首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
The effectiveness of retention trees and patches in preserving diversity of nine epiphytic and epixylic old-growth forest lichens was studied in north boreal spruce forests in Finland. We compared (1) 7–8-year-old retention cuts, with at least 5–10 living or dead retention trees per hectare, (2) 10–12-year-old clear-cuts, with some scattered living and dead retention trees on the sites, (3) old-growth spruce forests, and (4) 7-8-year-old retention patches (0.06–0.45?ha) representing the original tree species composition of old-growth forests. The occurrence of indicator lichens was studied on 150 deciduous trees and snags in each forest category. The species richness was significantly higher in old-growth forests than in the clear-cuts and retention cuts, but did not differ between old-growth forests and retention patches. Only three species were found in clear-cuts and two in retention cuts. Foliose cyanolichens Leptogium saturninum and Nephroma bellum thrived on solitary retention trees, whereas humidity-requiring pin lichens from the genus Chaenotheca were found only in old-growth forests and retention patches. Our results suggest that the ability of epiphytic and epixylic species to survive on retained trees depends on several factors: (1) substrate quality (tree species, tree type and diameter of a tree), (2) environmental factors (e.g. humidity, slope exposition), and (3) morphological and physiological characteristics of species. Besides of substrate trees, the retained conifers (esp. spruce) seem to be important in retention patches to provide the shading necessary to maintain humidity.  相似文献   

2.
To examine the relationship between forest succession following fire and the composition of bird communities, we investigated the vegetation structure, bird population density, foraging behavior and guild structure in bamboo grasslands (11 years since the last fire), pine savanna (41 years), pine woodland (58 years), old-growth hemlock forest (never burned), and old-growth spruce forest (never burned) in the Tatachia area of central Taiwan. Canopy height, total foliage cover, tree density, total basal area of tree, total basal area of snags, foliage height diversity, and tree species richness all increased with successional age. However, shrub cover peaked in intermediate successional stages. The vertical profile of foliage cover was more diverse in later successional forests, which had more breeding bird species and ecological guilds. All the breeding bird species recorded in early and intermediate stages were also found distributed in the late successional forests. Because Taiwan has high precipitation and humidity, and most forest fires in Taiwan are caused by human activities, forest fires and large areas of early successional vegetation were probably rare in the mountain areas of Taiwan prior to the arrival of humans. Therefore, bird species have not had enough time to adapt to areas with early or intermediate successional vegetation. Moreover, late successional forests host all the major plant species found in the early and intermediate stages and have higher foliage height diversity index, which was positively correlated with the bird species richness and bird species diversity index in this study. As a result, all breeding bird species and guilds in the area can be found in late successional forests. Efforts for conserving avian diversity in Taiwan should focus on protecting the remaining native old-growth forests.  相似文献   

3.
Pinus sylvestris-dominated forests have been heavily utilized across all of boreal Fennoscandia and the remaining natural forests are generally highly fragmented. However, there are considerable local and regional differences in the intensity and duration of past forest utilization. We studied the impact of human forest use on the diversity of epiphytic and epixylic lichens in late-successional Pinus sylvestris-dominated forests by assessing species richness and composition along both local and regional gradients in forest utilization. The effects of local logging intensity were analysed by comparing three types of stands: (i) near-natural, (ii) selectively logged (in the early 20th century) and (iii) managed stands. The effects of regional differences in duration and intensity of past forest use were analysed by comparing stands in two contrasting regions (Häme and Kuhmo–Viena). The species richness of selectively logged stands was as high as that of near-natural stands and significantly higher in these two stand categories than in managed stands. Species richness increased with the density of small understorey Picea, which correlated strongly with decreasing intensity of local forest use and increasing structural complexity of selectively logged and near-natural stands. Stands in the Häme region hosted a lower number of species, and were less likely to host many old-growth indicator species than the Kuhmo–Viena region, suggesting that species have been lost from stands in the Häme region due to a longer history of intensive forest use. We conclude that selectively logged stands, along with near-natural stands, are valuable lichen habitats particularly for species confined to old-growth structures such as coarse trees and deadwood. In landscapes where natural forests have become fragmented, the management or restoration of the remaining late-successional Pinus-dominated forests, e.g. through the use of fire, should be carefully planned to avoid adverse effects on lichen species richness.  相似文献   

