首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shrews (Soricomorpha) are among the most numerous small forest dwelling mammals in boreal forests ecosystems. In Norway large areas of sub-Arctic birch (Betula pubescens) forests have gradually been replaced by non-native spruce (Picea abies) plantations during the last century. This conversion has led to changes in forest floor vegetation and soil conditions which negatively influence invertebrates serving as prey for shrews and intermediate hosts for shrew endoparasites (helminths). In this trapping study we assessed if abundance and individual condition of common shrews (Sorex araneus) and prevalence and species richness of associated helminths, responded to spruce plantations in a manner that could indicate community level changes. Shrews colonized plantations in autumn, but never attained abundances comparable to the birch forest types. Shrews in plantations had lower body mass compared to those trapped in the birch forests. We identified 15 helminth species, and detected large differences in prevalence. Only one common helminth had significantly higher prevalence in the birch forest. By analysing prevalence of all species jointly, the highest prevalence was in moist birch forests and lowest in spruce plantations. Species richness estimates were lower in plantations, however not statistically significant. Although prevalence and species richness of helminths in common shrews were affected by tree species conversion, we judge the responses to be too weak and uncertain and the sampling and analysis too laborious to make shrew endoparasites suitable for monitoring purposes. However, monitoring abundance of common shrews is likely an efficient way of detecting changes in the forest floor fauna resulting from modern forestry practices.  相似文献   

2.
Tree diversity is an important component of biodiversity. Management intensification is hypothesized to affect tree diversity. However, evidence to support the relationship between management intensity and tree diversity in northern forests is lacking. This study examined the effects of fertilization, site preparation, and brush control on tree species diversity, shade tolerance diversity and size diversity of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) plantations, 15 years after planting in Ontario, Canada. Species diversity and shade tolerance diversity were highly correlated, so were diameter size diversity and height size diversity. Fertilization did not affect the tree diversity indices of any plantations. Species diversity and shade tolerance diversity was interactively influenced by site preparation and brush control in the black spruce, white pine, and white spruce plantations, showing that the highest diversity occurred on sites with intensive site preparation without brush control, whereas on sites with brush control, diversity was higher with least intensity of site preparation. However, in the jack pine plantation, neither species diversity nor shade tolerance diversity differed with management intensification, and is attributed to the fast capture of site resources by the planted crop trees of jack pine which minimized establishment of non-crop species. Tree size diversity increased with site preparation intensity in the jack pine and black spruce plantations, while it decreased with brush control in the white pine and white spruce plantations. We concluded that (1) the effects of management intensification on diversity of northern plantations differ with growth habit of planted crop tree species and (2) species diversity and tree size diversity tend to be highest at intermediate levels of silvicultural intensification during the stand establishment phase, supporting the intermediate disturbance hypothesis.  相似文献   

3.
Dry Douglas-fir (Pseudotsuga menziesii) forests offer a wide range of timber and non-timber values, which may benefit from a balanced timber harvest by variable retention systems with conservation of biodiversity. A major component of biodiversity are forest floor small mammal communities whose abundance and diversity serve as ecological indicators of significant change in forest structure and function from harvesting activities. This study was designed to test the hypotheses that abundance, reproduction, and survival of (i) the southern red-backed vole (Myodes gapperi, formerly Clethrionomys gapperi), will decline; (ii) the deer mouse (Peromyscus maniculatus), will be similar; and (iii) the meadow vole (Microtus pennsylvanicus) and northwestern chipmunk (Tamias amoenus), will increase, with decreasing levels of tree retention. Small mammal populations were live-trapped from 1994 to 1997 in replicated sites of uncut forest, 20% and 50% volume removal by single tree selection, 20%, 35%, and 50% patch cuts based on openings of 0.1–1.6 ha, and small 1.6 ha clearcuts in Douglas-fir forest near Kamloops, British Columbia, Canada. M. gapperi dominated the small mammal community, starting with an abundance of 74–98 animals/ha with mean values ranging from 33 to 51 animals/ha. In the two post-harvest years, abundance, reproduction, and survival of M. gapperi populations were consistently similar among uncut forest and the various levels of tree retention. Thereafter, M. gapperi was seldom found on the small clearcuts. M. pennsylvanicus, T. amoenus, and P. maniculatus occurred predominantly in clearcut sites. As with other types of forest disturbance, responses to our treatments were species-specific. The most striking result was the high abundance and productivity of M. gapperi populations in a dry forest ecosystem, a novel result for this bio-indicator species of closed-canopy forest conditions. At least with respect to small mammals, the retention systems studied seem to enable timber extraction and maintenance of mature forest habitat in these dry fir ecosystems.  相似文献   

