首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developing management strategies for addressing global climate change has become an increasingly important issue influencing forest management around the globe. Currently, management approaches are being proposed that intend to (1) mitigate climate change by enhancing forest carbon stores and (2) foster adaptation by maintaining compositionally and structurally complex forests. However, little is known about the compatibility of these two objectives or the long-term efficacy of a given management regime at simultaneously achieving adaptation and mitigation. To address this need, we examined stand-level carbon and complexity responses using five long-term (>50 yrs) silviculture experiments within the upper Great Lakes region, USA. In particular, live tree carbon stores and sequestration rates, and compositional and structural complexity were analyzed from three thinning experiments in Pinus resinosa and two selection method experiments in northern hardwood systems to elucidate the long-term effects of management on these ecosystem attributes and the general compatibility of mitigation and adaptation objectives.As expected, we observed a general increase in large tree densities with stand age and positive relationships between stand stocking level and live tree carbon stores. More importantly, our results clearly identify tradeoffs between the achievement of mitigation and adaptation objectives across each study. For example, maintaining higher stocking levels (i.e., enhanced mitigation by increasing carbon stores) resulted in decreases in stand-level structural and compositional complexity (i.e., reduced adaptation potential). In addition, rates of live tree carbon increment were also the lowest within the highest stocking levels; despite the benefits of these stand conditions to maximizing carbon stores. Collectively, these findings underscore the importance of avoiding rigid adherence to a single objective, such as maximum on-site carbon stores, without recognizing potential consequences to other ecosystem components crucial to ensuring long-term ecosystem functioning within the context of environmental change. One potential stand-level strategy for balancing these goals may be to employ multi-aged management systems, such as irregular shelterwood and selection systems, that maintain a large proportion of carbon stores in retained mature trees while using thinning to create spatial heterogeneity that promotes higher sequestration rates in smaller, younger trees and simultaneously enhances structural and compositional complexity.  相似文献   

2.
We tested the hypothesis that overstorey of eucalypt forest dominated by tall, large diameter trees uses less water than regrowth stands in the high rainfall zone (>1100 mm year−1) of the northern jarrah (Eucalyptus marginata) forest in southwestern Australia. We measured leaf area, cover, sapwood area and sapwood density at three paired old and regrowth stands. We also measured sapflow velocity at one paired stand (Dwellingup) from June 2007 to October 2008. Old stands had more basal area but less foliage cover, less leaf area and slightly thinner sapwood. The ratio of sapwood area to basal area decreased markedly as tree size increased. Sapwood area of the regrowth forest stands (6.6 ± 0.30 m2 ha−1) was nearly double that of the old stands (3.4 ± 0.17 m2 ha−1), despite larger basal area at the old stands. Leaf area index of the regrowth stands (2.1 ± 0.26) was only one-third larger than that at the old stands (1.5 ± 0.15); hence, the ratio of leaf area to sapwood area was larger in old stands than in regrowth stands (0.45 ± 0.022 m2 cm−2 versus 0.32 ± 0.045 m2 cm−2). Our results are consistent with theories that trees have evolved to optimize carbon gain rather than maintain stomatal conductance. Neither sapwood density (540–650 kg m−3) nor sap velocity differed greatly between regrowth and old stands. At the old forest site, daily transpiration rose from 0.5 mm day−1 in winter to 0.9 mm day−1 in spring–summer, compared to 0.9 mm day−1 and 1.8 mm day−1 at the regrowth site. Annual water use by the overstorey trees was estimated to be ∼230 mm year−1 for the old stand and ∼500 mm year−1 at the regrowth stand, or 20% and 44% of annual rainfall. The overwhelming role of stand sapwood area in determining stand water use, combined with the marked changes in the ratio of sapwood area to basal area with tree age and size, suggest that stand overstorey structure can be managed to alter overstorey water use and catchment water yield. Silviculture to promote old-forest-like attributes may be a viable means of delivering multiple water and conservation benefits.  相似文献   

