首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many studies of roost selection by forest-dwelling bats have concentrated on microhabitat surrounding roosts without providing forest stand-level preferences of bats; thus, those studies have provided only part of the information needed by managers. We evaluated diurnal summer roost selection by the bat community at the forest-stand level in a diversely forested landscape in the Ouachita Mountains of central Arkansas. Over a 6-year period, we evaluated 428 roost locations for 162 individual bats of 6 species. Using Euclidean distance analysis and individual bat as the experimental unit, all 6 species were selective (P < 0.05) in their choice of roosting habitat. Five of six species preferred (P < 0.05) to roost in or near mature (≥50 years old), mixed pine-hardwood forest that had undergone recent partial harvest, midstory removal, and burning; 41.3% of roosts were located in that habitat but it comprised an average of only 22.8% of available habitat. Five of six species also preferred older (≥100 years old), relatively unmanaged, mixed pine-hardwood forest. Although 19.9% of roosts from all species were located in 50- to 99-year-old, second-growth forests of mixed pine-hardwood (average of 21.0% of available habitat), that habitat was preferred by no species of bat. In partially harvested stands, unharvested buffer strips (greenbelts) surrounding ephemeral streams were used at differing levels by each species; most (90%) eastern pipistrelle (Pipistrellus subflavus) roosts were in greenbelts whereas few (2.7%) Seminole bat (Lasiurus seminolus) roosts were in greenbelts. Older forests, thinned mature forests with reduced midstories, and greenbelts retained in harvested areas were all important roosting habitats for the bat community in the Ouachita Mountains. Our results demonstrate the importance of open forest conditions and a diversity of stand types to bat communities of the southeastern U.S.  相似文献   

2.
Tree dwelling bats select cavities in large, old, dying or dead trees. This inevitably brings them into direct conflict with the interests of forest managers, who are trained to fell such trees. Therefore the identification of forest stands providing optimal roosting opportunities for bats is crucial, in order to provide appropriate guidelines for forest management. It is also important to identify the extent to which the roosting ecology of bats changes in response to habitat modification. Bia?owie?a Forest (BF) offers a unique opportunity, in the temperate zone, to observe differences between areas with no direct human intervention and managed areas and in particular to reveal the effect of forest management on the roosting ecology of forest dwelling bat species. We used GIS techniques to evaluate bats’ spatial response to changes in forest structure and to test the hypotheses that the forest dwelling bats Nyctalus noctula and Nyctalus leisleri prefer roost sites within old deciduous or wet woodlands over young and coniferous ones and that roost site preferences reflect the extent to which dead and dying trees are removed. There was a significant difference in the selection of roosting habitat between the managed and pristine areas of the forest. Within the pristine forest, both species displayed a strong preference for roost trees located within old deciduous stands (>100 years), whereas in the managed part of the forest old wet woodland was preferred while all medium and young forest stands were avoided. Our data reveal a high degree of lability in the selection of roosting habitat by bats. It appears that bats are able to respond to changes in their environment by changing their roost site preferences and could therefore occupy habitat previously considered less suitable.  相似文献   

3.
Forest management practices, such as shelterwood harvesting, can greatly impact bat habitat relationships. Such practices can alter the amount of structural volume within a forest, which can influence bat foraging patterns. We determined the effects of shelterwood harvests of different retention levels (50% and 70% of full stocking) on bat activity patterns in oak-hickory forests located in southern Ohio. We used the Anabat system to monitor activity during May-September 2006. Our objectives were to quantify the effects of harvesting on structural volume and use the results to explain variations in bat activity. Because harvesting alters vertical structure as well as the total amount of volume within a forest, we also determined the height within the vertical profile where changes in structural volume begin to influence overall and species-specific activity. Overall bat activity did not differ significantly between shelterwood harvest levels, but was significantly different between harvested and control sites, with more passes detected within the harvested sites. Lasiurus borealis (red bat), Eptesicus fuscus (big brown bat), and Lasionycteris noctivagans (silver-haired bat) activity was significantly greater in harvested versus control sites, but did not differ between shelterwood harvest levels. Myotis spp. (Myotis lucifugus (little brown bat) and Myotis septentrionalis (northern Myotis)) and Perimyotis subflavus (tri-colored bat) activity did not vary between shelterwood harvest levels or between harvested and control sites. The greatest reductions in structural volume occurred in the understory to mid-canopy of the shelterwood harvests. Overall activity was most influenced by the amount of volume within 3-6 m above the forest floor, and declined as volume within that height strata increased. Mean bat passes declined by 50% when volume within 3-6 m exceeded 17 m3/ha. Estimated use by L. borealis decreased by 50% at volumes exceeding 1750 m3/ha in the understory to mid-canopy (0-12 m), while E. fuscus and L. noctivagans estimated use was the highest when volumes within 3-6 m were less than 63 m3/ha. Our results suggest that forest management practices that reduce the amount of structural volume in the understory to mid-canopy provide suitable habitat for foraging bats. Quantifying the amount of structural volume at various heights within the vertical profile of the forest can lend valuable insights into overall and species-specific bat activity patterns.  相似文献   

