共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotstand is a computer model that can simulate the development of a forest stand together with the root rot disease caused by Heterobasidion annosum s.l. on several tree species in Europe. We evaluated the accuracy of Rostand model for its use in Sweden by using data from two field experiments of Norway spruce (Picea abies) in which the long term outcome of stump protection methods had been evaluated (14 and 20 plots, respectively). One of the experiments included artificial infection of the stumps that enabled an almost complete parameterization of the model. Artificially infected plots were used for assessing the loss of precision of using average parameter values vs. plot-specific values. Average values obtained from artificially infected plots were used for validating the model on plots subjected to natural infection. Rotstand proved to be able to predict plots with a large variation of decay development (20-90% of stems with decay) as early as 15 years after infection. The parameter controlling the inoculum expansion within the tree root system appeared as a major factor affecting the accuracy of the predictions. Expansion of decay centres of artificially and naturally infected plots in Southern Sweden was not significantly different from natural infected plots in the rest of the country, opening the possibility of using a single average value all over Sweden. By using an expansion rate of 0.20 m year−1, Rotstand gave unbiased predictions of decay development 15 years after infection with a relative error of 38.4%. When using average parameter values, Rotstand tended to underestimate plots showing more than 50% of decay 15 years after infection; however, when simulating those plots beyond the last decay assessment, these errors were predicted to disappear. 相似文献
2.
Forest harvesting in eastern North America has been occurring for centuries but its effect on soil carbon storage and dynamics below 20 cm is not well known. This paper investigates age-related variations in carbon storage and dynamics in the organic layer and 6 depth strata in the top 50 cm of the mineral soil during ecologically important stages of post-harvest succession in a first rotation red spruce forest chronosequence that includes one of the largest old growth reference stands in northeastern North America. Storage of carbon reached a minimum 32 years post-harvest, at which time stores were approximately 50% of the intact forest. However, storage approached the range of the intact forest approximately 100 years post-harvest. Examination of age-related variations with depth revealed that concentrations of carbon below 20 cm may be driving the temporal trends in whole soil storage in these forests. Corresponding carbon isotope data were consistent with increased isotopic fractionation attributable to increased rates of mineralization post-harvest. Based on these results, we suggest that a greater emphasis should be placed upon examining storage of carbon below 20 cm in the mineral soil when evaluating the sequestration potential of intensive forest management, specifically rotation length. 相似文献
3.
Norway spruce (Picea abies) trees infected by Heterobasidion annosum s.l. decrease their periodic increment after a long period of time. Periodic increment decrease hypothetically relates to the formation of a reaction zone in order to prevent fungal colonisation. We studied 11 stands in Sweden, where we compared the periodic increment of healthy, rotten- and H. annosum-infected trees growing on plots thinned in winter, unthinned or thinned in summer, with and without urea or P. gigantea treatment of the stumps. Based on the rot incidence and the population structure of H. annosum of the plots, two phases of infection were considered: > 13 years and < 13 years. The presence of reaction zone and decay was observed on wood cores extracted with an increment borer. Rotten and H. annosum-infected trees with reaction zones exhibited a lower periodic increment than healthy trees (13.0% and 12.5% losses in terms of diameter, respectively), while no differences were observed between healthy trees and rotten and H. annosum-infected trees without reaction zone. Our results support the hypothesis of a periodic increment decrease in individual trees due to photosynthate re-allocation resulting from decay compartmentalization. Periodic increment decrease was only evident in trees that had been infected for more than 13 years. Trees in urea-treated plots registered a higher periodic increment, suggesting a possible response of trees to the nitrogen addition of the urea treatment of the stumps. 相似文献
4.
Rotfinder is a non-destructive decay-sensing apparatus based on resistance measurements in standing trees. The accuracy of Rotfinder in detecting decay was evaluated in 500 standing trees in three Norway spruce (Picea abies) plots. Trees were measured at three heights, 0.30, 0.66 and 1.30 m. Sections were later inspected for the presence of decay and reaction zones. Inspected trees were mostly infected by Heterobasidion annosum and showed a large variation in the amount of decay present, ranging from 0.1% to 88.0% of the section. Correctly and incorrectly classified trees were compared in terms of ion and element concentration, density and moisture. Measurements at stump level (0.30 m) were more accurate than measurements at breast height (1.30 m) where the reaction zone and decay columns showed lower moisture content. The accuracy of Rotfinder increased when trees with small decay columns were regarded as ‘non-decayed’. When only trees with more than 15% of the section decayed were regarded as ‘decayed’, Rotfinder had an accuracy of 0.86 when performing assessments at stump level. False negatives, as opposed to true positives, corresponded to trees with smaller and drier decay columns, drier reaction zones and lower K+ (potassium) concentration in the decay column. False positives corresponded to trees with large sapwood and high sodium content in the sapwood. Rotfinder represents an alternative to the standard method of using increment core observations to assess decay in living trees. 相似文献
5.
Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomass functions (BFs) and biomass expansion factors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older. 相似文献
6.
Pinus sylvestris-dominated forests have been heavily utilized across all of boreal Fennoscandia and the remaining natural forests are generally highly fragmented. However, there are considerable local and regional differences in the intensity and duration of past forest utilization. We studied the impact of human forest use on the diversity of epiphytic and epixylic lichens in late-successional Pinus sylvestris-dominated forests by assessing species richness and composition along both local and regional gradients in forest utilization. The effects of local logging intensity were analysed by comparing three types of stands: (i) near-natural, (ii) selectively logged (in the early 20th century) and (iii) managed stands. The effects of regional differences in duration and intensity of past forest use were analysed by comparing stands in two contrasting regions (Häme and Kuhmo–Viena). The species richness of selectively logged stands was as high as that of near-natural stands and significantly higher in these two stand categories than in managed stands. Species richness increased with the density of small understorey Picea, which correlated strongly with decreasing intensity of local forest use and increasing structural complexity of selectively logged and near-natural stands. Stands in the Häme region hosted a lower number of species, and were less likely to host many old-growth indicator species than the Kuhmo–Viena region, suggesting that species have been lost from stands in the Häme region due to a longer history of intensive forest use. We conclude that selectively logged stands, along with near-natural stands, are valuable lichen habitats particularly for species confined to old-growth structures such as coarse trees and deadwood. In landscapes where natural forests have become fragmented, the management or restoration of the remaining late-successional Pinus-dominated forests, e.g. through the use of fire, should be carefully planned to avoid adverse effects on lichen species richness. 相似文献
7.
For estimating the amount of carbon (C) in dead wood, conversion factors from raw volume per decay class to dry weight were developed using three different classification systems for the species Norway spruce (Picea abies L. Karst), Scots pine (Pinus sylvestris L.) and birch (Betula pendula Roth and B. pubescens Ehrh) in Sweden. Also the C concentration in dead wood (dry weight) was studied. About 2500 discs were collected from logs in managed forests located on 289 temporary National Forest Inventory (NFI) sample plots and in 11 strips located in preserved forests. The conversion factors were based on an extensive data compilation with a wide representation of different site-, stand-, species- and dead wood properties and were assumed to represent the population of fallen dead wood in Sweden. The density decreased significantly by decay class and the range in density for decay classes was widest for the NFI decay classification system, suggesting this to be the most suitable. The C concentration in dead wood biomass increased with increasing decay class and in average Norway spruce (P. abies) showed a lower C concentration than Scots pine (P. sylvestris). The average dead wood C store of Swedish forests was estimated to 0.85 Mg C/ha. 相似文献
8.
Development of understory vegetation has been influenced by the many densely stocked second-growth forest stands in North America, which have an extended stem exclusion successional stage. Understory composition and structure is important for ecosystem functioning, while also having social and economic value through the harvest of certain herb and shrub species. The potential for co-management of young and mature, managed and unmanaged stands for timber and non-timber forest products (NTFPs) was assessed in two separate replicated experiments. Experiment A examined pole-sized lodgepole pine (Pinus contorta) stands that had been pre-commercially thinned (PCT) to target densities of 250, 500, 1000, and 2000 stems/ha. Half of each of these four thinning units was repeatedly fertilized, resulting in eight experimental units. Experiment B examined six different stand types: young plantations, pole-sized lodgepole pine stands either PCT, PCT plus repeated fertilization, or unthinned, mature, and old growth. Fifty-four herb and shrub species were identified as potential NTFPs, with the responses of individual species, as well as mean total herb, shrub, berry-producing and overall total NTFPs being assessed. In Experiment A, mean total abundance (crown volume index) of NTFPs, as well as mean total herb NTFPs were significantly greater in fertilized than in unfertilized stands. Thinning treatments did not significantly affect NTFP volume, however, fertilization treatments produced five significant responses by individual species (Achillea millefolium, Epilobium angustifolium, Taraxacum officinale, Arctostaphylos uva-ursi, Rubus idaeus). In Experiment B, four of the six species responses that were significant had greater abundance in young, managed stands (young plantation, thinned, or thinned-fertilized) than in the unmanaged stands. Mean total NTFP volume and mean total herb NTFP volume also followed this pattern. A. uva-ursi, E. angustifolium, Lonicera involucrata, Sorbus sitchensis and Thalictrum occidentale all had significantly higher abundance in young, managed stands than in all other treatments. Results suggest that co-management for timber and NTFPs is possible in this ecosystem, with further research needed to evaluate livelihood values of these crops. 相似文献
9.