4.
The search for indicators to monitor management impact on biodiversity is a crucial question because management practices promote changes in community structure and composition of different animal groups. This study explores the effect of widely conducted management practices (forest logging and livestock) in Pinus uncinata forests in the Pyrenees range (NE Spain) on the structure and composition of ground ant communities compared to those of old-growth stands. Forest structure clearly differed in stands with different forest managements. These stands managed for different uses also showed marked differences in structure and composition of ground ant communities. There was a great dominance of a single species, Formica lugubris, which accounted for 99% of ants collected in pitfall traps. Rarefaction curves indicated that species richness was highest in old-growth stands and lowest in even-aged ones, with woodland pasture stands showing an intermediate value. Classification methods allowed us to identify two groups of species: six species related to old-growth plots and three species (including F. lugubris) associated to managed stands. Habitat structure played an important role in determining the structure of ant communities: forests with high tree density but low basal area were the most favourable forest type for F. lugubris, while the abundance of the remaining ant species was negatively affected by the abundance of F. lugubris and by tree cover.  相似文献   

5.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

6.
We sampled the small mammal (SM) community in mountain forest ecosystems of the Beskydy Mountains over 5 years in order to study associations with different types of forest habitat. Fourteen species were determined, three being eudominant (yellow-necked mouse—Apodemus flavicollis (45 %), bank vole—Clethrionomys glareolus (23.3 %) and field vole—Microtus agrestis (15.7 %) and one dominant common shrew—Sorex araneus (9.3 %)). Highest abundance was observed in young succession sites (plantations) with dicotyledonous plants dominant (>50 %) in the undergrowth. Highest diversity was observed in plantations and primeval forests. Lowest total abundance and diversity were observed in mature monocultures. Significant differences in diversity were only found between old monocultures and other sites. Using a faunistic similarity index, two basic SM community groups were determined: those inhabiting (1) early (plantation) and late (reserve) successional forest ecosystems with a dense dicotyledonous plant herb layer, and (2) plantations with a dense grass herb layer and forests with a dense canopy closure (fruiting monoculture). Redundancy analysis confirmed separate habitat preferences of the three eudominant species. Generalised linear model indicated increasing preference of field vole for plantations with dominance of grass and <10–15 % admixed dicotyledonous plants while decreasing preference at ratios >10–15 %, and increasing preference of bank vole for plantations with a dicotyledonous plant ratio of >10–15 %. The biotopes monitored proved suitable for long-term survival of the dominant SM species. Early successional plantations and forest reserves also represent important refuges for a number of rarer SM species presently under threat.  相似文献   

7.
Voles of the genera Microtus and Myodes feed on tree seedlings planted on cutover forest land in temperate and boreal forests of North America and Eurasia. This damage may have serious economic implications as well as limit regeneration of appropriate tree species in certain forest ecosystems. Prediction of vole population outbreaks and feeding damage to forest plantations, across even a limited geographic range, has yet to be achieved in North America. Thus, a major objective was a detailed analysis of changes in population dynamics of long-tailed voles (Microtus longicaudus), and to test three hypotheses (H) that vole populations would: (H1) rise and fall in accordance with the abundance of herbaceous plants (grasses and forbs) during early vegetative succession after forest harvesting, (H2) be positively associated with grass-seeded sites; and (H3) incidence of feeding damage to seedlings would be positively associated with vole abundance. Voles were live-trapped for 6 years (2004–2009) from the time of harvesting on intensive sites, as well as surveyed over a range of extensive sites. Population numbers were related to habitat characteristics and tree damage in young forest plantations near Golden, British Columbia, Canada.  相似文献   