4.
Subalpine dark coniferous forests in the western Sichuan Province of China play an important role in the hydrological processes in the upper reaches of the Yangtze River. Second-growth forests, with different stand successional stages, have developed as a result of logging over the past 50 years. Forest cover and stand structure changed greatly with concomitant degradation of forest ecosystem functions. To understand how the stand structures of the second-growth forests change during the stand succession process, we analyzed stand structure characteristics and an old-growth state index of the bamboo and moss-forest types. We found that stand structure at the young successional stage featured one-third of the structure characteristics of the old-growth dark coniferous forests,while the structure of the medium-aged stage had reached half the structure of the old-growth state. The two forest types were similar in the rate of development at the young successional stage but differed at the medium-aged stage;the moss-forest type had more advanced development than the bamboo-forest type at the medium-aged successional stage.  相似文献   

5.
Following disturbances, early-seral stages of forests provide a variety of structures. Whether this variety is a short-term phenomenon or influences forest succession for several decades or even longer is not known. We tested the hypotheses that after spruce dieback caused by bark beetles, a high spatial heterogeneity of stand structures will persist within stands and among stands even in advanced early-seral stages and that species taxonomical and functional diversity measures will reflect this heterogeneity. We used a chronosequence of unmanaged forests in the Berchtesgaden National Park (Germany) consisting of mature undisturbed spruce stands (control), stands belonging to an initial early-seral stage (~3 years after disturbance) and stands in an advanced early-seral stage (~20 years after disturbance). We analysed diversity and heterogeneity of these forest stands including stand structure, species density, species composition and functional–phylogenetic diversity of vascular plants, wood-inhabiting fungi and saproxylic beetles within plots, among plots of the same successional stage and among stages. Stands of the advanced early-seral stage were characterized by a high spatial heterogeneity of structural attributes, such as crown cover, regeneration density and spatial distribution of trees. Among-plot taxonomic beta diversity was highest in the advanced early-seral stage for beetles, but lowest for fungi, while beta diversity of plants among plots remained unchanged during succession. The mosaic of successional stages initiated by bark beetles increased the gamma diversity of the study area, especially for fungi and beetles. Our findings support the hypothesis that structural heterogeneity continues for at least two decades at stand and landscape scales and that species turnover among successional stages is a major mechanism for gamma diversity in forests after bark beetle disturbance.  相似文献   

6.
Abstract

Knowledge of the canopy lichen flora of managed forests is poor, but needs more focus since, for example, slash (tops, branches and twigs) harvest for biofuel may pose a threat to epiphytic lichen diversity. This study compared lichen species richness, density and composition between stems, tops, branches and twigs of mature Norway spruce (Picea abies) and aspen (Populus tremula) in managed boreonemoral forests in south–central Sweden. The stems were also compared with the slash fractions pooled together. All comparisons were made separately for each tree species. In total, 30 lichen species were found on Norway spruce and 46 on aspen. No significant differences in species richness or species density between fractions were found for Norway spruce, whereas aspen tops were significantly less species rich and species dense than the other fractions. Moreover, aspen slash was significantly more species dense than the stem. The lichen species composition of the stems clearly differed from that of the tops, branches and twigs in both tree species. Thus, lichen communities other than those removed with stems by conventional forestry are removed from the stands owing to slash harvest. However, these species are rather common and widespread in Sweden. The impact of slash harvest on the epiphytic lichen flora may therefore be of minor importance in forests established after clear-cutting or on former arable land.  相似文献   

