首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coarse woody debris (CWD) has been identified as a key microhabitat component for groups that are moisture and temperature sensitive such as amphibians and reptiles. However, few experimental manipulations have quantitatively assessed amphibian and reptile response to varying CWD volumes within forested environments. We assessed amphibian and reptile response to large-scale, CWD manipulation within managed loblolly pine stands in the southeastern Coastal Plain of the United States from 1998 to 2005. Our study consisted of two treatment phases: Phase I treatments included downed CWD removal (removal of all downed CWD), all CWD removal (removal of all downed and standing CWD), pre-treatment snag, and control; Phase II treatments included downed CWD addition (downed CWD volume increased 5-fold), snag addition (standing CWD volume increased 10-fold), all CWD removal (all CWD removed), and control. Amphibian and anuran capture rates were greater in control than all CWD removal plots during study Phase I. In Phase II, reptile diversity and richness were greater in downed CWD addition and all CWD removal than snag addition treatments. Capture rate of Rana sphenocephala was greater in all CWD removal treatment than downed CWD addition treatment. The dominant amphibian and snake species captured are adapted to burrowing in sandy soil or taking refuge under leaf litter. Amphibian and reptile species endemic to upland southeastern Coastal Plain pine forests may not have evolved to rely on CWD because the humid climate and short fire return interval have resulted in historically low volumes of CWD.  相似文献   

2.
We assessed shrew (soricids) response to coarse woody debris (CWD) manipulations in managed upland loblolly pine (Pinus taeda) stands in the upper Coastal Plain of South Carolina over multiple years and seasons. Using a completely randomized block design, we assigned one of the following treatments to 12, 9.3-ha plots: removal (n = 3; all CWD ≥ 10 cm in diameter and ≥60 cm long removed), downed (n = 3; 5-fold increase in volume of down CWD), snag (n = 3; 12-fold increase in standing dead CWD), and control (n = 3; unmanipulated). Therein, we sampled shrews during winter, spring, and summer seasons, 2003–2005, using drift-fence pitfall arrays. During 1680 drift-fence plot nights we captured 253 Blarina carolinensis, 154 Sorex longirostris, and 51 Cryptotis parva. Blarina carolinensis capture rate was greater in control than in snag treatments. Sorex longirostris capture rate was lower in removal than downed and control plots in 2005 whereas C. parva capture rate did not differ among treatments. Overall, the CWD input treatments failed to elicit the positive soricid response we had expected. Lack of a positive response by soricid populations to our downed treatments may be attributable to the early CWD decay stage within these plots or an indication that within fire-adapted pine-dominated systems of the Southeast, reliance on CWD is less than in other forest types.  相似文献   

3.
The decomposition of Pinus radiata (D. Don) stems, coarse woody roots and stumps was studied in Tarawera forest, Bay of Plenty region, North Island, New Zealand. The study examined the residues from two thinning events with 6 and 11 years of decay. Changes in the mass of stems, and density of roots and stumps were used to estimate the decay rate constants using a single exponential model. The decay rate of stems was not significantly related to DBH and averaged 0.1374 year−1 (22 years for 95% mass loss). The decay rate of coarse woody roots was not significantly different to stem decay and averaged 0.1571 year−1 (19 years for 95% mass loss). A large range in stump decay rates was measured and a significantly lower decay constant was observed for stumps (0.1101 year−1, 27 years for 95% mass loss), possibly due to the stumps being kept alive after felling through root grafting and a resistance to decay due to the presence of resin. The concentration of C remaining in stems and stumps increased with mass loss from 52% to 55% C after 11 years of decay. The C concentration in coarse woody roots initially increased but then declined near to the original level of 50% after 11 years of decay. Nitrogen concentrations increased substantially in all components with decay.  相似文献   