8.
Natural regeneration of windthrow areas is an important issue when planning forestry measures after forest disturbances. Seedling recruitment was investigated in storm-damaged hemiboreal mixed forests in eastern Estonia. The establishment and growth of seedlings from natural regeneration was registered for tree species in soil pits and in mounds of uprooted trees in stands that were either heavily or moderately damaged. Seedling growth is expected to be better in large but shallow soil pits created by uprooted Norway spruce [Picea abies (L.) Karst.] and poorer in small but deep pits created by the hardwoods in the area, silver birch (Betula pendula Roth.) and European aspen (Populus tremula L.). The most abundant regenerating species was birch. Pits hosted larger seedling numbers than mounds, due to soil instability in mounds. Rowan (Sorbus aucuparia L.) showed significantly faster growth than the other seedling species. Norway spruce pits were preferred to pits of other species by both birch and spruce seedlings. Black alder [Alnus glutinosa (L.) J. Gaertn.] did not show a preference for pits of a certain species of uprooted tree. Both spruce and rowan preferred hardwood mounds over spruce mounds. Storm severity also affected species composition: birch predominantly occurred on pits and mounds in heavily disturbed areas, while spruce was more abundant in the moderately damaged areas. The effects of advance regeneration and surrounding stands on seedling microsite preferences should be considered in future research and subsequent management recommendations.  相似文献   

9.
Pinus sylvestris-dominated forests have been heavily utilized across all of boreal Fennoscandia and the remaining natural forests are generally highly fragmented. However, there are considerable local and regional differences in the intensity and duration of past forest utilization. We studied the impact of human forest use on the diversity of epiphytic and epixylic lichens in late-successional Pinus sylvestris-dominated forests by assessing species richness and composition along both local and regional gradients in forest utilization. The effects of local logging intensity were analysed by comparing three types of stands: (i) near-natural, (ii) selectively logged (in the early 20th century) and (iii) managed stands. The effects of regional differences in duration and intensity of past forest use were analysed by comparing stands in two contrasting regions (Häme and Kuhmo–Viena). The species richness of selectively logged stands was as high as that of near-natural stands and significantly higher in these two stand categories than in managed stands. Species richness increased with the density of small understorey Picea, which correlated strongly with decreasing intensity of local forest use and increasing structural complexity of selectively logged and near-natural stands. Stands in the Häme region hosted a lower number of species, and were less likely to host many old-growth indicator species than the Kuhmo–Viena region, suggesting that species have been lost from stands in the Häme region due to a longer history of intensive forest use. We conclude that selectively logged stands, along with near-natural stands, are valuable lichen habitats particularly for species confined to old-growth structures such as coarse trees and deadwood. In landscapes where natural forests have become fragmented, the management or restoration of the remaining late-successional Pinus-dominated forests, e.g. through the use of fire, should be carefully planned to avoid adverse effects on lichen species richness.  相似文献   

10.
In the boreal forest of Alberta, fire and wind often open gaps in the canopy where late-successional species can establish and over time cause a shift in the species distribution from deciduous (e.g., trembling aspen) dominated to mixedwood, to shade-tolerant conifer (e.g., white spruce) dominated stands. This study attempted to understand the change of density-dependent competition in a boreal chronosequence and the role of tree competition in affecting stand structure and mortality. Four 1-ha stem-mapped plots were established to represent a chronosequence comprised of aspen dominated, mixedwood, and spruce dominated stands in Alberta. Second order spatial point-pattern analysis using Ripley's K(t) function showed that intraspecific competition is a prevailing force causing conspecific tree mortality and thus shaping the stand structure. The results of bivariate K(t) function analysis did not reveal sufficient evidence of interspecific competition. This suggested that competitive interaction among heterospecific trees was not strong enough to cause significant tree mortality, but the analysis of marked correlation function revealed that interspecific competition could have a negative impact on tree growth. This study highlights the importance of density-dependent competition in understanding stand dynamics of boreal forests over succession.  相似文献   