Effect of canopy gap size and ecological factors on species diversity and beech seedlings in managed beech stands in Hyrcanian forests 总被引:2,自引:0,他引:2
Kambiz Abrari Vajari Hamid Jalilvand Mohammad Reza Pourmajidian Kambiz Espahbodi Alireza Moshki 《林业研究》2012,23(2):217-222
We studied the species diversity of the herb layer and ecological factors in harvest-created gaps in beech stands under a single-tree selection system in Northern Iran. To determine diversity, the number of beech seedlings, and other ecological factors, 16 gaps were selected and subplots of 5 m2 were positioned at the centre and at the cardinal points of each gap. Species richness and Simpson diversity index increased with increasing gap area as did numbers of seedlings. With increasing humus layer thickness, species richness declined but the Hill evenness index increased. Species richness increased with increasing light availability. There was no relationship between crown radii of beech trees and diversity indices. Correlations between environmental factors and numbers ofindividuals of some species in the herb layer were not significant except in a few cases. The results help explain the effects of man-made gaps on the dynamics of managed beech stands and this benefits evaluation of silvicultural operating plans. 相似文献
10.
Many mountain forests in the Swiss Alps are dense and overmature. The resulting lack of tree regeneration threatens their future ability to provide products and services for humans, e.g., protecting settlements and infrastructure against avalanches. To promote natural regeneration, slit-shaped gaps have been cut since the 1980s in many of Switzerland's Alpine forests dominated by Norway spruce (Picea abies). However, little is known about the success of this silvicultural technique. We sampled 38 gaps in 2001 and 2006 and analysed the density and vitality of P. abies seedlings in these gaps, and monitored the growth and survival of selected seedlings between the two inventories. The gaps analysed were located in upper montane and subalpine P. abies dominated forests in the Vorderrhein valley in the Grisons. The density and vitality of large (10–129 cm tall) and small (<10 cm tall) P. abies seedlings were assessed in three parallel transects running perpendicular to the longitudinal axis of each gap. The mean density of large seedlings increased significantly between 2001 and 2006 from 0.1 to 0.3 seedlings/m2, whereas that of small seedlings stayed constant at 0.7 seedlings/m2, even though it shifted locally between inventories. Significantly higher regeneration densities were found for gaps with NE–SW orientation (afternoon sun) and for those located at lower altitudes. While in gaps on North-facing slopes large P. abies seedlings were more frequent on the middle transect, in gaps on South-facing slopes they were denser near the lower gap edge which is usually less exposed to direct radiation. As expected regeneration density was significantly higher within the gaps than just outside underneath the adjacent stands for all P. abies seedlings. Damage caused by browsing did not turn out to be problematic in this study site. From the selected 280 small seedlings monitored in 2001, 53% died until 2006, 33% became large seedlings and 14% remained small (<10 cm). Our results suggest that creating slit-shaped gaps is a successful procedure to promote P. abies regeneration in the upper montane and subalpine belt of the northern intermediate Alps and helps to preserve protection forests and their goods and services for the coming generations. 相似文献
11.
Coarse woody debris pools and their decay class dynamics were studied in three areas of unmanaged boreal forest in northern Finland, and in the Murmansk and Arkhangelsk provinces in northwestern Russia. The study areas had varying climatic and edaphic conditions, and disturbance histories. Living and dead trees (diameter at 1.3 m height ≥10 cm) were measured in five late-successional Picea abies-dominated stands in each of the three areas. Wood density and time since death were determined from randomly sampled dead P. abies, and their decay class dynamics were modeled using stage-based matrix models. 相似文献
12.