7.
Large uprooted trees are typical old-forest structures that provide distinct microsites for sessile organisms. While the habitat value of treefall pits for plants is relatively well known, the characteristic exposed root-plates of treefall mounds, which may require different management, have received less attention. The aim of the current study was to explore key factors of lichen incidence and their community characteristics on root-plates. We mapped and described treefall mounds in 24 stands (2 ha each) in a balanced design representing mixed stands of two site types (mesotrophic; drained swamp) and two management types (old growth, mature commercial forest) in hemiboreal Estonia. First, the occurrence of any lichens and of a specialized pin lichen, Chaenotheca furfuracea, was recorded on all 1207 mounds found. According to multi-level logistic regression models, their incidence depended on every mound-scale variable tested: there were independent positive effects of root-plate area and treefall age, spruce treefall, and the absence of exposed pit. In contrast, weak stand-scale effects only appeared when their interactions with mound-scale variables were included or some main effects were eliminated. C. furfuracea also occurred more frequently where other inhabited root-plates were nearby, and such dispersal limitation interacted with habitat quality. Secondly, full lichen communities were described in detail on a subsample of 84 root-plates of Norway spruce (Picea abies). Altogether 48 lichen species were recorded, including eight red-listed or nationally rare species. The communities on large fresh root-plates and in mature drained stands had distinct species composition, while communities of older mounds and in old-growth stands converged in species composition. We conclude that lichen incidence on root-plates is mostly determined by colonization probability, and commercial forests can support a diverse lichen biota when large treefall mounds, particularly of P. abies and of >10 years age are provided. However, given some differences of lichen communities in old growth, and because treefall issues conflict with other management objectives in commercial forests, optimised management of treefall areas there should be complemented by their strict protection in reserves.  相似文献   

8.
By adopting the concept of space as a substitute for time, we analyzed the dynamics of species composition and diversity of different restoration sequences (20, 30, 40, 50 years) in two secondary forest types in western Sichuan Province, distributed in a northerly or northwesterly direction. The analysis was based on the results of measurements of 50 plots located at elevations between 3100–3600 m. The forests originated from natural regeneration in combination with reforestation of spruce when the old-growth bamboo-dark brown coniferous forests and moss-dark brown coniferous old growth forests were harvested. Similar old-growth dark brown coniferous forests at ages ranging between 160 and 200 years were selected as the reference forests for comparisons. We recorded 167 species of vascular plants from 44 families and 117 genera. There was no significant difference in terms of the number of species among secondary forests. But the importance values of dominant species varied during the restoration processes. The dominant species in the secondary forests is Betula albo-sinensis, while Abies faxoniana is the dominant species in old-growth dark brown coniferous forests. Species richness increased significantly with restoration processes. It increased quickly in secondary forests during the period from 30 to 40 years, but decreased significantly in the old-growth dark brown coniferous forests. The species richness among growth forms decreased in the following order: herb layer > shrub layer > tree layer. The maximum value of the evenness index occurred in secondary forests at age 40 and remained relatively stable in the bamboo-birch forests, but the evenness index tended to decrease in moss-birch forests and slightly increased in the old-growth mossdark brown coniferous forests. There was a statistically significant difference in the eveness index between the tree and shrub layers as well as between the tree layer and the herb layer, but there was no significant difference between the shrub layer and the herb layer. The value of the Shannon index increased over restoration time. In bamboo-birch forests, the maximum value of the Shannon index was 3.80, recorded at age 50. In moss-birch forests, the maximal value was 3.65, reached in this forest at age 30. The value of the Shannon index of old-growth dark brown coniferous forests was recorded between younger secondary and older secondary forests. The value of the dominance index of communities varied. At the first stage of restoration, it increased, and at the end it was decreased. The dominance index of the tree layer had a similar trend as that of the community dominance index, but was more variable. The minimum value of the dominance index of the tree layer in the moss-birch forests reached 20 years earlier than that of the bamboo-birch forests. There was a significant difference among restoration sequences in the α diversity indices except for the dominance index. No significant differences between the two secondary forest types were detected. Over age, the value of the Bray-Curtis index between secondary forest and old-growth dark brown coniferous forest increased. __________ Translated from Scientia Silvae Sinicae, 2007, 43(5): 17–23 [译自: 林业科学]  相似文献   