11.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed.  相似文献   

12.
Effects of reforestation by native tree species on species assemblages of carabid beetles were studied between 40-year-old regenerating plantations and 100-year naturally regenerated forests in Southwestern China. Two old naturally regenerated forest types (ca.100 years old) were chosen: hemlock-spruce forests (Tsuga chinensis and Picea brachytyla) and birch forests (Betula albo-sinensis). Three young regenerating forest types (ca. 40 years old), including spruce plantations (P. brachytyla), larch plantations (Larix kaempferi and Larix mastersian), and natural broad-leaved forests, were established after the logging of the old naturally regenerated forests. Using pitfall traps, we compared the distribution of carabid beetles in the five forest types. Three replicated plots for each forest type were chosen, and each plot was investigated with four trap sites twice each month during the growing season (May to October) in 2004. Our results showed that species richness and abundance were significantly higher in the young regenerating forests than in the old naturally regenerated forests. Analysis of complementarity in carabid species lists across the forest ages and types showed that the old naturally regenerated birch forests had the lowest similarity with the young regenerating larch plantations, and the highest similarity was shown between the two young regenerating plantations. Although PCoA ordination grouped the carabid assemblages according to forest type and forest age, the overall similarity among all forest types was high. Moreover, quantitative character species analysis did not detect significant species associated with forest types and ages. Based on the specificity and fidelity, most carabid species were abundant in all habitats, and only a few species were restricted in one or two forest types. Multiple linear regression between the species richness, abundance and Shannon diversity of carabids and of five environmental variables showed that the cover of canopy and herbaceous layer, and the depth of leaf litter had significant effects in determining richness, abundance and diversity of carabid beetles. Thus, the young regenerating forests at the mature stage could provide an appropriate habitat for most forest species of carabids survived in adjacent old naturally regenerated forests and might replace the role in part of the old-growth forests in sustaining the diversity of carabid assemblages. But some species are still restricted in old naturally regenerated forests, so in order to protect the diversity of carabid assemblages, it is necessary to sustain the intact old naturally regenerated forests when reforesting with some native tree species following natural succession.  相似文献   

13.
In the Pacific Northwest, USA, red-tree voles (Arborimus longicaudus) are of conservation and management interest owing to their apparent association with late-seral forests and the relatively small extent of such forests, largely a function of timber harvest, fire, and conversion of forests to non-forest uses during the past century. We created and evaluated a series of red-tree vole habitat association models, and applied the best model to evaluate tree vole habitat quality within and outside of reserves throughout most of their range in Oregon and northern California. We modeled presence and absence of tree vole nests across a gradient of biotic, abiotic, and spatial features; and within and outside of reserves. The best model included spatial coordinates, percent slope, basal area of trees with diameter at breast height (dbh) between 45 and 90 cm, maximum tree dbh, and standard deviation of conifer dbh. Plots with tree vole nests contained many late-seral/old-growth forest attributes such as large diameter, older, and variably sized trees. Evaluation of the best model, including rigorous cross-validation, showed the model to be statistically robust and to have very good/excellent predictive ability. Reserves had significantly higher mean habitat quality than non-reserved lands, and reserves had much more high quality habitat than non-reserves.  相似文献   