4.
Forest managers are increasingly expected to incorporate biodiversity objectives within forest landscapes devoted to timber production. However, data on which to base management recommendations for bats within these systems are limited. Although the red bat (Lasiurus borealis) is a widespread and common species in temperate forests of North America, little is known of its ecology within intensively managed pine (Pinus spp.) forests of the southeastern United States. Diurnal roost sites of red bats may be limiting on industrial pine forests due to a lack of large hardwoods within managed stands. Therefore, we investigated selection of day roosts by red bats at multiple spatial scales during June–September 2000 and May–August 2001 in an intensively managed pine landscape in east-central Mississippi, USA. We captured bats using 4-tier mist nets placed over water and attached 0.47–0.54 g radiotransmitters to captured red bats (n = 46). We located day roosts of red bats (n = 141 roosts of 27 bats) for the life of the transmitters. Red bats roosted in 16 species of hardwood trees (70% of day roosts) and loblolly pine (Pinus taeda; 30% of day roosts). In contrast to other studies in the southeastern United States, red bats roosted in pine trees and in midstory hardwood trees. Within thinned pine stands, red bats tended to prefer roost trees with a denser subcanopy and higher basal area as compared to random sites. Stand-level characteristics appeared more important than individual tree characteristics in choice of diurnal roosts. Except for adult males, logistic regression models of roost sites of red bats had high (≥79%) correct classification rates. Day roost site requirements of red bats may exhibit greater plasticity than previously thought. On our study area, intensive forest management appears compatible with diurnal roost needs of this species.  相似文献   

5.
Following decades of fire suppression in eastern forests, prescribed fire as a tool to restore or enhance oak (Quercus spp.)-dominated communities is gaining widespread acceptance in the Appalachian Mountains and elsewhere. However, the interactions of fire with biotic components such as wildlife that might be impacted by prescribed fire are poorly documented. For tree-roosting bats, fire can enhance roosting habitat by creating snags and increasing solar radiation at existing roosts. In 2007 and 2008, we examined roost selection of forest-interior dwelling northern myotis (Myotis septentrionalis) maternity colonies in stands treated with prescribed fire (hereafter, fire) and in unburned (hereafter, control) stands on the Fernow Experimental Forest, West Virginia. Using radio telemetry, we tracked 36 female northern myotis to 69 roost trees; 25 in the fire treatment and 44 in the control treatment. Using logistic regression and an information-theoretic model selection approach, we determined that within the fire treatment, northern myotis maternity colonies were more likely to use cavity trees that were smaller in diameter, higher in crown class, and located in stands with lower basal area, gentler slopes, and higher percentage of fire-killed stems than random trees. Moreover, roosts often were surrounded by trees that were in the upper crown classes. In the control treatment, northern myotis were more likely to roost nearer the tops of larger diameter cavity trees in early stages of decay that were surrounded by decaying trees in the upper crown classes than random trees. Roost trees in the fire treatment were associated with larger overall canopy gaps than roost trees within the control treatment. Regardless of treatment, northern myotis maternity colonies roosted in black locust (Robinia pseudoacacia) in greater proportion than its availability. Ambient temperatures recorded at a subset of roost trees in fire and control treatments indicated that daily minimum temperatures were similar, but daily mean and maximum temperatures were higher in the fire treatments, possibly due to larger canopy gaps created by the senescence and decay of the surrounding fire-killed overstory trees. Northern myotis roost-switching frequency, distance between successive roosts, and duration of individual roost tree use were similar between the fire and control treatments, suggesting similar roost tree availability despite a significantly higher proportion of potential roost trees in the fire treatment. Northern myotis readily exploited alterations to forest structure created by the reintroduction of fire, which accelerated snag creation and enlarged existing or created new canopy gaps, but it remains to be determined if these conditions translate into increased recruitment and survivorship.  相似文献   

