stands. This study assesses how remotely sensed biomass or stand height could help the new generation of GVMs, which explicitly represent forest age structure and management, to better simulate this local variability. For the ORCHIDEE-FM model, we find that a simple assimilation of biomass or height brings down the root mean square error (RMSE) of some simulated carbon fluxes by 30-50%. Current error levels of remote sensing estimates do not impact this improvement for large gross fluxes (e.g. terrestrial ecosystem respiration), but they reduce the improvement of simulated net ecosystem productivity, adding 13.5-21% of RMSE to assimilations using the in situ estimates. The data assimilation under study is more effective to improve the simulation of respiration than the simulation of photosynthesis. The assimilation of height or biomass in ORCHIDEE-FM enables the correct retrieval of variables that are more difficult to measure over large areas, such as stand age. A combined assimilation of biomass and net ecosystem productivity could possibly enable the new generation of GVMs to retrieve other variables that are seldom measured, such as soil carbon content.  相似文献   

6.
Uncertainties about the implications of land-cover heterogeneity on the Amazonian carbon (C) and water cycles are, in part, related to the lack of information about spatial patterns of key variables that control these fluxes at the regional scale. Leaf area index (LAI) is one of these key variables, regulating a number of ecosystem processes (e.g. evaporation, transpiration and photosynthesis). In order to generate a sampling strategy for LAI across a section of Amazonia, we generated a landscape unit (LU) map for the Tapajós region, Eastern Amazonia, as a basis for stratification. We identified seven primary forest classes, stratified according to vegetation and/or terrain characteristics, and one secondary forest class, covering 80% of the region. Primary forest units were the most representative, covering 62% of the total area. The LAI measurements were carried out in 13 selected LUs. In each LU, we marked out three 50 m × 50 m plots giving a total number of 39 plots (9.75 ha). A pair of LAI-2000 plant canopy analysers was used to estimate LAI. We recorded a total of 25 LAI measurements within each plot. We used the field data to verify the statistical distribution of LAI samples, analyse the LAI variability within and among sites, and show the influence of sample size on LAI variation and precision. The LAI showed a high coefficient of variation at the plot level (0.25 ha), from 5.2% to 23%, but this was reduced at the landscape unit level (three co-located plots, 1.8–12%). The level of precision was <10% and 15% at the plot and landscape unit level, respectively. The LAI decreased from a dense lowland forest site (5.10) to a secondary forest (3.46) and to a pasture site (1.56). We found evidence for differences in the scale of spatial heterogeneity of closed canopy forest versus open canopy forest and palm forests. Landscape variables could, in part, explain differences in LAI among forest sites, and land use is an important modifier of LAI patterns. The stratified LAI sampling proposed in the present study could cope with three important aspects of C and water fluxes modelling: (1) optimise the information obtained from field measurements, which is an advance for models parameterisation, compared to the usual random sampling; (2) generate information for a subsequent scaling up of point field measurements to surfaces covering the whole region; and (3) build a useful basis for validation of estimations, based on remote sensing data, of LAI in the Tapajós region. The variability of LAI in the Tapajós region showed that this variable is a source of uncertainty for large-scale process modelling.  相似文献   

7.
Soil respiration (SR) was measured with an infrared gas analyzer in nine plots representative of the heterogeneous vegetation in a mixed coniferous-deciduous forest in the Belgian Campine region. Selected plots included the two most representative overstory species (Pinus sylvestris L. and Quercus robur L.) in combination with the most representative understory species of the forest. A model that includes temperature and water as the main controlling variables was fitted to the data. We found large spatial variability in SR among plots, with typically lower fluxes under the coniferous overstory than under the deciduous overstory (means of 4.8 +/- 0.4 and 8.8 +/- 0.5 Mg C ha(-1) year(-1), respectively). Total annual soil carbon (C) emissions were estimated by weighting fluxes from different types of vegetation according to their relative contribution to the footprint area of the eddy covariance flux measurement. The relative contribution of the two main tree species to the footprint-weighted total SR varied among seasons with the more abundant coniferous overstory contributing the most to total SR during most of the year. Nonetheless, during summer, the contribution of deciduous plots to total SR was disproportionally high because of the more pronounced seasonality of belowground metabolic activity. Net ecosystem carbon dioxide exchange was measured by eddy covariance, and we estimated total ecosystem respiration (TER) with footprint-constrained nighttime fluxes. Mean total annual SR and TER were 6.1 +/- 0.11 and 9.1 +/- 1.15 Mg C ha(-1) year(-1), respectively. The 95% confidence interval of the ratio of annual SR:TER ranged from 0.58 to 0.76, with a mean of 0.67. The contribution of SR to TER tended to vary seasonally, with minimum contributions during summer (less than 50% of TER) and maximum contributions during winter (about 94% of TER).  相似文献   