9.
In boreal black-spruce forests of Eastern Canada, a cohort model of ecosystem management has been proposed whereby a combination of both partial and more intensive cutting are used to emulate old-growth stands and the re-establishment of stands following severe wildfire. As with other approaches to coarse filter conservation, partial cutting is hypothesized to maintain and potentially recreate plant and animal assemblages consistent with a range of natural variability. In this study, we used ground-dwelling spiders (Araneae) to evaluate whether partial cutting and a cohort model of ecosystem management are sufficient to preserve biodiversity found in mature and over-mature boreal black spruce stands prone to paludification. We compared the spider fauna (11,628 individuals representing 136 species) in replicated partial cuts, clear cuts and uncut control stands with a chronosequence of mature and over-mature naturally regenerated stands (94-288 years since the last fire) [25 stands in total] in the same region of the northern Clay belt in Québec (Canada). In stands that were old-growth prior to cutting, harvesting had strong repercussions on spider assemblages that were not attenuated by less intensive, partial cutting. The most obvious changes in spider assemblages were related to increased recruitment of species that were nearly absent in uncut stands. Several cosmopolitan species that were widely distributed among stands prior to harvest increased in cut stands. Spider assemblages collected following either cutting methods were not consistent with assemblages found within the chronosequence and thus fell outside the observed range of natural variability. However we did not observe a similar recruitment effect for spider species in younger stands with relatively higher levels of retention. We demonstrate that the interaction between stand age prior to cutting, the degree of paludification as well as remnant basal area are important considerations when evaluating the efficacy of partial cutting to maintain forest spider assemblages and biodiversity at large in black-spruce stands. “We also suggest that retention levels in partial cuts will have to be substantially increased to maintain spider communities within their range of natural variation in managed forested landscapes.” However partial cutting with higher levels of retention, particularly in younger stands, may be useful in coarse filter management particularly for establishing or accelerating spider assemblages towards those found in old-growth stands.  相似文献   

10.
The relationships between the structural complexity of coniferous forests and the epiphytic lichen communities that inhabit them were examined in 51 conifer-dominated stands in southwestern Nova Scotia. One hundred and fifteen lichen species were studied in stands in the age range of 50–300 years. Environmental variables shaping the structural complexity of each forest stand were measured and their relationship with lichen species were assessed using a canonical correspondence analysis (CCA). The CCA revealed that the considerable variation in lichen community composition can be explained by several environmental variables associated with forest structure. The stand orientation on the first axis of the CCA found the most important variables for lichen richness to be stand age, tree stem density and snag stem density. The stand orientation on the second axis is strongly correlated with deciduous stem density and abundance including specific deciduous tree species such as Acer rubrum abundance. The analysis indicates that the greater the structural complexity in the forest, and thus the more microhabitats available, the greater the lichen species richness. These results should provide forest managers with a better understanding of the environmental variables that influence lichen diversity, and contribute to the development of more sustainable forest management strategies.  相似文献   

11.
In western North America, quaking aspen (Populus tremuloides) is the most common hardwood in montane landscapes. Fire suppression, grazing and wildlife management practices, and climate patterns of the past century are all potential threats to aspen coverage in this region. If aspen-dependent species are losing habitat, this raises concerns about their long-term viability. Though lichens have a rich history as air pollution indicators, we believe that they may also be useful as a metric of community diversity associated with habitat change. We established 47 plots in the Bear River Range of northern Utah and southern Idaho to evaluate the effects of forest succession on epiphytic macrolichen communities. Plots were located in a narrow elevational belt (2134–2438 m) to minimize the known covariant effects of elevation and moisture on lichen communities. Results show increasing total lichen diversity and a decrease in aspen-dependent species as aspen forests succeed to conifer cover types. The interactive roles of stand aspect, basal area and cover of dominant trees, stand age, aspen bark scars, and recent tree damage were examined as related to these trends. We developed an aspen index score based on lichens showing an affinity for aspen habitat (Phaeophyscia nigricans, Physcia tenella, Xanthomendoza fulva, Xanthomendoza galericulata) and found a significant negative relationship between the index and successional progression. Indicator species analysis showed the importance of all stages of aspen-conifer succession for lichen community diversity and highlighted the decline of aspen-dependent species with advancing succession. We present a landscape-level community analysis of lichens in the context of a conceptual model for aspen succession for the southern Rocky Mountains. We conclude that while total number of lichen species increases with succession, aspen-dependent species cover and richness will decline. In this way, epiphytic lichens communities may constitute an effective indicator of community-level diversity in for aspen-dependent species at-large.  相似文献   