4.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

5.
森林生态系统粗木质残体生态功能研究   总被引:4,自引:0,他引:4  
粗木质残体(CWD)是森林生态系统中重要的结构性与功能性单元。本文在对国内外CWD 研究历史进行简要回顾的基础上,对其生态功能及其分解过程进行了系统分析。指出了目前CWD 研究的热点及存在的问题,并建议加强对CWD生态服务功能的定量化研究,为其在维持生物多样性、生产力和其它生态过程方面的经营管理提供科学指导。参57。  相似文献   

6.
The persistence of Sphaeropsis sapinea, Leptographium serpens and Heterobasidion annosum s.s. in artificially inoculated pine branch pieces (S. sapinea and L. serpens) and wood blocks (L. serpens and H. annosum s.s.) was investigated in order to discuss the alternative of leaving coarse woody debris in stands of Italian stone pine (Pinus pinea). Also, natural colonization by S. sapinea of pine cones of different ages was assessed. Methods used for inoculating branch pieces and wood blocks were highly effective for all fungi. Type of a forest stand in which branch pieces and wood blocks have been incubated did not affect the persistence of the pathogens in the inoculated samples. For branch pieces, the success of re-isolation of L. serpens dropped as the sample incubation time increased, while S. sapinea was always successfully (100%) re-isolated (even 12 months after the inoculation). L. serpens and H. annosum s.s. were re-isolated from most of the buried wood blocks (from more than 95% samples) up to 3 months following the inoculation. Of the observed P. pinea cones (in most cases, more than 2 years old), 74% were naturally infected byS. sapinea. All three investigated pathogens were able to survive in dead plant tissues for long periods of time (at least for several (3–12) months). The persistence of these pine-pathogenic species in dead plant material questions the feasibility of leaving coarse woody debris in managed Italian stone pine forests meant for landscape conservation and leisure activities.  相似文献   

7.
Decay rates of stems, branches and roots were assessed in Pinus radiata (D. Don) plantation forests located throughout New Zealand. Stem and branch decay rates were obtained using (1) post-harvest material from two central North Island locations (Kaingaroa and Tarawera Forests) based on a 10-year chronosequence (in ground contact or suspended) and (2) post-thinning stems and attached branch material from five sites covering a range of climatic conditions across New Zealand (Woodhill, Puruki, Hokonui, Nemona and Selwyn) with up to 5 years of decay. Stem, stump and root decay rates were determined from two central North Island locations (Kinleith and Puruki) from thinnings with 0, 5, and 10 years of decay (Kinleith) and mature trees at 0 and 11 years of decay (Puruki). Stem and branch post-harvest material decayed faster when in contact with the ground than when elevated above the ground. The proportion of material elevated or in ground contact was not estimated in this study. P. radiata discs from young trees and post-harvest residue showed no significant diameter effect on decay rate and could be used confidently to predict whole stem decay rate. Discs from older trees covering a larger diameter range at Puruki showed a significant effect of diameter on decay rate. Decay rates of coarse roots at the two central North Island sites were faster than above-ground whole stem decay rates. Exponential models incorporating mean annual temperature for P. radiata stems in ground contact arising from thinning and harvest currently provide the best estimate of residue decay in New Zealand. There was no increase in carbon concentration with decay, suggesting that live stem values may be applied to all dead wood for determining the mass of carbon change with decomposition. Nitrogen concentrations increased with decay.  相似文献   

8.
Coarse woody debris (CWD) is an important and particular component of forest ecosystems and is extremely important to forest health. This review describes the decomposition process, decomposition model and influence factors. CWD decomposition is a complex and continuous process and characterizes many biological and physical processes, including biological respiration, leaching, and fragmentation. All these processes have closed relationships between each other and work synergistically. During decomposition, there are many controlling factors mainly including site conditions (temperature, humidity, and OJCO2concentration), woody substrate quality (diameter, species and compound) and organism in CWD. The decomposition rate is generally expresses through a constant k which indicate the percent mass, volume or density loss over time, and can be determined by long-term monitoring, chronosequence approach and the radio between input and the total mass. Now using mathematical models to simulate decomposition patterns and estimate the decomposition rate is widely applied, especially the exponential model. We brought forward that managing and utilizing for the CWD in forest was a primary objective on all forest lands. And it is should be intensified to integrate many related research subjects and to carry a comprehensive, long-term and multi-scale research which mainly focus on seven sections.  相似文献   

