共查询到7条相似文献,搜索用时 4 毫秒
1.
Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest 总被引:1,自引:0,他引:1
Adrien N. Djomo Alexander KnohlGode Gravenhorst 《Forest Ecology and Management》2011,261(8):1448-1459
With increasing CO2 in the atmosphere, there is an urgent need of reliable estimates of biomass and carbon pools in tropical forests, most especially in Africa where there is a serious lack of data. Information on current annual increment (CAI) of carbon biomass resulting from direct field measurements is crucial in this context, to know how forest ecosystems will affect the carbon cycle and also to validate eddy covariance flux measurements. Biomass data were collected from 25 plots of 13 ha spread over the different vegetation types and land uses of a moist evergreen forest of 772,066 ha in Cameroon. With site-specific allometric equations, we estimated biomass and aboveground and belowground carbon pools. We used GIS technology to develop a carbon biomass map of our study area. The CAI was estimated using the growth rates obtained from tree rings analysis. The carbon biomass was on average 264 ± 48 Mg ha−1. This estimate includes aboveground carbon, root carbon and soil organic carbon down to 30 cm depth. This value varied from 231 ± 45 Mg ha−1 of carbon in Agro-Forests to 283 ± 51 Mg ha−1 of carbon in Managed Forests and to 278 ± 56 Mg ha−1 of carbon in National Park. The carbon CAI varied from 2.54 ± 0.65 Mg ha−1 year−1 in Agro-Forests to 2.79 ± 0.72 Mg ha−1 year−1 in Managed Forests and to 2.85 ± 0.72 Mg ha−1 year−1 in National Park. This study provides estimates of biomass, carbon pools and CAI of carbon biomass from a forest landscape in Cameroon as well as an appropriate methodology to estimate these components and the related uncertainty. 相似文献
2.
M.V.N. d’OliveiraE.C. Alvarado J.C. SantosJ.A. Carvalho Jr. 《Forest Ecology and Management》2011,261(9):1490-1498
This study estimates the aboveground biomass accumulation after forest clearing and slash burning and describes the structure and successional development of the secondary forest in the seasonally dry southern Amazon. The original burn study was conducted in four land clearings in 1997, 1998, and 1999. The size of the clearings varied from 1 to 9 ha. The native forest was felled, allowed to dry for approximately three months and then burned by the end of the dry season. A census was conducted in the central 1-ha forest on each site prior to the area's felling and burn. The aboveground biomass (AGB) and structure were similar to other primary tropical forests. However, the high density of Cecropia spp. before the forest felling and burn treatment indicates past low intensity disturbances. Seven and eight years after the fire, the fallow forests were still in an early successional stage dominated by Cecropia spp. The four areas had a high biomass accumulation during the studied period, varying from 7.5 to 15.0 Mg ha−1 year−1. The lower biomass accumulation in one plot was an effect of a higher fire severity, produced by the one-year difference in time between slash and burn of the forest, slowing the natural regeneration of Cecropia spp. The time needed for this forest to recover to the pre-fire AGB levels ranged from 20 to 30 years, assuming the current AGB accumulation rates are maintained. Considering these results, the maintenance of regenerating secondary forests in the Amazon would be a significant contribution to soil and watershed protection, minimizing biodiversity losses and perhaps mitigating climatic changes effects in the region. 相似文献
3.
One of the first steps in estimating the potential for reducing emissions from deforestation and forest degradation (REDD) initiatives is the proper estimation of the carbon components. There are still considerable uncertainties about carbon stocks in tropical rain forest, coming essentially from poor knowledge of the quantity and spatial distribution of forest biomass at the landscape level. 相似文献
4.
Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories 总被引:1,自引:0,他引:1
Euler Melo Nogueira Philip Martin Fearnside Bruce Walker Nelson Reinaldo Imbrozio Barbosa Edwin Willem Hermanus Keizer 《Forest Ecology and Management》2008
Uncertainties in biomass estimates in Amazonian forests result in a broad range of possible magnitude for the emissions of carbon from deforestation and other land-use changes. This paper presents biomass equations developed from trees directly weighed in open forest on fertile soils in the southern Amazon (SA) and allometric equations for bole-volume estimates of trees in both dense and open forests. The equations were used to improve the commonly used biomass models based on large-scale wood-volume inventories carried out in Amazonian forest. The biomass estimates from the SA allometric equation indicate that equations developed in forests on infertile soils in central Amazonia (CA) result in overestimates if applied to trees in the open forests of SA. All aboveground components of 267 trees in open forests of SA were cut and weighed, and the proportion of the biomass stored in the crowns of trees in open forest was found to be higher than in dense forest. In the case of inventoried wood volume, corrections were applied for indentations and hollow trunks and it was determined that no adjustment is needed for the form factor used in the RadamBrasil volume formula. New values are suggested for use in models to convert wood volume to biomass estimates. A biomass map for Brazilian Amazonia was produced from 2702 plots inventoried by the RadamBrasil Project incorporating all corrections for wood density and wood volume and in factors used to add the bole volume of small trees and the crown biomass. Considering all adjustments, the biomass map indicates total biomass of 123.1 Gt (1 Gt = 1 billion tons) dry weight (aboveground + belowground) for originally forested areas in 1976 in the Brazilian Legal Amazon as a whole (102.3 Gt for aboveground only) at the time of the RadamBrasil inventories, which were carried out before intensive deforestation had occurred in the region. Excluded from this estimate are 529,000 km2 of forest lacking sufficient RadamBrasil inventory data. After forest losses of 676,000 km2 by 2006 – not counting 175,000 km2 of this deforested area lacking RadamBrasil data – the estimated dry biomass stock was reduced to 105.4 and 87.6 Gt (aboveground + belowground and only above-ground). Thus, in 2006 the carbon storage in forested areas in Brazilian Amazonia as a whole will be around 51.1 Gt (assuming 1 Mg dry biomass = 0.485 Mg C). Biomass estimates by forest type (aggregated into 12 vegetation classes) are provided for each state in the Brazilian Legal Amazon. 相似文献
5.
Paulo Maurício Lima de Alencastro Graa Philip M. Fearnside Carlos C. Cerri 《Forest Ecology and Management》1999,120(1-3):179-191
Biomass burning in tropical forests – the normal practice to prepare land for agriculture and ranching – has been a major source of CO2 emitted to the atmosphere. Mass transformations by burning are still little studied in the tropics. The present study estimated parameters, such as the stock of carbon contained in the biomass, burning efficiency and the formation of charcoal and ashes in a tropical moist forest. Two sets of plots arranged in the form of ‘stars' (720 m2 total) were installed in a 3.5 ha area of forest that had been felled for planting pasture at Fazenda Nova Vida, Ariquemes, Rondônia. Each ‘star' had six rays measuring 2 m × 30 m; alternating rays were designated for pre-burn and post-burn measurements. All above-ground biomass present in the plots was weighed directly before the burn in the pre-burn rays and after the burn in the post-burn rays. Pieces of wood with diameter ≥10 cm also had their biomasses estimated from volume estimates, using line-intersect sampling (LIS) in order to increase the area of sampling and to allow volume loss to be estimated as an increment based on individual pieces measured before, and after, the burn at the same point (as opposed to inferring change as a difference between independent estimates of stocks). The initial above-ground biomass (dry weight) before the burn was estimated at 306.5 ± 48.6 (mean ± SE) Mg ha−1, with an additional 4.5 Mg ha−1 for trees left standing. Carbon stock in the initial biomass (including trees left standing) was 141.3 (Mg C) ha−1. After burning, carbon stock was reduced by 36.8% (burning efficiency). The stocks of charcoal and ash formed in the burn were, respectively, 6.4 ± 2.7 and 5.7 ± 1.0 Mg ha−1. The destructive and nondestructive (LIS) methods did not differ significantly (t-test, p > 0.05) in estimating post-burn stocks of wood and charcoal. The results of this study contribute to improving the estimates of parameters needed for global carbon calculations and point to ways in which estimates of these parameters could be further improved. 相似文献
6.
