共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Glen N.L. Bougher I.J. Colquhoun S. Vlahos W.A. Loneragan P.A. O’Brien G.E.St.J. Hardy 《Forest Ecology and Management》2008
Species richness and species composition of ectomycorrhizal (EM) fungi were compared among rehabilitated mine sites and unmined jarrah forest in southwest Western Australia. Species richness, measured in 50 m × 50 m plots, was high. In the wetter, western region, mean species richness per plot in 16-year-old rehabilitated mine sites (63.7 ± 2.5, n = 3) was similar to that of unmined jarrah forest (63.6 ± 9.6, n = 9). In the drier, eastern region, species richness in 12-year-old rehabilitated mine sites (40.3 ± 2.1, n = 3) approached that of nearby forest (52.4 ± 9.3, n = 9). Species composition was analysed by detrended correspondence analysis. Rehabilitated sites of similar age clustered together in the analysis and species composition was closer to the native jarrah forest in the older rehabilitated plots. In unmined forest, species composition of fungal communities in the wetter, western region was different from communities in the drier, eastern region. 相似文献
2.
Paul W. Webala Michael D. Craig Bradley S. Law Adrian F. Wayne J. Stuart Bradley 《Forest Ecology and Management》2010
Information on roosting requirements and responses to forest management is integral to effectively conserve and manage bat populations. Tree hollows are especially important for roosting bats given the long time taken for hollows to form. We used radiotelemetry to compare roost site selection in two species, Vespadelus regulus and Nyctophilus gouldi, in logged jarrah forests of south-western Australia. We compared characteristics of roost trees and forest structure around roost trees (n = 48) with randomly located plots at a local roost tree level (n = 90) in February and March 2009. For landscape features, we compared roost trees with randomly selected trees in the broader landscape that had cavities or exfoliating bark (n = 204). V. regulus roosted solely in hollows that were located predominantly in contemporarily unlogged buffers and mature forest while N. gouldi used a broader range of roost types, located in contemporarily unlogged buffers and mature forest and in retained habitat trees in gap release and shelterwood creation silvicultural treatments. In contrast with N. gouldi, which selected hollows or crevices under bark near the ground and close to vegetation, V. regulus used hollows that were high above ground and had little surrounding vegetation. Both species preferred large trees, in intermediate or advanced stages of decay and crown senescence. Bats changed roosts frequently, with short distances between subsequent roosts, suggesting a degree of spatial fidelity. Contemporarily unlogged buffers and mature forest contained higher densities of trees with hollows than gap release and shelterwood creation areas, potentially providing more alternate bat roosts. Our results demonstrate the importance of mature forest and unlogged buffers as bat roost sites in logged jarrah forests of south-western Australia, but the area of old forest required by these and co-occurring bat species remains to be determined. 相似文献
3.
We investigated the diversity and structure of the ectomycorrhizal (EM) fungal community associated with post-fire regenerated Pinus pinaster Ait., and the influence of fire severity and site slope on EM assemblage patterns. Seedlings were sampled in the first autumn and in both spring and autumn of the second growing season after fire, in a total of three samplings. EM percentages per seedling were assessed, morphotypes described, and tentative identification of EM types performed by restriction fragment length polymorphism (RFLP) and sequencing of nrDNA internal transcribed spacer (ITS) region. Seedlings were highly mycorrhizal in all samplings, independently of the factors studied. A total of 45 EM types were identified, and richness and diversity significantly increased from the first to the second autumn after fire. Neither fire severity nor slope had a significant effect on fungal richness and diversity. Overall EM community composition was similar in all samplings, although fire severity, site slope and elapsed time after fire caused evident shifts in presence or in relative frequencies of a number of EM types. No significant effect of fire severity or slope on EM assemblage patterns was detected in the first two samplings after fire. However, a significant effect of fire severity was observed at the end of the second growing season. The harvest of burned wood did not significantly affect EM fungal assemblages although the slope did. We conclude that there was a high potential of active EM inoculum in soil immediately after fire colonizing post-fire natural regenerated P. pinaster seedlings with high EM percentages, and that factors defining burn intensity, such as fire severity and topography, directly influenced the species composition and assemblage patterns of EM fungal communities, triggering replacements and succession of EM fungal species. 相似文献
4.
Extensive tree dieback is a recurrent issue in many regions. Crown dieback of Fraxinus nigra Marsh. (black ash; brown ash) in the northeastern and north central United States is an example. F. nigra is a widely distributed hardwood that is often the dominant species in wetland forests from Manitoba to Newfoundland and West Virginia to Indiana. Widespread crown dieback of F. nigra has been noted in many regions, but there are few quantitative assessments of dieback extent or relationship to potential causes. Most F. nigra dieback episodes are not associated with specific disease or pest agents. Drought, excessive soil moisture, cohort senescense, and road influences, have all been suggested as potential contributing factors. Our objectives were to (1) quantify variable dieback across northern Minnesota, a region described as having extensive dieback, (2) determine the relationship between dieback and site moisture, (3) relate dieback to tree age/size distributions, and (4) assess whether dieback was related to road proximity. Given the increasing threat of Agrilus planipennis (emerald ash borer) in the region, it is important to know the current health status of F. nigra populations before widespread infestation occurs. Many stands in our study exhibited high incidences of crown dieback. However, the incidence of dieback was variable across the region. Spatial variability in dieback was associated with site wetland characteristics; more dieback occurred on jurisdictional wetlands and on sites with a higher wetness index and a deeper depth to a perching layer. Dieback was also positively correlated with mean stand diameter, and tree diameters were generally correlated with age, suggesting that stands with larger and older individuals experienced more dieback. Cohort senescence is a possible explanation for this trend. Finally, dieback occurred with higher frequency nearer to roads. The road influence could be related to hydrological alterations or perhaps toxicity from road deicing salt. The fact that dieback is more severe close to roads may contribute to a general perception that black ash dieback is more severe throughout the region than our study suggests. Collectively, our results indicate that the healthiest F. nigra stands in our study region are likely to be younger and located on relatively drier sites and farther from roads, compared to stands with significant crown dieback. 相似文献
5.
