首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
For estimating the amount of carbon (C) in dead wood, conversion factors from raw volume per decay class to dry weight were developed using three different classification systems for the species Norway spruce (Picea abies L. Karst), Scots pine (Pinus sylvestris L.) and birch (Betula pendula Roth and B. pubescens Ehrh) in Sweden. Also the C concentration in dead wood (dry weight) was studied. About 2500 discs were collected from logs in managed forests located on 289 temporary National Forest Inventory (NFI) sample plots and in 11 strips located in preserved forests. The conversion factors were based on an extensive data compilation with a wide representation of different site-, stand-, species- and dead wood properties and were assumed to represent the population of fallen dead wood in Sweden. The density decreased significantly by decay class and the range in density for decay classes was widest for the NFI decay classification system, suggesting this to be the most suitable. The C concentration in dead wood biomass increased with increasing decay class and in average Norway spruce (P. abies) showed a lower C concentration than Scots pine (P. sylvestris). The average dead wood C store of Swedish forests was estimated to 0.85 Mg C/ha.  相似文献   

2.
Rotfinder is a non-destructive decay-sensing apparatus based on resistance measurements in standing trees. The accuracy of Rotfinder in detecting decay was evaluated in 500 standing trees in three Norway spruce (Picea abies) plots. Trees were measured at three heights, 0.30, 0.66 and 1.30 m. Sections were later inspected for the presence of decay and reaction zones. Inspected trees were mostly infected by Heterobasidion annosum and showed a large variation in the amount of decay present, ranging from 0.1% to 88.0% of the section. Correctly and incorrectly classified trees were compared in terms of ion and element concentration, density and moisture. Measurements at stump level (0.30 m) were more accurate than measurements at breast height (1.30 m) where the reaction zone and decay columns showed lower moisture content. The accuracy of Rotfinder increased when trees with small decay columns were regarded as ‘non-decayed’. When only trees with more than 15% of the section decayed were regarded as ‘decayed’, Rotfinder had an accuracy of 0.86 when performing assessments at stump level. False negatives, as opposed to true positives, corresponded to trees with smaller and drier decay columns, drier reaction zones and lower K+ (potassium) concentration in the decay column. False positives corresponded to trees with large sapwood and high sodium content in the sapwood. Rotfinder represents an alternative to the standard method of using increment core observations to assess decay in living trees.  相似文献   

3.
Woodpeckers, able to excavate holes in trees, can provide resources critical for non-excavator hole users. Supply of woodpecker-made holes in forests depends on excavation rates by the birds and holes’ persistence times. I use 30 years of data from a primeval forest (strictly protected reserve, Bia?owie?a National Park, E Poland) to determine how long woodpecker-made holes persist, and whether their persistence varies across forest types, tree species and conditions, and woodpecker species. I followed the fate of 719 breeding holes, excavated by eight woodpecker species, for up to 27 years, from 1979 to 2010. Almost 80% of hole losses were caused by collapse of either the tree or the section supporting the hole. Holes were retained for (median) 6-7 years in riverine and oak-hornbeam forest but 10 years in coniferous forest. These differences can be explained by almost completely non-overlapping sets of tree species used in these different habitats. Lifespan of holes varied by tree species, ranging from four (Picea abies) to >22 years (Pinus sylvestris, almost 100% dead). The long lifespan of holes in the dead Pinus was exceptional, as otherwise, persistence was much lower for holes excavated in dead trees or limbs (5 years) than for those in living substrates (9 years). Tree species with higher frequency of holes in dead wood showed lower persistence times of holes. Lifespans of holes excavated by individual woodpecker species varied widely and was strongly dependent on frequency with which the species excavated in dead wood. Holes of Dendrocopos minor and Dendrocopos leucotos (only in dead wood) persisted for four years, while holes of Dendrocopos major (able to excavate in living sapwood of some trees) lasted for nine, and those of Dryocopus martius for 18 years. Retention of dead P. sylvestris, decaying Quercus robur in stands and addition/retention of aspens (Populus tremula and Populus tremuloides) in them would provide conditions to increase the availability of relatively persistent woodpecker holes in forests of the Northern hemisphere.  相似文献   