6.
One hundred and fifty-four jarrah (Eucalyptus marginata) and 85 marri (Corymbia calophylla) trees were measured and assessed, and the numbers and sizes of hollows in these trees were determined by destructive sampling; 665 hollows were located and measured. The relationship between tree diameter and tree age was determined from counts of annual growth rings on 162 of these trees. Large trees and trees with moderately senescent crowns individually bear the most hollows. Although the number of hollows found in individual trees increased with tree diameter, the distribution of tree diameters in the forest is skewed and the large number of small trees with diameters between 40 and 80 cm contribute approximately 50% of all hollows in the jarrah forest. The distributions of entry size, and of hollow depth, are highly skewed, with small hollows occurring more frequently than large hollows. Although jarrah trees bear more hollows than marri trees and the distribution of entry sizes is similar for both tree species, the hollows in jarrah are significantly smaller than the hollows in marri. Most hollows are cylindrical in shape, vertically oriented and occur in dead wood in the tree crown. Relatively few hollows (14%) occur in the tree bole or at crown break. Counts of hollows made from ground level are inaccurate as estimates of the actual number of hollows in trees.  相似文献   

7.
The relative diversity and abundance of different functional groups of macrofungi were investigated in the northern jarrah forest, a mediterranean climate sclerophyllous forest dominated by eucalyptus trees in Western Australia. We sampled paired sites that were either severely affected by dieback, a disease caused by Phytophthora cinnamomi which causes selective plant mortality, or unaffected by this type of forest decline. Macrofungi were sampled 3 times during the growing season along six 100 m × 2 m transects in these sites. Dieback-unaffected sites were found to have significantly different macrofungal floras than unaffected sites. Macrofungal abundance and diversity were approximately 1.5 times and 1.8 times greater respectively in dieback-unaffected sites than in severely affected sites. Dieback-affected sites had a similar diversity of saprotrophic and ectomycorrhizal fungi, whereas more fungal taxa on dieback-unaffected sites were mycorrhizal (>60%). Dung fungi were the most common saprophytes, especially in dieback-affected sites, but abundance data greatly overestimated the importance of these relatively small fungi. We concluded that vegetation changes linked to dieback had a negative effect on fungal community structure and biodiversity in the northern jarrah forest, in a similar manner to other forms of severe disturbance. Conversely, high tree mortality increased the abundance of wood decay fungi, at least in the short term. We expect that reductions in macrofungal species richness were indirectly linked to impacts on mycorrhizal host plants and saprotrophic substrates. Our data show that changes in vegetation composition had the greatest effect on ectomycorrhizal fungi, presumably due to their obligate symbiotic associations.  相似文献   

8.
It has long been established that mature forests are mosaics of patches in different development phases but it has seldom explicitly been taken into account in ecological studies. We demonstrate here that these development phases, which are related to the population dynamics of trees, play an important role in the distribution of fauna based on observations on frugivorous birds. In an area close to the Calakmul Biosphere Reserve in Mexico, we studied the abundance of large forest bird species in relation to forest development phases, with a methodology that seems promising for ecological diagnosis and prognosis in forest management planning. Fine-scale forest mapping and bird counts were carried out in two block-transects of 40 m × 3000 m. Tree sampling in a sub-transect was used to generate population characteristics of trees. Large bird species preferred mature or senescent forest patches, whereas relatively young, growing forest patches were avoided. Important large tree species such as Manilkara zapota, Thouinia paucidentata, Guaiacum sanctum and Esenbeckia pentaphylla, characteristic of older forest patches, showed skewed size distributions indicating stress or overexploitation. The population of M. zapota, a key fruiting species that accounted for 26.5% of the total woody biomass, was most heavily affected by stress. A future collapse in the population of M. zapota, a decrease of the total area of older forest, and a decline in the abundance of large birds is likely if stress on the system continues at this level.  相似文献   