12.
Replacement of native deciduous forests by coniferous stands was a common consequence of former European afforestation policies. However, these changes have proven to lead to serious ecological problems. Therefore, re-establishing mixed forests with native tree species became an increasingly popular management strategy to fulfil the demands of multi-functional forestry. We report about changes in collembolan assemblages and microbial performances during conversion of pure coniferous stands to mixed forests. The study was carried out in the Black forest area (SW of Germany), where a gradient of conversion from pure spruce stands (S1) to equally mixed stands (spruce, beech, and fir) at S4, through two intermediate stages (S2 and S3) was selected. Results clearly indicated strong modifications of the collembolan communities with an enrichment of the assemblages over the course of the conversion process. Mean species richness increased by 47% from S1 to S4 accompanied by diversity indices (Shannon and Simpson) higher at S4. Significantly different soil biota assemblages were found at each phase of the conversion process. Spatial turnover and nestedness contribute almost equally to the modification of assemblages from S1 to S2 while later on in the mixing process only spatial turnover was acting. Concomitantly, significant shifts in the functional structure of the collembolan assemblages were depicted, deep-dwelling collembolan (euedaphic) being, surprisingly, the most responsive group. In contrast, neither microbial nor coarse environmental parameters were influenced by the factor “conversion phase”. We suggest that stimulation of Collembolan communities after the mixing process was mainly due to the input of more suitable food sources and/or microhabitat increases. Our findings underline the crucial role of aboveground processes on the belowground system, with the intensity and scheme of the mixing-process as important factors to consider when aiming at soil biodiversity improvement in forest systems.  相似文献   

13.
Large cavity-nesting birds depend on large-diameter trees for suitable nest sites. The increased spatial extent of commercial timber harvesting is modifying forest structure across the land base and may thus compromise the availability of large trees at the landscape scale. In this study, our objectives were to (1) characterize the availability of large living and dead trees in old-growth stands dominated by different tree species and surficial deposits that encompass the range of natural cover types of eastern Québec's boreal forest; (2) analyze the distribution of trees among decay-classes; and (3) compare the availability of large trees in unharvested, remnant, and harvested stands for the entire range of decay-classes. A total of 116 line transects were distributed across unharvested forests, remnant linear forests, and cutblocks in cutover areas. Unharvested forest stands (black spruce [Picea mariana], balsam fir [Abies balsamea]–black spruce, balsam fir–white spruce [Picea glauca] and balsam fir) reflected a gradient of balsam fir dominance. The remnant forests selected were isolated for 5–15 years. Analyses were performed at two diameter cut-off values. Trees with DBH ≥20 cm were considered for availability of total trees whereas trees with DBH ≥30 cm were considered for availability of large trees. Forest stands comprised high proportions of standing dead trees (33% of all stems, 8% were large dead stems). Availability of total and large standing trees increased with the dominance of balsam fir in stands. Forest stands located on thick surficial deposits showed higher densities of large dead trees for every stand type suggesting a higher productivity on those sites. Availability of stems according to decay-classes showed a dome-shaped distribution with higher densities of snags in intermediate decay stages. However, for large stems, black spruce stands showed a significantly lower availability that was consistent across all decay-classes. In linear remnant forests, pure balsam fir stands were absent. Remnant stands thus showed a much lower availability in large trees when compared with unharvested balsam fir stands. Clearcuts had the lowest densities of dead trees across sampled stands. Current even-aged management practices clearly affect availability and recruitment of large trees, therefore forest-dwelling wildlife relying on these structures for breeding is likely to be affected by large-scale harvesting in coniferous boreal forests.  相似文献   

14.