9.
Long-term effects of salvage logging on coarse woody debris were evaluated on four stand-replacing wildfires ages 1, 11, 17, and 35 years on the Okanogan-Wenatchee National Forest in the eastern Cascades of Washington. Total biomass averaged roughly 60 Mg ha−1 across all sites, although the proportion of logs to snags increased over the chronosequence. Units that had been salvage logged had lower log biomass than unsalvaged units, except for the most recently burned site, where salvaged stands had higher log biomass. Mesic aspects had higher log biomass than dry aspects. Post-fire regeneration increased in density over time. In a complementary experiment, soils heating and surrogate-root mortality caused by burning of logs were measured to assess the potential site damage if fire was reintroduced in these forests. Experimentally burned logs produced lethal surface temperatures (60 °C) extending up to 10 cm laterally beyond the logs. Logs burned in late season produced higher surface temperatures than those burned in early season. Thermocouples buried at depth showed mean maximum temperatures exponentially declined with soil depth. Large logs, decayed logs, and those burned in late season caused higher soil temperatures than small logs, sound logs, and those burned in early season. Small diameter (1.25 cm), live Douglas-fir branch dowels, buried in soil and used as surrogates for small roots, indicated that cambial tissue was damaged to 10 cm depth and to 10 cm distance adjacent to burned logs. When lethal soil temperature zones were projected out to 10 cm from each log, lethal cover ranged up to 24.7% on unsalvaged portions of the oldest fire, almost twice the lethal cover on salvaged portions. Where prescribed fire is introduced to post-wildfire stands aged 20–30 years, effects of root heating from smoldering coarse woody debris will be minimized by burning in spring, at least on mesic sites. There may be some long-term advantages for managers if excessive coarse woody debris loads are reduced early in the post-wildfire period.  相似文献   

10.
Longleaf pine communities occupy a small fraction of their original extent in the southeastern United States and are in great need of restoration and conservation management. Recent anthropogenic disturbances, such as pine straw raking, may interfere with seedling survival and, hence, restoration efforts. We examined the effects of mechanized straw raking on longleaf pine (Pinus palustris Mill.) seedlings (pre-grass stage, or <3-yr-old) in natural, fire-maintained plant communities in Croatan National Forest, North Carolina, by testing the effects of number of rakings (0–4 times during a 2-yr period (1992–1994)) and community type (pine-turkey oak, dry savanna, and mesic savanna) on seedling densities in 1-m2 quadrats. Despite initial differences in densities of seedlings among communities, analyses of variance did not detect significant differences among communities as averaged over time and raking treatment. Both raked and unraked quadrats exhibited declines in seedling density during the study, but the declines were greater for raked quadrats. After 2 yr, initial densities were, on average, reduced by 34% in unraked quadrats and by 47%, 63%, 78%, and 77% in quadrats raked one, two, three, and four times, respectively. In quadrats raked four times, censuses performed after each raking indicated significant declines in densities in response to all but the first raking. Raking either injures pine seedlings directly and/or modifies microsite conditions in ways unfavorable for seedling survival. Having established a link between raking and mortality, we now recommend additional work to reveal the causal mechanisms. Land management decisions should accommodate the potential adverse effects of mechanized raking on pine regeneration.  相似文献   

11.
To evaluate the mass of coarse woody debris (CWD), it is necessary to quantify its density. Drill resistance measurements are introduced as a approach to estimate the density of CWD in different stages of decay. Dead logs of Norway spruce [Picea abies (L.) Karst.] from a Central European mountainous site were used as a test system to compare the new method with conventional predictors of wood density such as fast quantitative field estimates (e.g., knife probe) and classification of decay classes based on a set of qualitative traits and quantitative estimates. The model containing only drill resistance as a predictor explained 65% of the variation in wood density and was markedly better than models containing one or more of several conventional predictors. However, we show that the relationship between drill resistance and gravimetric wood density relationship is sensitive to the decay status. Therefore, the best model combines drill resistance and decay class (adj. R2 = 0.732). An additional experiment showed that drill resistance is also sensitive to the moisture state (fresh vs. oven-dry) of the sample. The major potential of the method lies in its non-destructive nature which allows repeated sampling in long-term ecosystem studies or in protected areas where destructive sampling is prohibited. The limitations of the method are discussed and recommendations for applications are given.  相似文献   