3.
Partial harvesting, where different numbers and arrangements of live trees are retained in forest stands, has been proposed for maintaining late-successional structure and associated vertebrate species within managed boreal forests. Using the stand dynamics model SORTIE-ND, we examined 80-year patterns of structural change in response to different intensities (30-70% basal area removal) and spatial patterns (22-273 m2 mean patch size) of harvesting. We also applied habitat models for seven late-successional vertebrates to the structural conditions present after harvesting to assess potential species responses.Partial harvesting increased understory and downed woody debris (DWD) cover and decreased overstory structure for the first 25 years after harvest, in comparison to unharvested stands, with this effect subsequently reversing as harvest-induced regeneration reached the canopy. Although harvesting enhanced long-term structural development in this regard, large trees, large snags, and large DWD all remained below unharvested levels throughout the simulation period. Harvesting also produced transient increases in early-decay DWD and ground exposure. Most changes in structural attributes increased in proportion to harvest intensity, but structural differences among harvest patterns were generally small. Dispersed harvesting induced somewhat less pronounced decreases in vertical structure, and produced more post-harvest slash, than aggregated harvesting.All seven vertebrate species decreased in abundance as harvest intensity increased from 30 to 70%. In comparison to their pre-harvest abundances in old stands, vertebrates associated with DWD (redback salamander, marten, red-backed vole) showed neutral or positive responses at one or more harvest intensities, whereas those associated with large trees and snags (brown creeper, flying squirrel) consistently exhibited substantial adverse impacts.  相似文献   

4.
Large tree species have a disproportional influence on the structure and functioning of tropical forests, but the forces affecting their long-term persistence in human-dominated landscapes remain poorly understood. Here we test the hypothesis that aging forest edges and small fragments (3.4–295.7 ha) are greatly impoverished in terms of species richness and abundance of large trees in comparison to core areas of forest interior. The study was conducted in a hyper-fragmented landscape of the Atlantic forest, northeast Brazil. Large tree species were quantified by recording all trees (DBH ≥ 10 cm) within fifty-eight 0.1-ha plots distributed in three forest habitats: small forest fragments (n = 28), forest edges (n = 10), and primary forest interior areas within an exceptional large forest remnant (n = 20). Large tree species and their stems ≥10 cm DBH were reduced by half in forest edges and fragments. Moreover, these edge-affected habitats almost lacked large-stemmed trees altogether (0.24 ± 0.27% of all stems sampled), and very tall trees were completely absent from forest edges. In contrast, large trees contributed to over 1.5% of the whole stand in forest interior plots (2.9 ± 2.8%). Habitats also differed in terms of tree architecture: relative to their DBH trees were on average 30% shorter in small fragments and forest edges. Finally, an indicator species analysis yielded an ecological group of 12 large tree species that were significantly associated with forest interior plots, but were completely missing from edge-affected habitats. Our results suggest a persistent and substantial impoverishment of the large-tree stand, including the structural collapse of forest emergent layer, in aging, hyper-fragmented landscapes.  相似文献   

5.
The above- and belowground biomass and nutrient content (N, P, K, Ca, S and Mg) of pure deciduous Nothofagus antarctica (Forster f.) Oersted stands grown in a marginal site and aged from 8 to 180 years were measured in Southern Patagonia. The total biomass accumulated ranged from 60.8 to 70.8 Mg ha−1 for regeneration and final growth stand, respectively. The proportions of belowground components were 51.6, 47.2, 43.9 and 46.7% for regeneration, initial growth, final growth and mature stand, respectively. Also, crown classes affected the biomass accumulation where dominant trees had 38.4 Mg ha−1 and suppressed trees 2.6 Mg ha−1 to the stand biomass in mature stand. Nutrient concentrations varied according to tree component, crown class and stand age. Total nutrient concentration graded in the fallowing order: leaves > bark > middle roots > small branches > fine roots > sapwood > coarse roots > heartwood. While N and K concentrations increased with age in leaves and fine roots, concentration of Ca increased with stand age in all components. Dominant trees had higher N, K and Ca concentrations in leaves, and higher P, K and S concentrations in roots, compared with suppressed trees. Although the stands had similar biomass at different ages, there were important differences in nutrient accumulation per hectare from 979.8 kg ha−1 at the initial growth phase to 665.5 kg ha−1 at mature stands. Nutrient storage for mature and final growth stands was in the order Ca > N > K > P > Mg > S, and for regeneration stand was Ca > N > K > Mg > P > S. Belowground biomass represented an important budget of all nutrients. At early ages, N, K, S, Ca and Mg were about 50% in the belowground components. However, P was 60% in belowground biomass and then increased to 70% in mature stands. These data can assist to quantify the impact of different silviculture practices which should aim to leave material (mainly leaves, small branches and bark) on the site to ameliorate nutrient removal and to avoid a decline of long-term yields.  相似文献   