8.
广东省森林碳汇宏观监测体系探讨   总被引:1,自引:0,他引:1  
对森林碳库进行宏观监测,是评估森林碳汇功能的重要组成部分,也是提高森林碳汇功能的基础。针对广东省森林碳汇监测研究背景,提出了监测技术路线及主要技术手段,构建广东省森林碳汇宏观监测体系框架,将其分为小班和样地两个监测系统,并对具体内容进行了说明。  相似文献   

9.
Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon(SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing'an Mountains(Greater Xing'an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years(2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008(p0.05). The correlations between active organic carbon and environmental factors such as water content, p H value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.  相似文献   

10.
The aim of this inventory (acronym: INFOCARB) was to measure the organic carbon stored in the forest ecosystems of the Trento region (Provincia Autonoma di Trento, Northern Italy) in both above- and belowground pools, according to the Kyoto protocol and IPCC requirements. A total of 150 forest sampling points were selected on the entire regional area (6206 km2) with a statistical sampling approach, based on the timber volume as a proxy variable for a stratified sampling. Each sampling point was located with a GPS receiver and a 600 m2 circular plot was delimited around each point. Inside the plots, the biomass of trees, shrubs and herbaceous vegetation was measured, while litter was collected in systematically placed subplots. Topsoil (down to 30 cm depth) was sampled with the excavation method on three systematically located pits, to determine the organic carbon content, the bulk density and the volume occupied by stones and roots.  相似文献   

11.
Temperate forests are an important carbon sink, yet there is debate regarding the net effect of forest management practices on carbon storage. Few studies have investigated the effects of different silvicultural systems on forest carbon stocks, and the relative strength of in situ forest carbon versus wood products pools remains in question. Our research describes (1) the impact of harvesting frequency and proportion of post-harvest structural retention on carbon storage in northern hardwood-conifer forests, and (2) tests the significance of including harvested wood products in carbon accounting at the stand scale. We stratified Forest Inventory and Analysis (FIA) plots to control for environmental, forest structural and compositional variables, resulting in 32 FIA plots distributed throughout the northeastern U.S. We used the USDA Forest Service's Forest Vegetation Simulator to project stand development over a 160 year period under nine different forest management scenarios. Simulated treatments represented a gradient of increasing structural retention and decreasing harvesting frequencies, including a “no harvest” scenario. The simulations incorporated carbon flux between aboveground forest biomass (dead and live pools) and harvested wood products. Mean carbon storage over the simulation period was calculated for each silvicultural scenario. We investigated tradeoffs among scenarios using a factorial treatment design and two-way ANOVA. Mean carbon sequestration was significantly (α = 0.05) greater for “no management” compared to any of the active management scenarios. Of the harvest treatments, those favoring high levels of structural retention and decreased harvesting frequency stored the greatest amounts of carbon. Classification and regression tree analysis showed that management scenario was the strongest predictor of total carbon storage, though site-specific variables were important secondary predictors. In order to isolate the effect of in situ forest carbon storage and harvested wood products, we did not include the emissions benefits associated with substituting wood fiber for other construction materials or energy sources. Modeling results from this study show that harvesting frequency and structural retention significantly affect mean carbon storage. Our results illustrate the importance of both post-harvest forest structure and harvesting frequency in carbon storage, and are valuable to land owners interested in managing forests for carbon sequestration.  相似文献   

12.
This study estimates the carbon stock of Banja Forest which is natural and dry Afromontane forest type in Banja District, northwest of Ethiopia. A systematic sampling method was used to identify each sampling point through the Global Positioning System. A total of 63 plots measuring 20 × 20 m were employed to collect tree species and soil data. Losses on ignition and the Walkley–Black method were used to estimate biomass and soil carbon stock, respectively. The carbon stock of trees was estimated using an allometric equation. The results revealed that the total carbon stock of the forest was 639.87 t/ha whereas trees store 406.47 t/ha, litter, herbs, and grasses (LHGs) 2.58 t/ha and soil 230.82 t/ha (up to 30 cm depth). The carbon pools’ carbon stock variation with altitude and slope gradients were not significant (p > 0.05) which was similar to other previous studies. The Banja Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. It can be concluded that the Forest plays a role in climate change mitigation. Hence, it should be integrated with reduced emission from deforestation and degradation (REDD+) and the clean development mechanism (CDM) of the Kyoto Protocol to catch monetary benefits.  相似文献   