12.
13.
Abstract

Coarse woody debris (CWD) is critical for forest ecosystem carbon (C) storage in many ecosystems. Since the turnover of CWD is mostly driven by mineralization, changes in temperature and precipitation may influence its pools and functions. Therefore, we analysed, under controlled conditions, the effect of wood temperature and moisture on carbon respiration from CWD for the important European tree species Fagus sylvatica L., Picea abies (L.) Karst. and Pinus sylvestris L. in different stages of decay, represented by different wood densities. Additionally, we measured CWD respiration of individual F. sylvatica and P. abies logs over one year to analyse the effects of micro-climatic variables in the field. CWD respiration rates under controlled lab conditions were about two times higher for beech than for spruce and pine and similar for the latter two species. In addition, wood moisture exerted a stronger influence on respiration than wood temperature. In contrast, respiration in the field was most strongly controlled by temperature. Average Q 10 values under controlled conditions were 2.62 for F. sylvatica and 2.32 for P. abies across all temperature and moisture levels, while no significant relationship between temperature and CO2 flux was observed for P. sylvestris. About 80% of the variation in respiration under controlled conditions could be explained by species, wood density, moisture and temperature and their interactive effects. Temperature alone explained 96% (beech) and 94% (spruce) of the variation in respiration in the field. Furthermore, we predicted average monthly temperatures of CWD in the field very accurately from air temperature (r 2=0.96), which is relevant for modelling CWD carbon dynamics under climate change scenarios. Our results indicate that species identity, decay stage and micro-climatic conditions should be considered when predicting CWD decay rates.  相似文献   

14.
Purely observational studies have documented differences in the abundance and diversity of several litter-dwelling arthropods between sites adjacent to, and far from, CWD, which suggests that reduction of fallen coarse woody debris (CWD) in temperate forests by traditional forestry practices may affect the litter arthropod community. As few field experiments have directly tested the impact of CWD on arthropods inhabiting the litter at different distances from CWD, we removed CWD from replicated open plots on the floor of a second-growth deciduous forest in order to reveal the causal connection between CWD and litter-dwelling spiders, often the most diverse and abundant predators among the litter macrofauna of temperate forests. We also documented the impact of the CWD manipulation on spider prey and several other major macroarthropod groups. Before removing CWD (∅ = 14.3 ± 0.7 cm), we measured response variables as a function of distance (0.5–1.5 m) from CWD in both removal and control plots. In agreement with results of previous research that solely utilized this observational approach in temperate forests, volume and dry mass of litter, spider diversity, overall spider density, and densities of 8 of 16 major spider genera were higher adjacent to CWD before experimental manipulations. Removing CWD reduced the amount of litter and the density of spiders in litter close to where the CWD had been. Removing CWD also altered spider community structure, which had differed between litter sites adjacent to, and far from, CWD prior to the experimental removal of CWD. The patterns, though, were not completely congruent, as some of the taxa affected by the manipulation had not differed between sites prior to the removal of CWD, and vice-versa. Our findings suggest that complex interactions among structural, biotic and microclimatic factors underlie the observed responses to CWD removal by spiders and other arthropods in the litter layer. We also conclude that drawing inferences solely from observational studies is not a reliable approach for predicting the impact of changes in the amount of CWD on arthropods of forest-floor leaf litter. Further field experiments manipulating different volumes of CWD are needed in order to determine the minimum amount of CWD that should be kept on the forest floor of managed forests in order to maintain densities and diversities of major leaf-litter arthropods.  相似文献   