6.
Wood quality attributes were examined in six stands of slash pine (Pinus elliottii Engelm. var. elliottii) and loblolly pine (P. taeda L.) in the lower Coastal Plain of Georgia and Florida. Several plots comprised each stand, and each plot was divided so that it received three fertilizer treatments: a control treatment with herbaceous weed control at planting and brush control at mid-rotation only (control); 45 kg ha−1 N + 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer with N at planting); and 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer without N at planting). Ring width, ring earlywood specific gravity (SG), ring latewood SG, whole ring SG, and ring percent latewood were measured on each of seven trees. Of these measurements, this study focused mainly on the properties related to SG. Examination of the rings showed that latewood SG was significantly lower in trees treated with fertilizers with and without N at planting in the two to three years following fertilization, but that latewood SG gradually returned to a level similar to the control. Fertilizer without N at planting may also have had a brief negative effect on earlywood SG following mid-rotation fertilization, but it was not as clear or lasting as the effect on latewood SG. Additionally, although slash and loblolly pine appear to differ in the developmental patterns of these SG properties, there were no significant differences in how these patterns interacted with treatment. This study demonstrated that fertilization treatments have similar short-term effects on the SG of slash and loblolly pines, particularly in latewood, but the trees will return to a SG pattern consistent with unfertilized trees within two or three years.  相似文献   

7.
Models of Douglas-fir branch and whorl characteristics were developed from contrasting spacing experiments in southwest Germany. The dataset was based on 100 young (20–30 years old), unpruned and partially pruned trees from a 100, 200, and 1200 stems ha−1 spacing experiment on Douglas-fir that was replicated 3 times across the region. The material was used to predict (1) the number of branches whorl−1, (2) branch angle, (3) status (living/dead) of the branches within the living crown, (4) maximum branch diameter whorl−1, and (5) relative diameter of branches within a whorl. For each of these models (except branch status), both a linear and nonlinear, generalised hierarchical mixed effects equation was developed. The comparison of the linear and nonlinear approaches showed that both had a relatively similar level of bias, but the nonlinear equations generally performed better (reduction in mean absolute error of 1.1–69.5%). Overall, individual branch and tree properties were sufficient to give logical and precise predictions of the branch characteristics for the models across the range of sampled stand densities. In addition, the models showed a similar behaviour compared to models on Douglas-fir crown structure from the Pacific Northwest, USA. This suggests that the allometric relationship between tree size and branch characteristics for a given species may be relatively consistent across regions, even ones with highly contrasting growing conditions like in this study. The models performed well across a range of stand conditions and now will be further integrated into an individual tree growth and yield simulations system.  相似文献   