The amount of standing genetic diversity found in oak coppice forests has been subjected to intense debate amongst forest ecologists and managers. In this study, the level of vegetative propagation and the genetic diversity found in a coppice forest of rebollo oak (Quercus pyrenaica) was examined. The current range of rebollo oak in the Iberian Peninsula reveals its adaptation to sub-Mediterranean mountain ecosystems. High sprouting capability, mainly by root suckers, has favoured traditional exploitation of rebollo oak in coppice forests. Using nine microsatellite loci, we have detected 14 clone assemblies compounded by 2–4 stems (7.9 ± 1.3 ramets per genet, considering stand density) and covering an average surface of 11.4 m2 per genet. The levels of genetic diversity and the amount of unique genotypes were high (D = 0.9972, G/N = 0.86) and similar to the clonality levels found in a nearby open oak woodland. Despite numerous clear-cutting rotations, known at least since 1750, and the heavy root sprouting observed after a thinning event, low clonal propagation (∼27%) was detected. This fact pointed towards the long-term persistence of several small clonal assemblies in this coppice. Our findings suggest that intense thinning practices are unadvisable in the conversion of Q. pyrenaica coppice into high forest due to the significant losses of genetic diversity when removing unique genotypes. 相似文献
13.
María Vanessa Lencinas Guillermo Martínez Pastur Emilce Gallo Juan Manuel Cellini 《Forest Ecology and Management》2009
Alternative silvicultural approaches to timber management, such as regeneration treatments with different degrees of stand retention, may mitigate negative effects of clear-cutting or shelterwood cuts in forested ecosystems, including changes in old-growth forest bird communities. The aims of this work were: (a) to compare bird species richness and densities among different silvicultural designs with variable retention (dispersed and/or aggregated) and unmanaged primary forests, and (b) to assess temporal changes at community and species levels before and after treatments. A baseline avian survey was conducted prior to harvesting to evaluate canopy gap presence and forest stand site quality influences. Subsequent to harvesting, data on bird species richness and density were collected by point-count sampling during the summer season for 5 consecutive years (4 treatments × 5 years × 6 sampling points × 5 counts). Bird species richness and density (15 species and 9.2 individuals ha−1) did not change significantly with forest site quality of the stands and canopy gap presence in unmanaged forests. However, both variables were significantly modified in managed forests, increasing over time to 18 species and reaching to 39 individuals ha−1. Inside the aggregated retention, bird communities were more similar to unmanaged primary forests than those observed within the dispersed retention or in clear-cuts. Opting for a regeneration method with dispersed and aggregated retention has great potential for managing birds in Nothofagus pumilio forests. This method retained enough vegetation structure in a stand to permit the establishment of early successional birds (at least in dispersed retention), and to maintain the bird species of old-growth forests which could persisted in the retention aggregates. 相似文献
14.
To improve the silvicultural targets for ecologically sustainable forestry, we quantified functionally important structural features for the first time in a representative set of old-growth forests in hemiboreal Europe. Altogether, 23 old-growth stands of four site-type groups were compared with mature commercial stands nearby in the Estonian state forests that hold the Forest Stewardship Council (FSC) certificate of sustainable forestry. These two treatments did not differ significantly in terms of tree-species diversity, volumes of woody debris of <20 cm diameter (including fine woody debris) and its decay-stage composition. However, mature stands had many more early-successional trees and lacked late-successional deciduous species; they also had a higher overall density and volume of live trees, due to abundant individuals of 10–39 cm diameter at breast height. Old-growth stands had at least twice as many live trees ≥40 cm, standing dead trees ≥30 cm and lying wood ≥20 cm in diameter, any freshly fallen debris, and regeneration. For lying wood ≥20 cm in diameter, the treatment effect depended on site type: both treatments of Vaccinium-type dry boreal forests were remarkably deadwood-poor (indicating historical management of the old-growth stands), while mature eutrophic stands of Aegopodium-type were most impoverished relative to old-growth levels. We conclude that many functional characteristics of old growth were present in the FSC-certified, mostly naturally regenerated, commercial stands. The main problem is the lack of very large trees, particularly of late-successional deciduous species, which should be addressed by their well-planned retention in cut areas and reconsideration of salvage logging strategies. A dense regeneration in old-growth stands also indicated the potential of selection cuttings. The study highlighted the need for region- and site-type specific numerical targets for sustainable forest management, which in the hemiboreal region should address the characteristic occurrence of late-successional deciduous trees on fertile soils and higher natural deadwood volumes than in typical boreal forests. For certification, the issues of structural impoverishment revealed both the inadequacy of some silvicultural practices and some indicators set by the national FSC-standard in Estonia. 相似文献
15.