14.
Conifer dominated plantations in central and northern Europe are associated with relatively low ecological values, and in some cases, may be vulnerable to disturbances caused by anthropogenic climate change. This has prompted the consideration of alternative tree species compositions for use in production forestry in this region. Here we evaluate the likely biodiversity costs and benefits of supplanting Norway spruce (Picea abies) monocultures with polycultures of spruce and birch (Betula spp.) in southern Sweden. This polyculture alternative has previously been evaluated in terms of economic, recreational, and silvicultural benefits. By also assessing the ecological implications we fill a gap in our understanding of the range of socio-ecological benefits that can be achieved from a single polyculture alternative. We project likely broad scale changes to species richness and abundance within production stands for five taxonomic groups including ground vegetation, tree-living bryophytes, lichens, saproxylic beetles, and birds. Our research leads us to three key findings. First, the replacement of spruce monocultures with spruce–birch polycultures in the managed forest landscapes of southern Sweden can be expected to result in an increase in biological diversity for most but not all taxa assessed, but it is unlikely to improve conditions for many red-listed forest species. Second, modification of other aspects of forest management (i.e. rotation length, dead wood and green tree retention, thinning regimes) is likely to contribute to further biodiversity gains using spruce–birch polycultures than spruce monocultures. Third, the paucity of empirical research which directly compares the biodiversity of different types of managed production stands, limits the extent to which policy relevant conclusions can be extracted from the scientific literature. We discuss the wider implications of our findings, which indicate that some climate change adaptation strategies, such as risk-spreading, can be readily integrated with the economic, environmental and social goals of multi-use forestry.  相似文献   

15.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

16.
We analyzed the responses of small mammals to clear-cutting in temperate and boreal forests in Europe. We conducted a meta-analysis of published research on most often studied small mammal species (the striped field mouse, the yellow-necked mouse, the wood mouse, the field vole, the common vole, the bank vole, the Eurasian harvest mouse, the common shrew and the Eurasian pygmy shrew), comparing their abundance on clear-cuts and in unharvested stands. For four other species (the gray-sided vole, the Siberian flying squirrel, the Eurasian red squirrel and the hazel dormouse), we provide a qualitative review of their responses to forest harvest. Results of the meta-analysis suggest that common species of small mammals usually increase in abundance after clear-cutting or are unaffected by this disturbance. As an exception, the yellow-necked mouse declines after clear-cutting in boreal but not in temperate forest. The qualitative review suggests that the responses of more specialized (e.g., arboreal) species to forest harvest are more varied than the responses of generalist species included in the meta-analysis. For some species of small mammals (e.g., the Siberian flying squirrel), habitat loss resulting from forest harvest is a major threat.  相似文献   

17.
Windward slopes of the inland mountain ranges in British Columbia support a unique inland temperate rainforest (ITR) ecosystem. Increasing fragmentation and the loss of old ITR stands have highlighted the need for determining conservation biology priorities among remaining old forest stands. We have addressed this issue by surveying foliose macrolichens within 53 old ITR stands in British Columbia's 135,000 ha very wet-cool interior-cedar hemlock (ICHvk2) biogeoclimatic subzone in the upper Fraser River watershed. Study plots were stratified by leading tree species and by “wet” versus “dry” relative soil moisture conditions. Other plot variables included: temperature, precipitation, incident solar loading, and canopy openness. Ordination plots showed a distinct assemblage of foliose cyanolichens, including Lobaria pulmonaria, Lobaria retigera, Sticta fuliginosa, Nephroma isidiosum, Nephroma occultum, and Pseudocyphellaria anomala, whose abundance was correlated with increasing relative soil moisture, temperature, canopy openness, precipitation, and basal area of spruce. Logistic regression models similarly identified relative soil moisture and temperature in all parsimonious models. Leading tree species, in combination with “wet” relative soil moisture and/or temperature, were important factors explaining the presence or absence of five (Cavernularia hultenii, L. retigera, N. occultum, Platismatia norvegica, and Sticta oroborealis) of the eight modeled old-growth associate lichen species. This combination of conditions favouring the development of canopy lichen communities in old forests was best expressed in low elevation water receiving sites. We hypothesize that groundwater availability in these sites promotes species richness and abundance of canopy lichens by creating more favourable conditions for growth, and by reducing fire return intervals which allows for the accumulation of rare species over time. Historically, forests in these wet “toe-slope” positions were disproportionately targeted for logging. Their conservation should now be a high priority, given their disproportionate significance to maintaining canopy lichen diversity in the present-day landscapes.  相似文献   