4.
Many mountain forests in the Swiss Alps are dense and overmature. The resulting lack of tree regeneration threatens their future ability to provide products and services for humans, e.g., protecting settlements and infrastructure against avalanches. To promote natural regeneration, slit-shaped gaps have been cut since the 1980s in many of Switzerland's Alpine forests dominated by Norway spruce (Picea abies). However, little is known about the success of this silvicultural technique. We sampled 38 gaps in 2001 and 2006 and analysed the density and vitality of P. abies seedlings in these gaps, and monitored the growth and survival of selected seedlings between the two inventories. The gaps analysed were located in upper montane and subalpine P. abies dominated forests in the Vorderrhein valley in the Grisons. The density and vitality of large (10–129 cm tall) and small (<10 cm tall) P. abies seedlings were assessed in three parallel transects running perpendicular to the longitudinal axis of each gap. The mean density of large seedlings increased significantly between 2001 and 2006 from 0.1 to 0.3 seedlings/m2, whereas that of small seedlings stayed constant at 0.7 seedlings/m2, even though it shifted locally between inventories. Significantly higher regeneration densities were found for gaps with NE–SW orientation (afternoon sun) and for those located at lower altitudes. While in gaps on North-facing slopes large P. abies seedlings were more frequent on the middle transect, in gaps on South-facing slopes they were denser near the lower gap edge which is usually less exposed to direct radiation. As expected regeneration density was significantly higher within the gaps than just outside underneath the adjacent stands for all P. abies seedlings. Damage caused by browsing did not turn out to be problematic in this study site. From the selected 280 small seedlings monitored in 2001, 53% died until 2006, 33% became large seedlings and 14% remained small (<10 cm). Our results suggest that creating slit-shaped gaps is a successful procedure to promote P. abies regeneration in the upper montane and subalpine belt of the northern intermediate Alps and helps to preserve protection forests and their goods and services for the coming generations.  相似文献   

5.
Requirements for emission reporting under the Kyoto protocol demand an estimate of the dead wood carbon pool in forests. The volume of dead wood consists of coarse woody debris, smaller woody debris and dead roots. The measurement of dead wood volume was included in the most recent National Forest Inventory in Switzerland. To convert dead wood volume into carbon two conversion factors are required: (a) carbon (C) concentration and (b) wood density. So far internationally accepted default values for C concentration (50%) and for wood density (density of alive trees) were used as default values to estimate dead wood carbon, since local measurements were lacking. However, in a field study at 34 sites in Switzerland, the C concentration and density of CWD from Picea abies and Fagus sylvatica of four decay classes were measured recently. The results showed that C concentration in CWD differed significantly between species but did not change due to decay class. The density of CWD decreased significantly with an increase in decay class and it also differed between species. The decrease in CWD density was more pronounced for F. sylvatica than for P. abies. We assessed correlations between climate attributes and CWD density using regression analysis. The modeled densities and measured C concentrations were then expanded with the help of CWD volume data from the NFI3. Spruce CWD and thus spruce CWD carbon is much more abundant in Swiss forests than beech CWD carbon. The majority of spruce CWD is located in the Alps and Pre-Alps. The CWD volume from P. abies was 10 times higher than that from F. sylvatica. Thus, changes in conversion factors for P. abies CWD affected the overall estimate of dead wood carbon in Swiss forests much more than changes in conversion factors for F. sylvatica CWD. Current improvements in CWD conversion factors decreased the estimated amount of spruce CWD carbon by 23.1% and that of beech by 47.6%. The estimated amount of CWD carbon in Swiss forests is decreased by 31%. Since improved estimation methods are currently not applied to smaller woody debris and dead root material, the estimated amount of dead wood carbon is only reduced by 15%. Improving conversion factors for all dead wood fractions would presumably decrease the amount of dead wood carbon by additional 16%.  相似文献   