Canopy gaps and regeneration in old-growth Oriental beech (Fagus orientalis Lipsky) stands, northern Iran 总被引:1,自引:0,他引:1
Virgin beech Fagus orientalis forests in northern Iran provide a unique opportunity to study the disturbance regimes of forest ecosystems without human influence. The aim of this research was to describe characteristics of natural canopy gaps and gap area fraction as an environmental influence on the success of beech seedling establishment in mature beech stands. All canopy gaps and related forest parameters were measured within three 25 ha areas within the Gorazbon compartment of the University of Tehran’s Kheyrud Experimental Forest. An average of 3 gaps/ha occurred in the forest and gap sizes ranged from 19 to 1250 m2 in size. The most frequent (58%) canopy gaps were <200 m2. In total, canopy gaps covered 9.3% of the forest area. Gaps <400 m2 in size were irregular in shape, but larger gaps did not differ significantly in shape from a circle. Most gaps (41%) were formed by a single tree-fall event and beech made up 63% of gap makers and 93% of gap fillers. Frequency and diversity of tree seedlings were not significantly correlated with gap size. The minimum gap size that contained at least one beech gap-filling sapling (<1.3 m tall) was 23.7 m2. The median gap size containing at least one beech gap-filling sapling was 206 m2 and the maximum size was 1808 m2. The management implications from our study suggest that the creation of small and medium sized gaps in mixed beech forest should mimic natural disturbance regimes and provide suitable conditions for successful beech regeneration. 相似文献
16.
The adaptive plasticity of Norway spruce (Picea abies) against attack by Ips typographus depends on systemic acquired resistance which involves salicylic acid (SA), and an antioxidant system both recognized as valuable stress markers in ecophysiological studies. In the presented field experiment, 100 mM SA was applied to the bark sections of Norway spruce prior to being attacked by bark beetles, in order to study interactions with antioxidants and its significance for mediating stress-tolerance under natural conditions. SA-treatments significantly elevated the total SA levels over the whole sampling period. Total glutathione (tGSH) and total cysteine (tCys) increased by 167% and 80%, respectively, two weeks after treatment, in comparison with controls. In contrast, SA-treatment caused an initial deterioration in total ascorbic acid (tASC) and enhanced the percentage of dehydroascorbic acid (DHA), but activated tASC levels over later sampling dates. The initial bark beetle attack was characterized by a significant decline in total SA levels, which was accompanied by a transient degradation and oxidation of their ascorbate-glutathione system. This initial reaction was significantly alleviated by SA-application and characterized by 175% higher tGSH contents, when compared to moderately-affected untreated trees. One month after pheromone dispensers were placed on trees, an intensification of ascorbate-glutathione system occurred within moderately-affected bark, but to a greater extent after SA-treatment. Total SA levels within SA-treated moderately-affected trees remained at the control level until June. In contrast, strong attack was characterized by a successive increase in total SA up to 252% following SA-treatment in June, whereas a 110% increase of SA was determined within severely affected control-bark. A strong attack was further characterized by a degradation of tGSH and total phenolics (tPH), a moderate increase in tASC and an oxidation of the ascorbate-glutathione pool within untreated bark. In the SA-treated trees the redox state was unaffected by severe colonization and the degradation of antioxidants was significantly alleviated. In addition, SA-treated bark had significantly less entrance holes and exhibited fewer and shorter maternal galleries than control-bark. From this perspective, exogenous SA was successfully implicated as an activator of systemic acquired resistance in Norway spruce, providing tolerance against the complex interactive effects of bark beetle attack and environmental factors. 相似文献
17.
The aim of the study was to establish the amount of decaying wood (logs and stumps) in various groups of Hepatica site-type pine forests of different age and management intensity and to analyse the composition of bryophytes in dependence of these factors. The average volume of CWD in old unmanaged forests was 47.5 m3/ha, which is rather well comparable with respective estimations from Fennoscandia. Reduced human impact contributes positively to the amount of CWD. Diversity of log diameter classes and decay stages is larger in old forests. Altogether 73 bryophyte species were recorded, 65 species on logs and 55 on stumps. Species richness on stumps was higher in managed forests than in unmanaged ones. At the same time, the species having high indicator value for man-cut stumps are very common species in boreal forests and grow on other substrata as well. Species composition and ecological conditions differed between stumps and logs. Logs are more humid microhabitats than stumps, therefore the occurrence of hepatics is more frequent on them. According to species composition on decaying wood the old unmanaged forests distinguished from others. As the differences of substratum characteristics were notable between old and young forests, the stand age described a considerable part of species variance on logs. 相似文献
18.