13.
森林生态系统碳储量及碳通量遥感监测研究进展   总被引:1,自引:2,他引:1  
在全球CO2浓度持续增加导致气候变暖的背景下,森林生态系统碳储量及碳通量遥感大尺度监测成为关注热点。文中深入分析了当前国内外卫星遥感观测技术对森林碳循环评估的2种途径:1)基于遥感手段估算森林生物量并推算森林碳储量,通过碳储量变化确定森林生态系统的CO2通量。归纳各类森林生物量遥感估算方法的原理及优缺点,系统评述各类方法在大区域森林碳储量估算中存在的不确定性。2)基于CO2温室气体观测卫星遥感数据,定量监测森林生态系统与大气CO2通量,基于交换的CO2通量推算森林碳储量变化。归纳遥感手段观测森林生态系统与大气CO2通量的主要数据、方法及优缺点,系统评述各类数据及方法在森林CO2通量时空变化特征监测、森林碳储量估算等方面取得的进展,重点分析专用CO2浓度监测卫星数据,尤其是我国自主碳卫星数据在CO2柱浓度反演算法研究以及不同数据源之间的对比、验证和同化研究等方面取得的进展,总结专用温室气体遥感观测数据在森林碳储量及碳通量监测方面的优势。提出利用遥感手段进行森林生态系统碳循环定量监测的研究展望。  相似文献   

14.
Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing’an Mountains (Greater Xing’an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.  相似文献   

15.
对林业活动项目进行碳库计量监测,了解项目固碳释氧价值是评估森林碳汇功能的重要组成部分,也是提高森林碳汇功能的基础。介绍林业活动的相关概念和碳库监测内容、因子与方法,并根据森林碳库监测现状,提出构建森林碳库监测体系尚需深入研究的问题。  相似文献   

16.
Carbon sequestered in biomass is not necessarily stored infinitely, but is exposed to human or natural disturbances. Storm is the most important natural disturbance agent in Swiss forests. Therefore, if forests are taken into account in the national carbon budget, the impact of windthrow on carbon pools and fluxes should be included. In this article the forest scenario model MASSIMO and the soil carbon model YASSO were applied to assess the effect of forest management and an increased storm activity on the carbon sequestration in Swiss forests. First, the soil model was adapted to Swiss conditions and validated. Second, carbon fluxes were assessed applying the two models under various forest management scenarios and storm frequencies. In particular, the influence of clearing after a storm event on the carbon budget was analyzed. The evaluation of the model results showed that the soil model reliably reproduces the amount of soil carbon at the test sites. The simulation results indicated that, within the simulated time period of 40 years, forest management has a strong influence on the carbon budget. However, forest soils only react slightly to changes in the above-ground biomass. The results also showed that a storm frequency increase of 30% has a small impact on the national carbon budget of forests. To develop effective mitigation strategies for forest management, however, longer time periods must be regarded.  相似文献   

17.
Forests play an important role in carbon sinks and mitigation of atmospheric concentrations of carbon dioxide and greenhouse effect. Given that sample plots used for collection of forest carbon observations are often much smaller than the map units of forest carbon at regional, national, and global scales, scientists are currently experiencing two challenges. The first challenge is to produce reliable maps of forest carbon using the data from inconsistent sizes of plots and image pixels. Also, because estimates of forest carbon normally contain uncertainties, the second challenge is to accurately model propagation of uncertainties from input data to output results. In this study, a methodology for mapping and analyzing spatial uncertainty of forest carbon estimates was developed to address these challenges. The methodological framework consisted of two methods. The first one was up-scaling method that combined and scaled up existing national forest inventory plot data and satellite images from smaller sample plots and image pixels to larger map units. The second one was spatial uncertainty analysis and error budget method that entailed modeling propagated uncertainties through a geostatistical mapping system. A case study using 46 permanent national forest inventory plots from Wu-Yuan County, Jiangxi, China, was undertaken to test this methodology. The results showed that this method reproduced not only the spatial distribution of forest carbon but also the spatial pattern of variances of its estimates and was able to quantify the contributions of uncertainties from the field plot data and satellite images to the uncertainties of forest carbon estimates. Thus, this study, to some extent, overcame the gaps that currently exist in the generation and assessment of forest carbon estimation maps. Moreover, the results showed that in this case study, the variation of the band ratio defined as (TM2 + TM3 + TM5)/TM7 contributed more uncertainties to the estimates of forest carbon than the variation of the plot data. In addition, we also found out that the product of the input plot forest carbon variance and the band ratio variance, implying the interaction between these two variables, reduced the uncertainties of the forest carbon estimates.  相似文献   