15.
Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2–4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while woody shrubs gained understory dominance. In 2001, a research study was installed in southern Alabama to develop management options that could be used to reduce fuel loads and restore the ecosystem. As part of a nationwide fire and fire surrogates study, treatments included a control (no fire or other disturbance), prescribed burning only, thinning of selected trees, thinning plus prescribed burning, and herbicide plus prescribed burning. After two cycles of prescribed burning, applied biennially during the growing season, there were positive changes in ecosystem composition. Although thinning treatments produced revenue, while reducing midstory hardwoods and encouraging growth of a grassy understory, burning was needed to discourage regrowth of the hardwood midstory and woody understory. Herbicide application followed by burning gave the quickest changes in understory composition, but repeated applications of fire eventually produced the same results at the end of this 8-year study. Burning was found to be a critical component of any restoration treatment for longleaf communities of this region with positive changes in overstory, midstory and understory layers after just three or four burns applied every 2 or 3 years.  相似文献   

16.
We studied the leaf litter-dwelling fauna of managed deciduous forests and primeval reference sites in Western and Central Europe and addressed the questions if the higher overall species richness close to downed coarse woody debris (CWD) is related to intra-specific or inter-specific aggregation, if the aggregation pattern changes with the amount of CWD on the forest floor, and how much CWD is needed for different taxa. The analysis is based on shelled Gastropoda, Diplopoda/Isopoda, Chilopoda and Coleoptera. Among-sample heterogeneity was lower close to CWD than distant from CWD. This was most pronounced in Diplopoda/Isopoda and Gastropoda. Diplopoda/Isopoda are comparatively mobile and assemblages were already quite homogenous close to CWD at levels above 5 m3 downed deadwood ha−1. Gastropoda have a low mobility, and more than 20 m3 downed deadwood ha−1 is needed for assemblage homogeneity. We further focused on the Gastropoda as sensitive indicators. Enhanced densities and species richness close to CWD were not a simple function of leaf litter weight, thus effects of densities on heterogeneity are not solely driven by leaf litter accumulation close to CWD. In contrast to euryecious litter-dwellers such as the Punctidae, stenecious slow active dispersers such as the Clausiliidae clearly require more than 20 m3 CWD ha−1 for an even distribution. Specialists depending on CWD even seem to have gone extinct in some managed forests. For conserving the litter-dwelling fauna, we propose a target of at least 20 m3 downed CWD ha−1 in already managed forests and rigorous restrictions for deadwood removal from still (almost) pristine systems.  相似文献   

17.
Nitrogen (N) limits productivity in many coniferous forests of the western US, but the influence of post-fire structure on N cycling rates in early successional stands is not well understood. We asked if the heterogeneity created by downed wood and regenerating pine saplings affected N mineralization and microbial community composition in 15-yr old lodgepole pine (Pinus contorta var. latifolia) stands established after the 1988 fires in Yellowstone National Park (Wyoming, USA). In three 0.25-ha plots, we measured annual in situ net N mineralization in mineral soil using resin cores (n = 100 per plot) under pine saplings, downed wood (legacy logs that survived the fire, and fire-killed trees that had fallen and were contacting or elevated above the ground), and in bare mineral soil. Annual in situ net N mineralization and net nitrification rates were both greater in bare mineral soil (8.4 ± 0.6 and 3.6 ± 0.3 mg N kgsoil−1 yr−1, respectively) than under pine saplings, contact logs, or elevated logs (ca. 3.9 ± 0.5 and 0.8 ± 0.1 mg N kgsoil−1 yr−1, respectively). Net nitrification was positively related to net N mineralization under all treatments except for elevated logs. In laboratory incubations using 15N pool dilution, NH4+ consumption exceeded gross production by a factor of two in all treatments, but consumption and gross production were similar among treatments. Contrary to our initial hypothesis, microbial community composition also did not vary among treatments. Thus, two- to three-fold differences in in situ net N mineralization rates occurred despite the similarity in microbial communities and laboratory measures of gross production and consumption of NH4+ among treatments. These results suggest the importance of microclimate on in situ annual soil N transformations, and differences among sites suggest that broader scale landscape conditions may also be important.  相似文献   