Craig G. Lorimer Daniel J. Porter Mary Ann Madej John D. Stuart Stephen D. Veirs Jr. Steven P. Norman Kevin L. OHara William J. Libby 《Forest Ecology and Management》2009,258(7):1038-1054
Coast redwood (Sequoia sempervirens), a western North American conifer of ancient lineage, has a paradoxical combination of late-successional characteristics and strong adaptations to disturbance. Despite its shade tolerance and heavy dominance of the canopy on many sites, redwood saplings are uncommon in upland old-growth stands. Information needed to ensure the conservation of old-growth redwood forests has been limited. In this review paper, we integrate evidence on redwood biology with data on the historic and modern disturbance regimes to help clarify the degree to which key attributes of redwood forests may have been dependent upon periodic disturbance. Available evidence suggests that episodes of fire, flooding, and slope failure prior to European settlement were frequent but predominantly of low to moderate severity and extent, resulting in broadly uneven-aged forests. The majority of fires prior to European settlement were apparently of human origin. Frequency and severity of the major disturbance agents have been radically changed in modern times. Fires have been largely excluded, and flooding has been altered in ways that have often been detrimental to old-growth redwoods on alluvial terraces. However, because of the apparent anthropogenic origin of most presettlement fires, the long-term evolutionary role of fire for coast redwood is ecologically ambiguous. With fire exclusion, redwood possibly could be displaced to some extent on upland sites by increasing abundance of fire-sensitive competitors. Alternatively, redwood may be able to maintain dominance by vegetative sprouting and new seedling establishment on root-wad mounds, fallen logs, and on soil exposed by slope failure. Future research priorities are suggested that will help resolve some of the current ambiguities. 相似文献
19.
Thomas M. James 《Forest Ecology and Management》2011,262(4):629-636
This study sought to clarify the recruitment dynamics and growth of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in relation to changing temperatures in northern Mongolia. These tree species are the primary forest species found in the closed-canopy boreal forest of north-central Mongolia. Mongolia’s boreal forests exist along the southern terminus of the Siberian boreal system in both pure and mixed species stands. I collected tree cores and cross-sections as well as site and tree stature parameters from 118 forest plots in the Darhad valley of north-central Mongolia. Principle components analysis of 130 L. sibirica tree ring series informed the construction of two composite chronologies for this species. A chronology for P. obovata was developed using 24 tree ring series. Correlation analysis between tree ring indices and temperature data showed two distinct growth signals: a positive response to growing season temperatures was exhibited by one L. sibirica chronology and a negative response to spring temperatures was exhibited by a second L. sibirica chronology. The P. obovata chronology exhibited strong negative correlations with mean monthly and mean maximum monthly growing season temperatures. Multiple analyses of variance (MANOVA) indicated that tree stature (dbh, height) and site parameters (latitude, longitude, slope, aspect, elevation) did not significantly predict growth response or species. Forest recruitment events appear episodic for both species. Synchronous establishment of saplings, based on approximate root collar age, suggests an initial floristic model for mixed composition stands likely due to supra-annual variations of fire, land-use and climate. Forest management activities in the region should consider the diverging growth response to temperature shown here by prioritizing protection forests and the various ecosystem services provided by forests in arid ecosystems. In addition, promoting selection harvests over clear-felling would maximize future alternatives under conditions of rapidly changing climate. Care should be taken in new forest management planning activities until adequate information exists on the likely trajectory of this system due to climate-induced forest change. 相似文献
20.
Torsten W. Berger Erich Inselsbacher Franz Mutsch Michael Pfeffer 《Forest Ecology and Management》2009,258(11):2578-2592
Studies on the combined effects of beech–spruce mixtures are very rare. Hence, forest nutrition (soil, foliage) and nutrient fluxes via throughfall and soil solution were measured in adjacent stands of pure spruce, mixed spruce–beech and pure beech on three nutrient rich sites (Flysch) and three nutrient poor sites (Molasse) over a 2-year period. At low deposition rates (highest throughfall fluxes: 17 kg N ha−1 year−1 and 5 kg S ha−1 year−1) there was hardly any linkage between nutrient inputs and outputs. Element outputs were rather driven by internal N (mineralization, nitrification) and S (net mineralization of organic S compounds, desorption of historically deposited S) sources. Nitrate and sulfate seepage losses of spruce–beech mixtures were higher than expected from the corresponding single-species stands due to an unfavorable combination of spruce-similar soil solution concentrations coupled with beech-similar water fluxes on Flysch, while most processes on Molasse showed linear responses. Our data show that nutrient leaching through the soil is not simply a “wash through” but is mediated by a complex set of reactions within the plant–soil system. 相似文献