18.
Mass transformations were estimated in burns in the clearings of three colonist lots near Altamira, Pará, Brazil. In each lot, two groupings of six 60-m2 plots were established in sites where the forest had been recently felled; plots were arranged as rays in a star-shaped pattern, with pre- and post-burn measurements made in alternate rays. Pre- and post-burn above-ground biomass was estimated by cutting and weighing the felled vegetation in 15 pre-burn and 18 post-burn plots (three pre-burn plots could not be weighed before one of the colonists burned the clearing) and by line intersect sampling (LIS) done along the axis of each of the 36 plots. Because of the high variability of the initial biomass present in the plots, volume data from LIS were more reliable for assessing change in the biomass of material over 10 cm in diameter (because this technique permits measuring the same trees before, and after, burning); other quantities relied on data from direct weighing. The best estimate of the mean pre-burn above-ground biomass at the site is 263 metric tons per hectare (t ha−1); considering available measurements of the proportion of below-ground biomass elsewhere in Amazonia, the total dry weight biomass at the Altamira site corresponds to ≈322 t ha−1. Assuming 50% carbon (C) content for biomass, the above-ground biomass at Altamira represents a carbon stock of 130 t ha−1. Assuming a carbon content of 75% for charcoal, 1.3% of the pre-burn above-ground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models.Measurements at Altamira imply a 42% reduction of above-ground carbon pools if calculated along with the scattered trees that farmers leave standing in their clearings, or 43% if these trees are excluded from the analysis. These values are substantially higher than the 27.6% measured in an earlier study near Manaus. However, most of the difference between results at the two sites is explained by differences in the distribution of initial biomass among the fractions, especially greater quantities of vines and of litter (including dead wood <5 cm in diameter) than at Manaus. Smaller diameter pieces burn more thoroughly than larger ones. At Altamira, the large percentage of above-ground carbon in vines (12.0%) is less typical of Amazonian forests than the lower percentage at Manaus (3.1%). The lower overall burning efficiency found at Manaus is, therefore, believed to be more typical of Amazonian burning. High variability indicates a need for further studies in many localities, and for perfecting less laborious indirect methods. Both a high biomass and low percentage of charcoal formation suggest significant potential contribution of forest burning to global climate changes from CO2 and trace gases.  相似文献   

19.
Changes in tree mortality due to severe drought can alter forest structure,composition,dynamics,ecosystem services,carbon fluxes,and energy interactions between the atmosphere and land surfaces.We utilized long-term(2000-2017,3 full inventory cycles) Forest Inventory and Analysis(FIA) data to examine tree mortality and biomass loss in drought-affected forests for East Texas,USA.Plots that experienced six or more years of droughts during those censuses were selected based on 12-month moderate drought severity [Standardized Precipitation Evaporation Index(SPEI)-1.0].Plots that experienced other disturbances and inconsistent records were excluded from the analysis.In total,222 plots were retained from nearly 4000 plots.Generalized nonlinear mixed models(GNMMs) were used to examine the changes in tree mortality and recruitment rates for selected plots.The results showed that tree mortality rates and biomass loss to mortality increased overall,and across tree sizes,dominant genera,height classes,and ecoregions.An average mortality rate of 5.89% year~(-1) during the study period could be incited by water stress created by the regional prolonged and episodic drought events.The overall plot and species-group level recruitment rates decreased during the study period.Forest mortality showed mixed results regarding basal area and forest density using all plots together and when analyzed the plots by stand origin and ecoregion.Higher mortality rates of smaller trees were detected and were likely compounded by densitydependent factors.Comparative analysis of drought-induced tree mortality using hydro-meteorological data along with drought severity and length gradient is suggested to better understand the effects of drought on tree mortality and biomass loss around and beyond East Texas in the southeastern United States.  相似文献   

20.
Given the high percentage of private forest ownership in Finland, family forest owners have an important role in mitigating climate change. The study aims to explore Finnish family forest owners’ perceptions on climate change and their opinions on increasing carbon storage in their forests through new kinds of management activities and policy instruments. The data consists of thematic face-to-face interviews among Helsinki metropolitan area forest owners (n?=?15). These city-dwellers were expected to be more aware of and more interested in climate change mitigation than forest owners at large. Forests as carbon fluxes appear to be a familiar concept to most of the forest owners, but carbon storage in their own forests was a new idea. Four types concerning forest owners’ view on storing carbon in their forests could be identified. The Pioneer utilizes forestland versatilely and has already adopted practices to mitigate climate change. The Potential is concerned about climate change, but this is not seen in forest practices applied. The Resistant is generally aware of climate change but sees a fundamental contradiction between carbon storing and wood production. The Indifferent Owner believes that climate change is taking place but does not acknowledge a relation between climate change and the owner’s forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号