This study investigated the stand structure in pine, spruce and deciduous forests in the border district of Finland and Russia. A total of 46 mature forest stands was selected as pairs, the members of each pair being as similar as possible with respect to their forest site type, age, moisture and topography. The stands were then compared between the two countries by means of basal areas and number of stems. The proportions of dominating tree species were 2-12% lower, and correspondingly the proportions of secondary tree species higher, in Russian forests. The density of the forest stock was also higher in each forest type in Russia. The forests in the two countries differed most radically in terms of the abundance of dead trees. The amount was two to four times higher in Russian deciduous and spruce forests, and in pine forests the difference was 10-fold. The stand structures indicated that Russian coniferous stands, in particular, were more heterogeneous than intensively managed pine and spruce stands in Finland.  相似文献   

15.
Key factors causing the difference of wildlife populations in natural and managed forests are an important field of ecosystem and biodiversity research. To explore the factors contributing to bird-community features in the poorly studied European natural hemiboreal forests, we carried out a comparative study in old-growth and mature stands of five site types in Estonia. The mature stands were of clear-cut origin and managed for timber production. Old-growth hosted both more diverse and more abundant bird communities than mature stands, which does not support the putative ‘old-growth syndrome’ (high diversity at a low density) described previously in temperate Europe. Site-type specificity of bird communities was also more pronounced in old-growth, indicating a timber-harvesting induced process of biotic homogenization. In particular, natural swamp forests had characteristic bird species and those communities may be additionally sensitive to artificial drainage. In terms of invertebrate food supply, the availability of snails, rather than of insects, was related to bird-community characteristics; however, the influence of snails was due to one snail-poor forest type (Vaccinium type pine stands), not management. The abundance of coarse woody debris was the main structural feature affecting bird communities; tree-size variation was additionally important for species richness. A significant unexplained ‘old-growth’ effect remained even after the variables describing food supply and stand structure were taken into account. Our results imply the distinct importance of old-growth of different site types for hemiboreal bird communities. However, we did not obtain any evidence of different key factors structuring the bird communities in old-growth and mature stands.  相似文献   

16.
To gain insight into the question of which vegetation characteristics have the most influence on avian assemblages in late-successional forests, the habitat preferences of bird-guilds in old-growth endemic forests of Macedonian pine were studied over 3 years in the Pirin National Park, Bulgaria. Bird–habitat relationships were investigated by comparing vegetation characteristics, and bird species richness, diversity, abundance, and guild structure of birds (determined according to food type, foraging and nesting sites) between mature (60–100 years old) and over-mature (>120 years old) Macedonian pine forest stands. Studied forest age-classes differed mainly by the density, height and diameter of trees, and the amount of dead wood. The first one of these parameters decreased and the latter two parameters increased with the forest succession. The difference in the vegetation structure affected the abundance of bird-guilds and thus, the overall bird abundance and the structure of avian assemblages within Macedonian pine forests. There was no significant difference in bird diversity among studied forest age-classes, but the overall bird abundance increased with forest maturation. Analyzed by study plots, species richness was higher in over-mature forests, but at cluster level, there was no significant difference between mature and over-mature forest age-classes. Half of the studied (insectivorous, hole- and ground-nesters, bark- and canopy-foraging bird species) guilds were more abundant in over-mature forests, while there was no bird-guild exhibiting a preference for mature forest stands. The abundances of bird-guilds were correlated with tree height, diameter at breast height and the amount of dead wood between the studied forest age-classes and this might explain their preferences for over-mature pine forests. Therefore, for future sustainable management of these endemic forests and the conservation of their avifauna, efforts should focus on protecting the remaining native old-growth forest stands and the importance of the structure of Macedonian pine forests on their bird assemblages should be considered in forestry practices.  相似文献   

17.
为了查明阿尔泰山两河源国家级自然保护区树附生地衣物种组成成分,以及探讨影响该地区树附生地衣群落分布格局与环境因素之间的关系,以附生地衣覆盖度为指标,应用除趋势对应分析(DCA)对样点进行分组,运用典范对应分析(CCA)分析附生地衣分布与环境因素的关系,结果表明:1)阿尔泰山两河源自然保护区树附生地衣共有49种隶属于15科30属。2)根据DCA分析将该地区树附生地衣划分为3个样点组,样点组1共有地衣22种,总盖度为2.639%,物种多样性指数为1.603;样点组2共有地衣27种,地衣总盖度为3.717%,物种多样性最大为1.972;样点组3:共有地衣12种,地衣总覆盖度为1.036%,物种多样性最小量为0.871。3)CCA排序结果表明:低海拔区,人为干扰强度高,地衣多样性较低;中海拔区,森林郁闭度高,湿度适中,干扰较少,地衣多样性较高;高海拔区,森林郁闭度较低,树种较少,光强度较强,干扰较少,主要以壳状地衣为主,多样性较低。  相似文献   