18.
Managed forest stands are typically younger and structurally less diverse than natural forests. Introduction of non-native tree species might increase the structural changes to managed forest stands, but detailed analyses of tree- and stand-structures of native and non-native managed forests are often lacking. Improved knowledge of non-native forest structure could help clarify their multiple values (e.g. habitat for native biodiversity, bioenergy opportunities). We studied the structural differences between the introduced, non-native Pinus contorta and the native Pinus sylvestris and Picea abies over young forest stand ages (13–34 years old) in managed forests in northern Sweden. We found that P. contorta stands had greater mean basal areas, tree heights, diameters at breast height, and surface area of living branches than the two native species in young stands. The surface area of dead attached branches was also greater in P. contorta than P. abies. Although this indicates greater habitat availability for branch-living organisms, it also contributes to the overall more shaded conditions in stands of P. contorta. Only one older 87 years old P. contorta stand was available, and future studies will tell how structural differences between P. contorta and native tree species develop over the full forestry cycle.  相似文献   

19.
Fire history and stand structure was examined in twelve virgin forest stands situated within forest reserves in northern Sweden. The selected stands represented fire refuges as well as different successional stages after fire. Six of the stands were dominated by Norway spruce (Picea abies L. Karst.), three were dominated by Scots pine (Pinus sylvestris L.), and three were dominated by hairy birch (Betula pubescens Ehrh.) or aspen (Populus tremula L.). In 3 of the southernmost stands, the average fire interval was 34 to 65 years during the late 1600s to late 1800s, but since 1888 no fires had occurred in any of the stands. The absence of fire disturbance since 1888 is probably caused by the fire suppression in the overall landscape. The standing volume of living trees ranged between 87 and 511 m3 ha−1 while the volume of dead trees, including both snags and logs, ranged between 27 and 201 m3 ha−1. The volume of dead trees constituted ca. 30% of the total stem volume. In the conifer dominated stands, there was a statistically significant relationship between total stem volume, including both living and dead trees, and site productivity. A comparison between the amount of dead and living trees indicated substantial changes in tree species composition in several stands. It is suggested that data on the amount of dead trees, especially logs, and its distribution over decay classes could be used to examine the continuity of certain tree species. All stands had a multi-sized tree diameter distribution, which in most cases was similar to a reversed J-shaped distribution. In general spruce was numerous in the seedling cohort and in small diameter classes, indicating that its proportion in the stands was stable, or was increasing at the expense of pioneer tree species such as pine, aspen and silver birch (Betula pendula Roth.). The most numerous species in the seedling cohort, rowan (Sorbus aucuparia L.), was almost totally missing in the tree layer, indicating a high browsing pressure preventing rowan seedlings from growing into trees. The general increase of spruce and the sparse regeneration of pioneer species, in the stands previously affected by fire, are discussed in relation to natural disturbance regimes, biological diversity and nature conservation policies. It is proposed that reintroduction of fire disturbance is a necessity for future management plans of forest reserves. Other management practices to increase species diversity within forest reserves are also discussed.  相似文献   

20.
Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plant–pathogen interaction on forest structure and composition. Coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica) form mixed-evergreen forests along the northern California coast. This study measured tree mortality over a gradient of disease in three time periods. Direct measurements of current mortality were taken during 2004, representing a point-in-time estimate of present and ongoing mortality. Past stand conditions, c. 1994, were estimated using a stand reconstruction technique. Future stand conditions, c. 2014, were calculated by assuming that, given a lack of host resistance, live trees showing signs of the disease in 2004 would die. Results indicate that coast live oaks died at a rate of 4.4–5.5% year−1 between 1994 and 2004 in highly impacted sites, compared with a background rate of 0.49% year−1, a ten-fold increase in mortality. From 2004 to 2014, mortality rates in the same sites were 0.8–2.6% year−1. Over the entire period, in highly impacted sites, a 59–70% loss of coast live oak basal area was predicted, and coast live oak decreased from 60% to 40% of total stand basal area, while bay laurel increased from 22% to 37%. Future stand structures will likely have greater proportions of bay laurel relative to coast live oak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号