8.
This paper estimates the difference in stand biomass due to shorter and lighter trees in southwest (SW) and southern Amazonia (SA) compared to trees in dense forests in central Amazonia (CA). Forest biomass values used to estimate carbon emissions from deforestation throughout, Brazilian Amazonia will be affected by any differences between CA forests and those in the “arc of deforestation” where clearing activity is concentrated along the southern edge of the Amazon forest. At 12 sites (in the Brazilian states of Amazonas, Acre, Mato Grosso and Pará) 763 trees were felled and measurements were made of total height and of stem diameter. In CA dense forest, trees are taller at any given diameter than those in SW bamboo-dominated open, SW bamboo-free dense forest and SA open forests. Compared to CA, the three forest types in the arc of deforestation occur on more fertile soils, experience a longer dry season and/or are disturbed by climbing bamboos that cause frequent crown damage. Observed relationships between diameter and height were consistent with the argument that allometric scaling exponents vary in forests on different substrates or with different levels of natural disturbance. Using biomass equations based only on diameter, the reductions in stand biomass due to shorter tree height alone were 11.0, 6.2 and 3.6%, respectively, in the three forest types in the arc of deforestation. A prior study had shown these forest types to have less dense wood than CA dense forest. When tree height and wood density effects were considered jointly, total downward corrections to estimates of stand biomass were 39, 22 and 16%, respectively. Downward corrections to biomass in these forests were 76 Mg ha−1 (∼21.5 Mg ha−1 from the height effect alone), 65 Mg ha−1 (18.5 Mg ha−1 from height), and 45 Mg. ha−1 (10.3 Mg ha−1 from height). Hence, biomass stock and carbon emissions are overestimated when allometric relationships from dense forest are applied to SW or SA forest types. Biomass and emissions estimates in Brazil's National Communication under the United Nations Framework Convention on Climate Change require downward corrections for both wood density and tree height.  相似文献   

9.
The influence of stand density on Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is conceptually understood, but for wide spacings not well quantified, particularly in Europe. This study used 41 trees from 7 different locations in south-western Germany to compare important tree- and branch-level attributes across three different densities, namely 100, 200, and 1,200 stems ha−1. In general, there were only a few tree and branch attributes that were significantly different between the 100 and 200 ha−1 densities. Crown projection area and diameter of the thickest branches were the most important differences between the 100 and 200 ha−1 densities. The most obvious and significant differences in this study were between 100 and 1,200 ha−1 densities, where nearly every examined tree and branch attributes were statistically significant. However, relative sapwood area, the number of branches, branch angle, and the occurrence of spike knots were insensitive to stand density. Although the two lowest stand densities in this study represent rather extremely wide spacings, these results still have important implications for the development of effective thinning regimes for Douglas-fir in south-western Germany. Important management recommendations from this study include thinned stands should be maintained to at least 200 stems ha−1 to maintain high log quality and stand stability. Furthermore, even at stand densities exceeding more than 1,200 trees ha−1 planted trees, artificial pruning may even be necessary to produce high quality logs.  相似文献   

10.
Current knowledge of the within-site variability of major stand structural features in beech dominated natural forests is limited. Numerous studies have used just several small plots for characterizations of natural stands, but this may lead to generalizations based on unreliable results. This study shows how major stand structural features vary at the local scale, and how suitable sampling may reflect this variability. Stem position maps of three natural forests in the Czech Republic (Zofin 71 ha, Salajka 19 ha and Zakova hora 17 ha) were used. Each vector stem position map representing all live and dead trees with DBH ≥ 10 cm was intensively analyzed using square sample plots of different sizes (10 × 10 m; 20 × 20 m; 30 × 30 m; 50 × 50 m; 100 × 100 m; 140 × 140 m and 200 × 200 m). Basic statistics (mean, standard deviation, coefficient of variation, min., and max.) were calculated for every plot size and each of six major stand features: density, basal area and volume of living trees, volume of course woody debris, total volume and proportion of course woody debris in total volume.  相似文献   

11.
Restoration of the range of forest types and stages that once composed the landscape mosaic of the Upper Great Lakes region of North America will involve manipulating managed red pine stands to recreate now rare structural conditions. Because many of the attributes used to characterize structural condition depend upon spatial arrangement, sampling schemes to assess condition must match sampling extent to attribute variability. To evaluate the metrics and scales appropriate for characterizing structural complexity in managed red pine, we applied metrics that incorporated one-, two-, and three-dimensional structural attributes to eight 1.0 ha mature stem-mapped stands. Most metrics were also calculated within simulated moving windows of 0.05–1.0 ha in sampling extent (“plot size”) within each stand. Two standards were used to evaluate the adequacy of plot sizes for these metrics: (1) estimates were precise, varying less than 10% among moving windows for a given scale, and (2) estimates were accurate to within 10% of the 1.0 ha value at both the 5th and 95th percentiles of the moving window distributions. Necessary sample sizes to achieve precise and accurate estimates were also calculated for each scale.  相似文献   