6.
The biomass and decomposition of coarse woody debris (CWD, ≥10 cm in diameter) were studied in a monsoon evergreen broad-leaved old-growth forest in Dinghushan Nature Reserve, Southern China. The study examined the biomass of CWD from 1992 to 2008 and decomposition of three dominant tree species CWD (Castanopsis chinensis, Cryptocarya concinna, Schima superba) from 1999 to 2008. Changes in the wood density of three tree species’ CWD were used to estimate the decay rates with a single exponential model. The results showed that the biomass of CWD in the old-growth forest was increasing from 17.41 tonnes ha−1 (t ha−1) in 1992 to 38.54 t ha−1 in 2008, and a higher decay constant was observed for C. concinna (0.1570 – 19 years for 95% mass loss); the decay rates of S. superba and C. chinensis were 0.1486 (20 years for 95% mass loss) and 0.1095 (27 years for 95% mass loss), respectively. The difference in decay constant rates may be due to their substrate quality and decomposers. The content of carbon (C) in three species declined after 9 years of decay. Nitrogen (N) content increased in all species with decay. The C/N ratio in the three species declined during the decay process.  相似文献   

7.
Coarse woody debris (CWD) has become recognised as an important component of the carbon (C) pool in forest ecosystems. In Ireland, managed Sitka spruce (Picea sitchensis (Bong) Carr.) forests account for 52.3% of the total forest estate. To determine the stock and decay dynamics of above and belowground CWD, field surveys using fixed area sample plots, were conducted in six even-aged Sitka spruce stands, representing the young, intermediate and mature stages of a typical commercial rotation. The volume, mass, density loss and C:N ratio of all CWD types (logs, stumps, and coarse roots) were determined using a five-decay class (DC) system. The decay rates and half life of CWD was also determined. To estimate CWD coarse root mass; roots associated with stumps classified in different decay classes were excavated. The coarse roots were categorised into small (2-10 mm), medium (10-50 mm) and large (>50 mm) diameter classes.CWD C-mass ranged from 6.98 to 18.62 Mg ha−1 and was highest in an intermediate forest (D35), while the aboveground volume varied from 6.31 to 42.27 m3 ha−1. Coarse roots accounted for 21% to 85% of the total CWD C-pool in the surveyed stands. The total CWD C-mass was poorly correlated with the number of thinning events (R2 = 0.29), when data from D35 was excluded. The density loss was significant in logs (45%), stumps (58%), and small- (38%), medium- (50%) and large roots (38%) as decay progress from DC 0 to 4. There was a 46%, 41%, 51%, 72% and 57% decline in C:N ratio of logs, stumps, small-, medium- and large roots, respectively, as decay progressed from DC 0 to 4. The density decay rates were 0.059, 0.048 and 0.036 kg m−3 year−1 for logs, stumps and coarse roots, respectively. The size classification of roots did not significantly affect their decay rate. The half life (50% decomposition) of CWD was estimated has 12-, 14- and 19 years for logs, stumps and roots of Sitka spruce. Regression curves showed a strong correlation between the density and C:N ratio (R2 = 0.69, 0.74 and 0.93 for logs, stumps and coarse roots, respectively). The long term storage of C and its slow rate of decomposition make CWD a vital structural and functional component of the CWD C-pool and a major controller of forest ecosystem C-retention.  相似文献   

8.
The introduction of non-native pathogens can have profound effects on forest ecosystems resulting in loss of species, changes in species composition, and altered fuel structure. The introduction of Phytophthora ramorum, the pathogen recognized as causing Sudden Oak Death (SOD), leads to rapid decline and mortality of tanoak (Lithocarpus densiflorus) in forests of coastal California, USA. We tracked foliar moisture content (FMC) of uninfected tanoaks, SOD-infected tanoaks, SOD-killed (dead) tanoaks, and surface litter for 12 months. We found that FMC values differed significantly among the three categories of infection. FMC of uninfected tanoaks averaged 82.3% for the year whereas FMC of infected tanoaks had a lower average of 77.8% (ANOVA, P = 0.04). Dead trees had a significantly lower FMC, averaging 12.3% (ANOVA, P < 0.01) for the year. During fire season (June–September), dead tanoak FMC reached a low of 5.8%, with no significant difference between dead canopy fuels and surface litter (ANOVA, P = 0.44). Application of low FMC values to a crown ignition model results in extremely high canopy base height values to escape crown ignition. Remote estimation of dead FMC using 10-h timelag fuel moisture shows a strong correlation between remote automated weather station (RAWS) 10-h timelag fuel moisture data and the FMC of dead leaves (R2 = 0.78, P < 0.01). Results from this study will help refine the decision support tools for fire managers in SOD-affected areas as well as conditions in other forests where diseases and insect epidemics have altered forest canopy fuels.  相似文献   