M. Genoveva Gatti Paula I. Campanello Lía F. Montti Guillermo Goldstein 《Forest Ecology and Management》2008,256(4):633-640
Frost resistance and subzero temperature effects on photosynthesis, survival and distribution were studied in Euterpe edulis, a tree palm species of the Atlantic Forest, near the southern limit of the species distribution. E. edulis grows under the forest canopy and is absent from forest stands located near bottom valleys. This palm species has been commercially exploited for palm hearts, making it the most important non-timber forest species in North-Eastern Argentina. Its distribution was studied in relation to the frequency and intensity of subzero temperatures along a topographic gradient. E. edulis abundance was higher at the highest site and decreased or became absent towards the lowest site. Subzero temperatures during each of three winter seasons were observed in the lowest site. The medium and high elevation sites never experienced absolute minimum temperatures below 0 °C. Forest structure, fraction of solar radiation transmitted through the canopy and soil water potentials did not change substantially along the gradient. After a low temperature period in winter, the maximum quantum yield in E. edulis leaflets was relatively low in individuals at the low elevation site while having normal values at the medium and high elevation sites. Thermal analysis indicated that E. edulis saplings can supercool down to about −10 °C and do not tolerate extracellular ice formation. Ice formation was observed at about −4 °C, relatively close to the equilibrium freezing temperature, only after an increase in ambient humidity resulted in dew formation on the plant surface. Dew formation is commonly observed in valleys during the winter season. This observation gives further support to the hypothesis that strong infrequent frost events could be an important environmental factor determining the spatial distribution pattern of E. edulis in the Atlantic Forest of Argentina. 相似文献
7.
D. Hertel G. Moser H. Culmsee S. Erasmi V. Horna B. Schuldt Ch. Leuschner 《Forest Ecology and Management》2009
Data on the biomass and productivity of southeast Asian tropical forests are rare, making it difficult to evaluate the role of these forest ecosystems in the global carbon cycle and the effects of increasing deforestation rates in this region. In particular, more precise information on size and dynamics of the root system is needed. In six natural forest stands at pre-montane elevation (c. 1000 m a.s.l.) on Sulawesi (Indonesia), we determined above-ground biomass and the distribution of fine (d < 2 mm) and coarse roots (d > 2 mm), estimated above- and below-ground net production, and compared the results to literature data from other pre-montane paleo- and neotropical forests. The mean total biomass of the stands was 303 Mg ha−1 (or 128 Mg C ha−1), with the largest biomass fraction being recorded for the above-ground components (286 Mg ha−1) and 11.2 and 5.6 Mg ha−1 of coarse and fine root biomass (down to 300 cm in the soil profile), resulting in a remarkably high shoot:root ratio of c. 17. Fine root density in the soil profile showed an exponential decrease with soil depth that was closely related to the concentrations of base cations, soil pH and in particular of total P and N. The above-ground biomass of these stands was found to be much higher than that of pre-montane forests in the Neotropics, on average, but lower compared to other pre-montane forests in the Paleotropics, in particular when compared with dipterocarp forests in Malesia. The total above- and below-ground net primary production was estimated at 15.2 Mg ha−1 yr−1 (or 6.7 Mg C ha−1 yr−1) with 14% of this stand total being invested below-ground and 86% representing above-ground net primary production. Leaf production was found to exceed net primary production of stem wood. The estimated above-ground production was high in relation to the mean calculated for pre-montane forests on a global scale, but it was markedly lower compared to data on dipterocarp forests in South-east Asia. We conclude that the studied forest plots on Sulawesi follow the general trend of higher biomasses and productivity found for paleotropical pre-montane forest compared to neotropical ones. However, biomass stocks and productivity appear to be lower in these Fagaceae-rich forests on Sulawesi than in dipterocarp forests of Malesia. 相似文献