9.
Species richness and species composition of ectomycorrhizal (EM) fungi were compared among rehabilitated mine sites and unmined jarrah forest in southwest Western Australia. Species richness, measured in 50 m × 50 m plots, was high. In the wetter, western region, mean species richness per plot in 16-year-old rehabilitated mine sites (63.7 ± 2.5, n = 3) was similar to that of unmined jarrah forest (63.6 ± 9.6, n = 9). In the drier, eastern region, species richness in 12-year-old rehabilitated mine sites (40.3 ± 2.1, n = 3) approached that of nearby forest (52.4 ± 9.3, n = 9). Species composition was analysed by detrended correspondence analysis. Rehabilitated sites of similar age clustered together in the analysis and species composition was closer to the native jarrah forest in the older rehabilitated plots. In unmined forest, species composition of fungal communities in the wetter, western region was different from communities in the drier, eastern region.  相似文献   

10.
From a sample of 665 hollows found in 154 jarrah (Eucalyptus marginata) and 85 marri (Corymbia calophylla), we identified 204 hollows in 84 trees that were potentially suited to one or more of 10 species of hollow using birds and mammals. Occurrence of these hollows increased with tree age, tree size, and species (marri bore more usable hollows than jarrah) and increased amounts of dead wood in tree crowns. Hollow occurrence was most likely in trees with moderately senescent crowns with damage to intermediate sized branches, and the largest hollows were more likely to occur in more highly senescent crowns. Evidence of termite invasion at the tree butt was not related to occurrence of hollows. For all but one of the birds and mammals we considered, dead trees were no more likely than live trees to contain hollows.

Our study indicates that for the purpose of forest management planning, 130 years can be taken as the typical minimum age for the formation of usable hollows in jarrah and marri. The current minimum prescribed diameter for “habitat trees” (trees retained in logged areas to supplement existing hollows), which corresponds to a mean age of 171 years, is thus a realistic minimum size for these retained trees. We recommend raising the prescribed range of crown senescence for retained habitat trees to increase the probability of providing large hollows suited to large species such as red-tailed black cockatoo, and common brushtail possum, and maternal hollows used by smaller species. Retaining the largest trees with appropriate crown attributes will substantially increase the probability that these trees will bear usable hollows.  相似文献   


11.
The establishment of terrestrial buffer zones around vernal pools has been recommended to provide upland habitat for pool-breeding amphibians in areas where forestry practices occur adjacent to breeding sites. However, few studies have empirically tested the effectiveness of buffers. We assessed post-breeding emigration behavior (net emigration distance, rate of movement, proportionate use of available habitats) of radio-tagged adult wood frogs (Lithobates sylvaticus) at nine vernal pools with experimental forest buffer treatments in central Maine, USA. Buffer treatments were either 30-m (N = 3) or 100-m (N = 3) forest buffers surrounded by a 100-m wide clearcut; pools surrounded by uncut forest served as reference sites (N = 3). We tracked 33 individuals in 2004 and 2005, for an average of 41 days, as they emigrated from breeding pools. Recently clearcut habitat was permeable to emigrating adult wood frogs, particularly females. A higher proportion of frogs at 30-m buffer sites than at 100-m buffer sites traveled through the clearcuts to reach intact forest beyond, suggesting that 30-m buffers may not provide sufficient upland habitat to support adult wood frog populations. There was high variability in emigration behavior among frogs, regardless of buffer treatment, and males and females tended to exhibit differential responses to different buffer sizes and to clearcut habitat. Although wood frogs in this study utilized both 30-m and 100-m forest buffers, variability between sexes and density-dependent effects could render small buffers (e.g., 30 m or less) inadequate to support these populations.  相似文献   