18.
We studied forest structure and composition along a chronosequence of secondary forest succession in Northwest Argentina's montane forests (‘Yungas’) at 27°S, between 700 and 900 m. Early herbaceous stages, forested stages of 11, 25, 45, and 50 years after abandonment, and old-growth forests were surveyed. Secondary forests included stands that originated in abandoned herbaceous crops and in abandoned fruit orchards. Basal area and species composition differed between 50-year-old secondary forests and old-growth forests. In contrast, tree density and species diversity were similar in the 50-year-old and in the old-growth forests. The previous use (herbaceous crops or fruit orchards) was an important influence on secondary forest composition. Whereas stands originating in herbaceous fields were dominated by wind-dispersed native species such as Heliocarpus popayanensis, Tecoma stans, Parapiptadenia excelsa, and Tipuana tipu, fruit-orchard-originated stands were dominated by animal-dispersed species. Among the animal-dispersed species, the exotic tree Morus alba was the most abundant, and its abundance in secondary forests seems to slow the succession toward old-growth forest composition. Overall, after accounting for differences attributable to pre-abandonment conditions, secondary forest succession showed a trend toward compositional convergence, with the rate of succession apparently regulated by the demography of long-lived pioneer species.  相似文献   

19.
Capercaillie (Tetrao urogallus L.) populations in Finland have decreased markedly during past decades. One of the assumed reasons is the decreased quality of brood feeding grounds since current forest management transfers mature forests to younger successional stages. We studied how different types of managed Finnish forests offer resources for capercaillie broods by comparing the vegetation and invertebrate fauna of four successional stages in the two most common forest types in Finland, spruce dominated Vaccinium myrtillus (MT) and pine dominated Vaccinium vitis-idaea (VT) type. Forest age class had a significant effect on the cover of bilberry. There was a positive correlation between bilberry cover and the biomass of larvae and of all invertebrates (including all developmental stages) both at the stand and the sample level. Both forest type and age class significantly affected the biomass of larvae. Mature stands and young stands had the highest biomass of larvae in both MT and VT. In both forest site types the sapling stands hosted the smallest biomass of larvae. The results suggest that successional stages that follow clear cutting seriously lowers the food availability for capercaillie chicks and also reduces the shelter that field layer might provide. However, already the young stages that follow sapling phases seem to provide both bilberries and invertebrates so it is quite unlikely that the bilberry abundance alone could explain the dramatic decline of the capercaillie.  相似文献   

20.
Alternative silvicultural approaches to timber management, such as regeneration treatments with different degrees of stand retention, may mitigate negative effects of clear-cutting or shelterwood cuts in forested ecosystems, including changes in old-growth forest bird communities. The aims of this work were: (a) to compare bird species richness and densities among different silvicultural designs with variable retention (dispersed and/or aggregated) and unmanaged primary forests, and (b) to assess temporal changes at community and species levels before and after treatments. A baseline avian survey was conducted prior to harvesting to evaluate canopy gap presence and forest stand site quality influences. Subsequent to harvesting, data on bird species richness and density were collected by point-count sampling during the summer season for 5 consecutive years (4 treatments × 5 years × 6 sampling points × 5 counts). Bird species richness and density (15 species and 9.2 individuals ha−1) did not change significantly with forest site quality of the stands and canopy gap presence in unmanaged forests. However, both variables were significantly modified in managed forests, increasing over time to 18 species and reaching to 39 individuals ha−1. Inside the aggregated retention, bird communities were more similar to unmanaged primary forests than those observed within the dispersed retention or in clear-cuts. Opting for a regeneration method with dispersed and aggregated retention has great potential for managing birds in Nothofagus pumilio forests. This method retained enough vegetation structure in a stand to permit the establishment of early successional birds (at least in dispersed retention), and to maintain the bird species of old-growth forests which could persisted in the retention aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号