9.
We monitored the decomposition of mixed leaf litter (Quercus spp., Carya spp., and Pinusechinata) in a Missouri Ozark forest eight years after experimental harvest. Leaf litter mass losses and changes in carbon chemistry (extractive, acid soluble, and acid insoluble fractions) were measured over 32 months in field incubations to determine the effects of litter composition and stand manipulation on decomposition and nitrogen (N) concentration in the remaining litter. The decay (k) rate over this period ranged between 0.39 (±0.010) and 0.51 (±0.002) year−1 for oak, oak–hickory, and oak–pine litter. There were significant main effects of stand manipulation (p = 0.03) and litter type (p < 0.01) on decay. Mass losses of oak and oak–hickory litter were 7% (p = 0.02) and 4% (p = 0.04) higher on harvested stands than controls, respectively. Mass loss of oak–hickory litter was 3% faster than oak–pine (p = 0.03) and 6% faster than oak (p = 0.02) litter on control stands, whereas the oak–hickory litter mass loss was 5% higher than oak litter on harvested stands (p = 0.01). The decay (k) rate had a linear relationship with initial leaf litter nitrogen content and lignin-to-N ratio. The nitrogen concentration in remaining litter had a nonlinear relationship to cumulative mass loss suggesting an exogenous source of N. In summary, this study demonstrated significant effects of timber harvest and litter mixtures on decomposition and N dynamics in a managed Missouri Ozark forest.  相似文献   

10.
Dead wood is an important component of forest ecosystems and volumes vary depending on forest age, management intensity and productivity. This is the first large-scale study to quantify dead wood in Irish forests and to compare them to forests in other locations. We measured the volume and size distribution of logs, the density and size distribution of snags and the volume of dead wood contained in stumps in Oak (Quercus spp.) and Ash (Fraxinus excelsior) forests and in Sitka spruce (Picea sitchensis) plantations throughout Ireland. We also assigned each log, snag and stump to one of three decay classes (intact, part-rotted and well-rotted). We found no significant difference in log volume between any of the forest types. The majority (>90%) of logs were less than 20 cm in diameter, and large logs (>40 cm diameter) were scarce. We found a relatively high density of snags in all forest types but, as in the case of logs, over 90% of snags were <20 cm DBH and large snags (>40 cm DBH) were rare. The volume of dead wood contained in stumps was significantly higher in plantations than in Oak or Ash forests as a result of thinning and harvesting. Most logs and snags were moderately decayed but, in plantations, most stumps were intact. Log volume and the size of logs and snags were considerably lower than in old-growth forests in other regions. These patterns may reflect historical use of Irish forests for coppice and timber production. Management for biodiversity should aim to accelerate dead wood accumulation to increase the frequency of large-diameter logs and snags. Although management seeking to replicate the dead wood volumes of old-growth forests is ideal, it may be unrealistic in the short term.  相似文献   

11.
Norway spruce (Picea abies) trees infected by Heterobasidion annosum s.l. decrease their periodic increment after a long period of time. Periodic increment decrease hypothetically relates to the formation of a reaction zone in order to prevent fungal colonisation. We studied 11 stands in Sweden, where we compared the periodic increment of healthy, rotten- and H. annosum-infected trees growing on plots thinned in winter, unthinned or thinned in summer, with and without urea or P. gigantea treatment of the stumps. Based on the rot incidence and the population structure of H. annosum of the plots, two phases of infection were considered: > 13 years and < 13 years. The presence of reaction zone and decay was observed on wood cores extracted with an increment borer. Rotten and H. annosum-infected trees with reaction zones exhibited a lower periodic increment than healthy trees (13.0% and 12.5% losses in terms of diameter, respectively), while no differences were observed between healthy trees and rotten and H. annosum-infected trees without reaction zone. Our results support the hypothesis of a periodic increment decrease in individual trees due to photosynthate re-allocation resulting from decay compartmentalization. Periodic increment decrease was only evident in trees that had been infected for more than 13 years. Trees in urea-treated plots registered a higher periodic increment, suggesting a possible response of trees to the nitrogen addition of the urea treatment of the stumps.  相似文献   