18.
A high incidence of Diplodia shoot blight (site means ranging 85-100%) was observed on recently planted red pine (Pinus resinosa) seedlings where mature red pine stands previously had been clearcut. An investigation of the potential of harvest debris as a source of inoculum of Diplodia pathogens then was conducted. Cones, bark, needles, stems from shoots bearing needles, and stems from shoots not bearing needles (both suspended above the soil and in soil contact) were collected from harvest debris left at sites where clearcutting occurred. Conidia were quantified, and their germination rate was assessed, and Diplodia species were identified using PCR. Conidia of Diplodia species were found at all study sites and conidia counts increased from samples collected from 6 to 18 months after harvest. Germinable conidia were obtained from debris collected 6 months to 5 years after harvest. Fewer conidia were obtained from debris collected at intervals of up to 4-5 years after harvest and the percentage of germinable conidia was lower after longer intervals following harvest. More conidia were obtained and a greater percentage germinated from debris collected above the soil than from debris in soil contact. The host substrate also influenced the number of conidia and the percentage that germinated. Planting red pine seedlings next to debris infested with Diplodia pathogens could provide a persistent source of inoculum. Results should prompt further consideration by land managers and researchers of the potential forest health risks, in addition to benefits, that may be associated with harvest debris.  相似文献   

19.
The biomass and decomposition of coarse woody debris (CWD, ≥10 cm in diameter) were studied in a monsoon evergreen broad-leaved old-growth forest in Dinghushan Nature Reserve, Southern China. The study examined the biomass of CWD from 1992 to 2008 and decomposition of three dominant tree species CWD (Castanopsis chinensis, Cryptocarya concinna, Schima superba) from 1999 to 2008. Changes in the wood density of three tree species’ CWD were used to estimate the decay rates with a single exponential model. The results showed that the biomass of CWD in the old-growth forest was increasing from 17.41 tonnes ha−1 (t ha−1) in 1992 to 38.54 t ha−1 in 2008, and a higher decay constant was observed for C. concinna (0.1570 – 19 years for 95% mass loss); the decay rates of S. superba and C. chinensis were 0.1486 (20 years for 95% mass loss) and 0.1095 (27 years for 95% mass loss), respectively. The difference in decay constant rates may be due to their substrate quality and decomposers. The content of carbon (C) in three species declined after 9 years of decay. Nitrogen (N) content increased in all species with decay. The C/N ratio in the three species declined during the decay process.  相似文献   

20.
在印度Askot野生动物保护区Goriganga流域的3个分水岭(Charigad,Dogarhigad和upper Gosigad)内,沿着海拔高度900~2600m设置5条曲线调查样带(样带A、B、C、D和E),调查了粗木质残体的分布格局和状况.海拔高度每升高100 m设置一块1 hm2的样地.结果表明,不同演替阶段的粗木质残体百分比贡献率按降低顺序排列依次是:枯立木--相位Ⅰ>相位Ⅱ>相位Ⅳ>相位Ⅲ;而原木-相位Ⅲ>相位Ⅱ>相位Ⅳ.调查样带A内喜马拉雅长叶松(Pinus roxburghii)林内枯立木密度在1500m处较高,调查样带B通麦栎(Quercus lanata)林的枯立木密度在2300米处较高(10个/hm2).喜马拉雅长叶松林的枯立木和原木总获得量为13.9 t,其中枯立木和原木分别占41%和59%;而通麦栎林枯立木和原木总量仅为5.6 t,枯立木和原木分别占60%和40%.此外,粗木质残体的存在,有利于为当地生长的兰花营造良好的生长环境.在喜马拉雅长叶松林中等高度区域内,高密度的枯立木和原木导致该区内物种丰富度较低,地被物密度也较低.这主要是由于该区光线充足、土壤水分含量低,只有优势种才能占领这样生境.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号