12.
Damage to residual stand after partial harvesting or thinning may lead to serious economic losses in terms of both timber quality at the final harvest, and tree growth reduction. Logging damages and their effect on tree growth were studied in a long term experiment on Corsican pine in central Italy. Damage frequency, agent (felling, skidding), position (root damage, stem base, between 0.3 and 1 m a.g.l., >1 m a.g.l.) and severity (light, severe) and tree growth were measured after selective thinning from below and at 10 years after the treatment. In detail, we aimed at: monitoring mechanical damages to trees at the end of thinning and after 10 years; and assessing stand stability, growing stock, ring width and basal area at 10 years after the thinning. The thinning removed about 20% of volume, 38% of trees and 26% of basal area. The basal area decreased from 56 m2 ha−1 to 42 m2 ha−1 but after 10 years it increased again to 56 m2 ha−1. Immediately after thinning, 13.6% of the standing trees was damaged, out of these 36.17% showed severe injuries. Damages to standing trees were mainly due to skidding. Ten years after thinning, the percentage of damaged trees was about 17%, out of which 86.67% showed severe wounds. An increase of damaged trees and of trees with severe wounds was observed suggesting that a deeper knowledge on long-term effect of logging damages is needed. This study did not highlight any effect of logging damage on tree growth. In fact, no difference in ring width was recorded between damaged and undamaged trees.  相似文献   

13.
Secondary cavity-nesting birds (SCN), which cannot create their own breeding cavities, are expected to be influenced by habitat alteration caused by forest management practices, but the mechanisms underlying the distribution pattern of SCN subjected to different management systems are poorly known. To improve our knowledge on these mechanisms, we examine cavity abundance, cavity occupation and reproductive performance of SCN in Pyrenean oak (Quercus pyrenaica) forests subjected to two management systems: (i) dense “young forests”, maintained at such stage by clear-cuttings and burns, and (ii) “old forest”, subjected to extensive traditional grazing and scarce firewood extraction by selective cutting. Young forests had considerably lower density of cavities (1.29 ± 0.71 vs 15.09 ± 2.00 cavities ha−1), SCN species (0.18 ± 0.11 vs 0.61 ± 0.07 species ha−1) and nests (0.40 ± 0.27 vs 2.67 ± 0.25 nests of all SCN ha−1) than old forests, indicating that a low availability of cavities may limit SCN assemblages in young oak forests. However, reproductive parameters of great (Parus major) and blue (Cyanistes caeruleus) tits associated with the availability of food (laying date, clutch size, nestling number and weight, adult weight) did not differ between both forest types, suggesting that food supply was not reduced in young forests, at least for tits during the breeding season. Large diameter (up to 170 cm dbh) decayed trees were the most likely to hold cavities, but birds preferred smaller living cavity-trees for nesting (90% of nests in 21-65 cm dbh trees). The preservation of cavity-trees within traditionally managed old oak forests is crucial in providing nesting opportunities to SCN. Besides, the protection of these traditionally managed forests would also benefit to other forest organisms that depend on old and open oak forests.  相似文献   