12.
Storms can turn a great proportion of forests’ assimilation capacity into dead organic matter because of windthrow and thus its role as a carbon sink will be diminished for some time. However, little is known about the magnitude or extent to which storms affect carbon efflux. We compared soil CO2 fluxes in wind-thrown forest stands with different time periods since a storm event, and with different management practices (deadwood cleared or left on-site). This study examined changes in soil CO2 efflux in two windthrow areas in north-eastern Estonia and one area in north-western Latvia, which experienced severe wind storms in the summers of 2001, 2002 and 1967, respectively. We measured soil CO2 fluxes in stands formerly dominated by Norway spruce (Picea abies L. Karst.) with total and partial canopy destruction (all trees or roughly half of the trees in stand damaged by storm), in harvested areas (material removed after the wind storm) and in control areas (no damage by wind). Removal of wind-damaged material decreased instantaneous CO2 flux from the soil surface. The highest instantaneous fluxes were measured in areas with total and partial canopy destruction (0.67 g CO2 m−2 h−1 in both cases) compared with fluxes in the control areas (0.51 g CO2 m−2 h−1), in the new storm-damaged areas where the material was removed (0.57 g CO2 m−2 h−1) and in the old storm-damaged area where wood was left on site (0.55 g CO2 m−2 h−1). The only factor affecting soil CO2 flux was location of the measuring collar (plastic collar with diameter 100 mm, height 50 mm) - either on undamaged forest ground or on the uprooted tree pit, where the mineral soil was exposed after disturbance. New wind-thrown stands where residues are left on site would most likely turn to sources of CO2 for several years until forest regeneration reaches to substantial assimilation rates. New wind-thrown stands where residues are left on site would most likely tend to have elevated CO2 fluxes for several years until forest regeneration reaches to substantial assimilation rates. However, forest managers might be concerned about the amounts of CO2 immediately released into the atmosphere if the harvested logs are burned.  相似文献   

13.
The aim of this study was to describe the dynamics of seedling establishment and development in spruce-dominated uneven-aged boreal forests. The study was based on empirical data from 15 stands with permanent plots, which had been intensively monitored for 10 years in southern Finland. All trees (height > 1.3 m) were measured every fifth year. Regeneration was measured on 64 permanent sample plots (4 m2) in each stand. The establishment of first-year seedlings was analysed on a yearly basis. The survival and development of older Norway spruce (Picea abies (L.) H. Karst.) seedlings were analysed based on observations made every five years. The establishment of spruce seedlings was closely correlated with the abundance of seed crops. Seedling cohorts originating from abundant seed crops were clearly detectable in the development of seedling height distributions over time. It took about 15 years for spruce seedlings to reach a height level of 15-30 cm. Local basal area had hardly any effect on the emergence or survival of small spruce seedlings, while the number of higher spruce seedlings decreased with increasing local basal area.  相似文献   

14.
We assessed shrew (soricids) response to coarse woody debris (CWD) manipulations in managed upland loblolly pine (Pinus taeda) stands in the upper Coastal Plain of South Carolina over multiple years and seasons. Using a completely randomized block design, we assigned one of the following treatments to 12, 9.3-ha plots: removal (n = 3; all CWD ≥ 10 cm in diameter and ≥60 cm long removed), downed (n = 3; 5-fold increase in volume of down CWD), snag (n = 3; 12-fold increase in standing dead CWD), and control (n = 3; unmanipulated). Therein, we sampled shrews during winter, spring, and summer seasons, 2003–2005, using drift-fence pitfall arrays. During 1680 drift-fence plot nights we captured 253 Blarina carolinensis, 154 Sorex longirostris, and 51 Cryptotis parva. Blarina carolinensis capture rate was greater in control than in snag treatments. Sorex longirostris capture rate was lower in removal than downed and control plots in 2005 whereas C. parva capture rate did not differ among treatments. Overall, the CWD input treatments failed to elicit the positive soricid response we had expected. Lack of a positive response by soricid populations to our downed treatments may be attributable to the early CWD decay stage within these plots or an indication that within fire-adapted pine-dominated systems of the Southeast, reliance on CWD is less than in other forest types.  相似文献   