12.
Above- and below-ground C pools were measured in pure even-aged stands of Nothofagusantarctica (Forster f.) Oersted at different ages (5–220 years), crown and site classes in the Patagonian region. Mean tissue C concentration varied from 46.3% in medium sized roots of dominant trees to 56.1% in rotten wood for trees grown in low quality sites. Total C concentration was in the order of: heartwood > rotten wood > sapwood > bark > small branches > coarse roots > leaves > medium roots > fine roots. Sigmoid functions were fitted for total C accumulation and C root/shoot ratio of individual trees against age. Total C accumulated by mature dominant trees was six times greater than suppressed trees in the same stands, and total C accumulated by mature dominant trees grown on the best site quality was doubled that of those on the lowest site quality. Crown classes and site quality also affected the moment of maximum C accumulation, e.g. dominant trees growing on the worse site quality sequestered 0.73 kg C tree−1 year−1 at 139 years compared to the best site where 1.44 kg C tree−1 year−1 at 116 years was sequestered. C root/shoot ratio decreased over time from a maximum value of 1.3–2.2 at 5 years to a steady-state asymptote of 0.3–0.7 beyond 60 years of age depending on site quality. Thus, root C accumulation was greater during the regeneration phase and for trees growing on the poorest sites. The equations developed for individual trees have been used to estimate stand C accumulation from forest inventory data. Total stand C content ranged from 128.0 to 350.9 Mg C ha−1, where the soil C pool represented 52–73% of total ecosystem C depending on age and site quality. Proposed equations can be used for practical purposes such as estimating the impact of silvicultural practices (e.g. thinning or silvopastoral systems) on forest C storage or evaluating the development of both above- and below-ground C over the forest life cycle for different site qualities for accurate quantification of C pools at regional scale.  相似文献   

13.
Examination of 1272 fallen logs at ten 1-ha sites in the Western Australian jarrah (Eucalyptus marginata) forest located 206 hollows suitable for use by ground-dwelling mammals. Poisson regression analysis identified several factors positively associated with the number of hollows in logs: larger logs, logs bearing evidence of low to moderate fire damage, logs in intermediate stages of decomposition and logs that had been subject to termite attack typically had the greatest number of hollows. Of these factors, fire has the greatest potential as a tool for managing the resource of hollows in the jarrah forest.  相似文献   

14.
Wild pistachio (Pistacia atlantica Desf.) is the most economically important tree species in many rural areas in the west of Iran. The species produces resin used for a wide variety of traditional uses. Because the resin can be harvested non-destructively, the trees are maintained until mortality occurs from natural causes. The result is that natural, managed stands include a variety of age classes. In recent years, a lack of smaller size classes has been observed in the Qalajeh forest, which is located in the Zagros Mountain region of western Iran. We established a series of plots in an area typical of Qalajeh forest to characterize the diameter distribution of the wild pistachio component. We confirmed a deficit of stems <30 cm dbh, based in the expectation that the landscape-level diameter distribution should be characterized by a negative exponential curve. For trees ≥30 cm dbh, de Liocourt's equation closely fit the diameter distribution (r2 = 0.93), translating to a q-factor of 1.34. We used this curve to estimate the deficit number of stems in diameter classes <30 cm. We estimate that this forest should have 19–24 wild pistachio trees/ha in the 5–25 cm classes, as compared to about 5 trees/ha found currently. Based on local conditions, we recommend that at least 30 seedlings/ha should be planted to allow 6–8 trees to reach to the 5 cm class.  相似文献   

15.
We examined the regeneration and structure of mixed conifer forests under single-tree harvest management in western Bhutan. Sixteen 900 m2 (30 m × 30 m) plots were sampled at four Forest Management Units (FMUs; Chamgang, Gidakom, Paro-Zonglela, and Haa-East) representing the forest type, including half the plots in single-tree harvest stands and half in unlogged stands. In addition, we solicited information on traditional forest management practices from informants using survey questionnaires and collected tree species data from felling records from respective local forest offices. Rural timber demand is concentrated on the removal of straight and well-formed bluepine trees for beams, planks, and scaffolding. Single-tree harvest, however, has not significantly altered stand structures from unlogged stands. Similarly, tree regeneration is not different when comparing single-tree harvest and unlogged stands, except at Chamgang FMU, where seedling densities were generally higher in harvested stands than in unlogged stands. These results indicate that single-tree harvest is not detrimental to regeneration and utilization of mixed conifer forests in western Bhutan.  相似文献   