14.
This study examined the ability of an airborne laser scanner to identify individual trees in the canopy of a Chamaecyparis obtusa stand and investigated the relationship between the penetration rate of the laser pulses and stand attributes under different canopy conditions caused by different levels of thinning. Individual tree crowns were identified from a digital canopy model (DCM) derived from airborne laser scanner data by the watershed segmentation method. The identification rate of individual trees in blocks with heavy thinning (ratio of the basal area of the felled trees to the total basal area, hereinafter thinning ratio of the basal area, 38.0%), moderate thinning (30.4%), and no thinning was 95.3%, 89.2%, and 60.0%, respectively. Individual tree heights were estimated from the DCM values by local maximum filtering within identified individual crowns. Tree height in the three blocks was estimated with a root-mean-square error of 0.95, 0.65, and 0.68 m, respectively. Tree heights determined in a field survey were regressed against those estimated from the DCM, yielding coefficients of determination (r2) of 0.71, 0.87, and 0.85, respectively, for the blocks with heavy thinning, moderate thinning, and no thinning, respectively, and 0.86 overall. The respective penetration rates of the laser pulses through the canopy to the ground were 50.6%, 43.1%, and 9.2%. Regression of the laser pulse penetration rate against the thinning ratio of the basal area and against the total basal area of the remaining trees in 25 quadrats established in the blocks, yielded r2 values of 0.89 and 0.74, respectively.  相似文献   

15.
Stand composition and structure of natural mixed-oak stands of common-oak (Quercus robur L.) and pyrenean-oak (Quercus pyrenaica Willd.) were studied. Diverse compositional and structural elements in early and late successional stand stages were analysed. The study was conducted in north and central Portugal where different natural mixed oak forests types are located. The following mixed-oak forest types involving common-oak and pyrenean-oak were studied: common-oak & other hardwoods; common-oak & cork-oak (Quercus suber L.); ash (Fraxinus angustifolia Vahl) & pyrenean-oak; and pyrenean-oak & madrone (Arbutus unedo L.). Measurements were made in early and late successional stand stages on the different mixed oak forest types. Different stand characteristics and indices were used to describe and compare stand structure and composition. The study showed changes in species diversity and stand structure. Most tree species in mature stands are present in early stages but with higher abundance. Shannon diversity index may change between 0.798 and 1.915. Significant differences on species diversity and abundance were found depending on the forest type and successional stage. Mature mixed-oak forests have high species diversity with an abundance of small to medium tree size species. Species distribution and diameter differentiation indices range from 0.30 to 0.70 and 0.52 to 0.82, respectively, revealing significant structural complexity. The average number of standing and downed dead trees was 265 and 83 trees ha−1 for early and late stage, respectively, with 6.9 and 65.4 m3 ha−1. Higher values of stand diversity index were 41 and 53 in more complex and developed forests. Later stand stages have complex structure, with a wider range of tree diameter distribution and higher degree of irregularity.  相似文献   

16.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

17.
Forest ecosystems are increasingly expected to produce multiple goods and services, such as timber, biodiversity, water flows, and sequestered carbon. While many of these are not mutually exclusive, they cannot all be simultaneously maximised so that management compromise is inevitable. We used a 42-year dataset from a naturally regenerating floodplain forest of the river red gum (Eucalyptus camaldulensis) to investigate the effects of pre-commercial thinning on long-term patterns in habitat quality, forest structure and rates of carbon storage (i.e. standing aboveground carbon). Estimates of habitat quality were based on the density of hollow-bearing trees because hollows are ecologically important to many species of vertebrates and invertebrates in these forests. Thinning improved habitat value by producing 20 (±8) hollow-bearing trees per ha after 42 years, while the unthinned treatment produced none. Unthinned (highest density) stands were dominated by many slender trees, mostly <25 cm in diameter, whereas thinned stands produced negatively skewed size distributions with higher median and maximum stem diameters. Moderately thinned stands (560 trees ha−1) had the highest aboveground carbon storage rate (4.1 t C year−1) and the highest aboveground carbon stocks (200.2 ± 9.6 t C ha−1) after 42 years, while the unthinned treatment had the lowest carbon storage rate (1.6 t C year−1) and an intermediate level of aboveground standing carbon (165.1 ± 31.1 t C ha−1). Our results highlight the importance of early stand density as a determinant of long-term forest structure, habitat quality and carbon storage rates. We recommend that thinning be considered as one component of a broader strategy for enhancing the structure, habitat value and aboveground carbon storage of developing floodplain forests.  相似文献   