15.
Deadwood is an important resource commonly used by inhabitants in arid lands. However, the low wood productivity and the presence of multi-stemmed trees restrict the use. Prosopis flexuosa woodlands are protected and inhabited by pastoralists who have land rights to use natural resources. As in other forests in the world, dead branches are the most commonly used. The factors causing the death of branches these trees are unknown. As P. flexuosa is a highly heliophilous species, branch mortality may depend on the growth habit and orientation of dry branches under the tree crown. With the participation of inhabitants, we assessed the present availability of deadwood in two Prosopis woodlands of different structure (semi-closed and open woodland), and evaluated the formation of deadwood in terms of shape and cardinal location of dry branches under the crown. We developed and compared regression models to estimate the amount of deadwood for erect, semi-erect and decumbent trees, and for the north and south areas under the crown (n = 120 trees). In addition, to determine the period of growth decline and the factors determining branch mortality, we compared annual radial increment between live and dead branches (n = 30 trees; 10 for each tree shape). The total amount of deadwood in adult Prosopis trees is higher in the semi-closed than in the open woodland (8.6 and 4.4 Tn ha−1, respectively). Only tree size determined the amount of deadwood present in each Prosopis tree, since we found no evidence related to the shape of the tree or the position of dry branches in the canopy. Branch decay was a large process of 18-20 years, and branch death appears to be the result of the action of climatic factors (dry period). The results suggest that the use of deadwood by the desert inhabitants is a tool that can potentially be used; however, the use of this resource taking into account the generation rates of deadwood has not been developed in arid lands. These practices at appropriate sites can contribute to a sustainable management of these woodlands, including the removal of deadwood in a model of local management on a site where potential productivity is relatively low.  相似文献   

16.
The long-term development of stand characteristics and tree spatial patterns (TSP), their mutual relation, and linkage to site and tree species were studied in the Boubín primeval forest (protected since 1858). Surveys were carried out in 1851, 1961/1964, 1972, 1984/1989, 1996 and 2010 on one to six research plots sized 0.58-1.00 ha. To see how results from these surveys could be generalized, results were also compared with whole-area data sets (46 ha) from 1972 to 2010.The proportion of Abies alba continually decreased, from 20% in 1851 to 2-3% in 2010. This decrease started no later than at the beginning of the 20th century. In contrast, the proportion of Fagus sylvatica slightly increased. The sum of dead and living wood volume was stable during the 159 year period, with deviations of only up to 5%. From 1961/64 to 2010, the number of living trees continually decreased, but the mean-tree volume and volume of dead wood increased. The distribution of dead wood always differed from the distribution of living trees.A random TSP was always most common, which seems to be typical for this type of forest. This was true even when A. alba was gradually forced out from the stand structure. Nevertheless, the pronounced decrease of A. alba found during the 1961/64 survey compared with 1851 was reflected in a tendency towards clustering, as gaps from A. alba dieback gradually closed. In these gaps, competitive pressure was lower, resulting in more clustered distributions. Regular distribution was recorded only rarely. F. sylvatica maintained a random or clustered TSP over long periods, depending on site conditions. On water-affected plots, it had a consistently higher tendency towards clustering. The only step change in TSP occurred due to Hurricane Emma in 2008. Otherwise, the most marked TSP changes over time were found for Picea abies, in which there was a gradual trend from clustered to random, connected with a decreasing number of individuals.The main reason for the decline of A. alba and the decreased number of living trees from 1961/64-2010 was the on-going effect of a high stock of red deer at the turn of the 19th and 20th centuries. The decreasing trend in the number of living trees showed no marked change, even 60 years after the game pressure was strongly reduced. However, the vertical structure became increasingly homogenized due to the long-term absence of severe abiotic and/or biotic disturbances.  相似文献   

17.
In this study the hydrological regime of Norway spruce (Picea abies) and birch (Betula pendula) growing on heavy soils in the south east of Austria was analysed. Results from the year 2003 characterised by an extremely hot and dry summer are presented in this paper. Due to the extreme weather conditions the soil water content in August 2003 was very low (0.10–0.25 m3 m−3) in the topsoil (0–50 cm) with no explicit difference between both tree species.  相似文献   