16.
Several old growth (unlogged) and regrowth (logged) stands in the northern jarrah forest of Western Australia were studied in respect of spatial pattern of tree species, segregation between tree species, distribution of trees of each species by diameter class, and tree species composition. The species are Eucalyptus marginata and Eucalyptus calophylla (overstorey) and Banksia grandis, Allocasuarina fraseriana, Persoonia longifolia and Persoonia elliptica (understorey).Most populations of the species are aggregated at small but random at large scale. This pattern probably originates from non-random seed fall. Eucalyptus marginata and B. grandis are segregated, probably for the same reason. Manipulative experiments showed that interspecific competition does not prevent establishment of B. grandis seedlings. On a local scale, heterogeneity in several surface soil properties does not help explain spatial patterns.The diameter-class distributions indicate that regeneration of all species occurs irregularly. This probably results directly from the release of dormant advance growth following temporary reduction in overwood competition induced by disturbance such as wildfire or logging. Banksia grandis is not a rare or scattered component of old growth jarrah forest. A single logging of jarrah trees does not necessarily alter the density or diameter class distribution of B. grandis.  相似文献   

17.
The net primary productivity of Bruguiera parviflora dominated mangrove forest at Kuala Selangor, Malaysia was estimated from the average yearly biomass increment and litter production. The average yearly biomass increment in saplings and trees was 0.58 and 16.51 t ha−1, respectively, and the annual amount of total litter production was 10.35 t ha−1. The biomass increment in saplings and trees was not significantly different (t-test, p > 0.05) in 2 successive years and the estimated net primary productivity was 27.44 t ha−1 year−1. The ratio (2.65:1) of net primary productivity and litterfall suggests that this mangrove forest is at a juvenile stage.  相似文献   

18.
19.
In the year 2000, large areas of forest in Sweden, mainly 30-50 year old Pinus sylvestris (L.) stands, were attacked by the fungus Gremmeniella abietina (Lagerb.) Morelet. The aims of this study were to investigate: (i) the relationship between G. abietina-induced tree crown transparency (CT) and P. sylvestris (L.) tree mortality; (ii) the influence of CT levels on stem growth; (iii) the recovery of the crown; and (iv) the association of CT and colonization by Tomicus piniperda (L.). Thirty-five permanent sample plots were established in five P. sylvestris stands (38-46 years old), infested by G. abietina, and 23 plots in four reference stands, not obviously infested.During the 5 years following the attack, the total mortality amounted to 454 trees ha−1 and 7.8 m2 ha−1, on average, in the five infested stands, corresponding to 42% of the trees and 34% of the basal area at the time of the attack. Most of the mortality occurred within 2 years of the attack. The mortality of individual trees (2002-2005) was found to be related to the crown transparency (CT), the position of needle loss within the crown and the tree diameter at breast height. Based on our modeling, the probability of mortality was substantially increased if the initial CT-value was higher than 85%.Growth reductions were detected for individual trees with an initial CT of >c. 40%. In contrast, trees with a low initial CT (<c. 40%) were not affected and even exhibited increased growth. In the five infested stands, the reductions in basal area and volume increment were estimated to be 26-58%, and, 42-73%, respectively, during the five growing seasons after the attacks.The trees in the infested stands that were still alive in spring 2005 had started to recover in terms of CT. Breeding of T. piniperda on the P. sylvestris (L.) stems occurred almost exclusively on stems with a CT > 90%.The data from this study suggest that when a P. sylvestris (L.) stand has been attacked by G. abietina, trees with a CT above 80% should be felled; the remaining trees will have a high probability of survival and resistance to successful breeding by the T. piniperda.  相似文献   

20.
Insect outbreaks affect forest structure which may have significant effects on the habitat of other animals. Forest-dwelling insectivorous bats are likely affected by associated changes in the abundance of roost trees and insect prey, altered foraging and flying efficiency, and predation risk. We examined the short-term effects (3-13 years post-infestation) of an outbreak of spruce beetles (Dendroctonus rufipennis) on the habitat use of little brown bats (Myotis lucifugus) in the boreal forest of the southwestern Yukon, Canada. We measured bat activity, using Anabat II bat detectors, in 90 forested stands that had experienced from 0 to 90% tree mortality due to spruce beetles. We used generalized linear models to assess whether bat activity varied with tree mortality, season, tree density, canopy closure, or distance to the nearest lake or town. Bat activity did not vary significantly with tree mortality, season, or canopy closure, but decreased with increasing tree density. Bat activity was significantly greater in areas close to both the nearest lake and nearest town, and was low in areas that were far from either. Our results indicate that in the short-term, habitat use by little brown bats was not related to the severity of spruce beetle infestation, but suggest that in the long-term, bats may be positively affected by decreased tree density as beetle-killed trees fall down.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号