18.
The single-tree selection system is an important option for management of Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) forests because it provides continuous cover, requires low investments for tending, and promotes natural regeneration as well as high stand resistance and elasticity. It is often regarded as a very conservative system that usually results in only minor spatiotemporal changes in forest structure and composition. We studied management history, structural changes, regeneration dynamics, and light climate of a traditional single-tree farmer selection silver fir-Norway spruce forest (site typology Bazzanio-Abietetum). Stand structure was analyzed on five 0.25 ha permanent plots in 1994, 2001, and 2008. Regeneration density and height growth, forest floor vegetation, and light climate were also assessed on 1.5 × 1.5 m regeneration subplots in 2001 and 2008. Tree cores extracted from dominant trees from both species in two plots were used for reconstructing stand history and age structure of the canopy layer. We documented the forest response to three types of selection management regimes: excessive, normal, and conservative. Excessive management with harvest intensity significantly above the increment was documented until the late 1950s, including two peaks of heavy fellings (diameter limit cut) in the 1880s and 1930s, which favoured establishment of Norway spruce and released regeneration. The period that followed was characterized by normal selection management, but was nevertheless marked by a decline of silver fir as a result of air pollution and several droughts. This led to sanitary fellings that were carried out from the late 1970s to the early 1990s. In the last two decades conservative management followed, which led to suppression and decline of regeneration, especially of Norway spruce, and loss of selection structure. Although we recorded lower regeneration potential of silver fir compared with Norway spruce within the seedling category, silver fir outcompeted Norway spruce within the small-sized tree category (1 cm < dbh ? 10 cm) because of its superior height growth in low light levels (diffuse light <6%) and occupied a greater share of the canopy. Nevertheless, we anticipate that over the long-term the low light regime will also cause regeneration decline of silver fir and broadleaves. Our research revealed significant structural changes in a single-tree farmer selection forest during the last 150 years. These were a result of variable management regime and environment. A farmer single-tree selection system could better mimic the natural disturbance regime if spatiotemporal combinations of diverse felling regimes would be used.  相似文献   

19.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

20.
In the year 2000, large areas of forest in Sweden, mainly 30-50 year old Pinus sylvestris (L.) stands, were attacked by the fungus Gremmeniella abietina (Lagerb.) Morelet. The aims of this study were to investigate: (i) the relationship between G. abietina-induced tree crown transparency (CT) and P. sylvestris (L.) tree mortality; (ii) the influence of CT levels on stem growth; (iii) the recovery of the crown; and (iv) the association of CT and colonization by Tomicus piniperda (L.). Thirty-five permanent sample plots were established in five P. sylvestris stands (38-46 years old), infested by G. abietina, and 23 plots in four reference stands, not obviously infested.During the 5 years following the attack, the total mortality amounted to 454 trees ha−1 and 7.8 m2 ha−1, on average, in the five infested stands, corresponding to 42% of the trees and 34% of the basal area at the time of the attack. Most of the mortality occurred within 2 years of the attack. The mortality of individual trees (2002-2005) was found to be related to the crown transparency (CT), the position of needle loss within the crown and the tree diameter at breast height. Based on our modeling, the probability of mortality was substantially increased if the initial CT-value was higher than 85%.Growth reductions were detected for individual trees with an initial CT of >c. 40%. In contrast, trees with a low initial CT (<c. 40%) were not affected and even exhibited increased growth. In the five infested stands, the reductions in basal area and volume increment were estimated to be 26-58%, and, 42-73%, respectively, during the five growing seasons after the attacks.The trees in the infested stands that were still alive in spring 2005 had started to recover in terms of CT. Breeding of T. piniperda on the P. sylvestris (L.) stems occurred almost exclusively on stems with a CT > 90%.The data from this study suggest that when a P. sylvestris (L.) stand has been attacked by G. abietina, trees with a CT above 80% should be felled; the remaining trees will have a high probability of survival and resistance to successful breeding by the T. piniperda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号