18.
Decomposing stumps could significantly increase soil resource heterogeneity in forest ecosystems. However, the impact of these microsites on nutrient retention and cycling is relatively unknown. Stump soil was defined as the soil fraction directly altered by the decomposition of the primary rooting system (e.g. taproots) and aboveground stumps. Study sites were located in mature hardwood stands within the Jefferson National Forest in the Ridge and Valley Physiographic region of southwest Virginia. The objectives of this study were to: (i) determine the total soil volume altered by the decomposition of stumps and underlying root system, (ii) compare and contrast total C and N, extractable ammonium (NH4+) and nitrate (NO3), potentially mineralizable N, microbial biomass C (MBC), root length and root surface area between the bulk soil (i.e. O, A, B and C horizons) and stump soil and (iii) evaluate how nutrient concentrations and fine-root dynamics change as stumps decompose over time using a categorical decay class system for stumps. Potentially mineralizable N was 2.5 times greater in stump soil than the A horizon (103 mg kg−1 vs. 39 mg kg−1), 2.7 times greater for extractable NH4+ (16 mg kg−1 vs. 6 mg kg−1) and almost 4 times greater for MBC (1528 mg kg−1 vs. 397 mg kg−1). Approximately 19% of the total fine-root length and 14% of fine-root surface area occurred in the stump soil. Significant differences occurred in C and N concentrations between all four decay classes and the mineral soil. This validated the use of this system and the need to calculate weighted averages based on the frequency and soil volume influenced by each decay class. In this forest ecosystem, approximately 1.2% of the total soil volume was classified as stump soil and contained 10% and 4% of soil C and N. This study illustrates that including stump soil in soil nutrient budgets by decay class will increase the accuracy of ecosystem nutrient budgets.  相似文献   

19.
Interest in the use of bioenergy is increasing because of the need to mitigate climate change, the increasing costs and finite supply of fossil fuels, and the declining price of lumber and paper. Sound bioenergy policies must be informed by accurate estimates of potential feedstock production, rights to the production, social values and economics. Two of the main sources of bioenergy feedstock from forests are (i) harvesting residue and (ii) dead wood resulting from natural disturbances (i.e. standing dead timber). We modeled the production of bioenergy feedstock from these two sources from 2005 to 2020 for Canada's managed forest south of 60° N so that this information can be used in provincial and national strategic planning. Published estimates of harvesting residue vary widely, and our objective was to provide more precise estimates based on new forest inventory data and regional modeling. Natural disturbances result in very large quantities of dead wood on the landscape, but estimates of future stocks and annual production have not previously been made. Our estimates included a 50% discount factor to net-down theoretically available quantities to a more realistic estimate of potential ecologically sustainable bioenergy feedstock. The total future annual production averaged 51 ± 17 Tg year−1 from natural disturbances and 20 ± 0.6 Tg year−1 from clearcut harvesting residues. Harvesting residue for the area logged varied spatially from a low of 1.0 ± 0.77 kg m−2 year−1 to a high of 6.7 ± 0.1 kg m−2 year−1. Dead wood production due to insects was forecast to peak in the Montane Cordillera of British Columbia (BC) at 16.7 Tg year−1 due to the current mountain pine beetle outbreak. Total dead wood production due to fire was highest in the western portion of the boreal forest (3.6 Tg year−1 in the Boreal Shield of Saskatchewan), in part due to the high frequency of fires in these ecosystems and the large area of western boreal forest, but the highest density production was in BC: >9 kg m−2 year−1 in the burned area. Our results showed that the dead wood stocks of 331 Tg oven-dry matter potentially available for bioenergy in 2020 are much smaller than the 3100 ± 84 Tg of dead wood stocks estimated based on ecosystem dynamics. While bioenergy use will accelerate the release of greenhouse gases compared to on-site decay, the energy is renewable and can be used as a substitute for fossil fuels. The net benefit to the atmosphere of forest bioenergy use is affected by many factors, and future research should further assess which sustainable wood-based bioenergy strategies yield the greatest net greenhouse gas benefits over the different time scales needed for post-disturbance forest recovery.  相似文献   

20.
A new diterpene alkaloid named delphatisine C (1) has been isolated from aerial parts of Delphinium chrysotrichum along with three known norditerpenoid alkaloids delpheline (2), delbrunine (3), and delectinine (4). Their structures were characterized on the basis of their spectral data. All of them were determined by SRB assay for their cytotoxicity, and compound (1) showed significant cytotoxic activities (IC50 = 2.36 μmol/L) against the A549 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号