Craig Macfarlane Céline Bond Donald A. White Andrew H. Grigg Gary N. Ogden Richard Silberstein 《Forest Ecology and Management》2010
We tested the hypothesis that overstorey of eucalypt forest dominated by tall, large diameter trees uses less water than regrowth stands in the high rainfall zone (>1100 mm year−1) of the northern jarrah (Eucalyptus marginata) forest in southwestern Australia. We measured leaf area, cover, sapwood area and sapwood density at three paired old and regrowth stands. We also measured sapflow velocity at one paired stand (Dwellingup) from June 2007 to October 2008. Old stands had more basal area but less foliage cover, less leaf area and slightly thinner sapwood. The ratio of sapwood area to basal area decreased markedly as tree size increased. Sapwood area of the regrowth forest stands (6.6 ± 0.30 m2 ha−1) was nearly double that of the old stands (3.4 ± 0.17 m2 ha−1), despite larger basal area at the old stands. Leaf area index of the regrowth stands (2.1 ± 0.26) was only one-third larger than that at the old stands (1.5 ± 0.15); hence, the ratio of leaf area to sapwood area was larger in old stands than in regrowth stands (0.45 ± 0.022 m2 cm−2 versus 0.32 ± 0.045 m2 cm−2). Our results are consistent with theories that trees have evolved to optimize carbon gain rather than maintain stomatal conductance. Neither sapwood density (540–650 kg m−3) nor sap velocity differed greatly between regrowth and old stands. At the old forest site, daily transpiration rose from 0.5 mm day−1 in winter to 0.9 mm day−1 in spring–summer, compared to 0.9 mm day−1 and 1.8 mm day−1 at the regrowth site. Annual water use by the overstorey trees was estimated to be ∼230 mm year−1 for the old stand and ∼500 mm year−1 at the regrowth stand, or 20% and 44% of annual rainfall. The overwhelming role of stand sapwood area in determining stand water use, combined with the marked changes in the ratio of sapwood area to basal area with tree age and size, suggest that stand overstorey structure can be managed to alter overstorey water use and catchment water yield. Silviculture to promote old-forest-like attributes may be a viable means of delivering multiple water and conservation benefits. 相似文献
6.
Canopy gaps and regeneration in old-growth Oriental beech (Fagus orientalis Lipsky) stands, northern Iran 总被引:1,自引:0,他引:1
Virgin beech Fagus orientalis forests in northern Iran provide a unique opportunity to study the disturbance regimes of forest ecosystems without human influence. The aim of this research was to describe characteristics of natural canopy gaps and gap area fraction as an environmental influence on the success of beech seedling establishment in mature beech stands. All canopy gaps and related forest parameters were measured within three 25 ha areas within the Gorazbon compartment of the University of Tehran’s Kheyrud Experimental Forest. An average of 3 gaps/ha occurred in the forest and gap sizes ranged from 19 to 1250 m2 in size. The most frequent (58%) canopy gaps were <200 m2. In total, canopy gaps covered 9.3% of the forest area. Gaps <400 m2 in size were irregular in shape, but larger gaps did not differ significantly in shape from a circle. Most gaps (41%) were formed by a single tree-fall event and beech made up 63% of gap makers and 93% of gap fillers. Frequency and diversity of tree seedlings were not significantly correlated with gap size. The minimum gap size that contained at least one beech gap-filling sapling (<1.3 m tall) was 23.7 m2. The median gap size containing at least one beech gap-filling sapling was 206 m2 and the maximum size was 1808 m2. The management implications from our study suggest that the creation of small and medium sized gaps in mixed beech forest should mimic natural disturbance regimes and provide suitable conditions for successful beech regeneration. 相似文献
7.
Basal area growth and mortality of Betula maximowicziana affected by crown dieback in a secondary forest in Hokkaido, northern Japan 总被引:1,自引:0,他引:1
Yasuyuki Ohno Kiyoshi Umeki Ichiro Watanabe Mika Takiya Kazuhiko Terazawa Michiyasu Yasaka Sawako Matsuki 《Journal of Forest Research》2009,14(1):37-43
Since the late 1990s, decline of B. maximowicziana Regel has been observed in mature secondary forests in various parts of Hokkaido, northern Japan. To develop a method of
thinning for large-timber production of B. maximowicziana, we measured basal area growth and the mortality of 217 trees during a four-year period (1999–2003) in a 90-year-old secondary
forest with serious tree damage. We analyzed growth and mortality in relation to the degree of crown dieback (DC), symmetric
and asymmetric competition from neighbors, and initial tree size. Individual basal area growth decreased with increasing DC,
with increasing symmetric (two-sided) competition, and with decreasing initial tree size. During the four-year period, 4.1%
of the observed trees died. Logistic regression analysis revealed that mortality rate increased with increasing DC and with
increasing symmetric competition. These results suggest that both growth and mortality rates were affected by the same factors
(i.e., DC and symmetric competition). We concluded that the resource for which individuals were competing at the study site
was underground, most likely water. Modeled growth and mortality rates can be used to improve the management of damaged forests.
A management plan for the damaged study site is proposed. 相似文献
8.
Changes in forest growth have been found in European forests and worldwide. However most observations have been derived from samples of restricted size, whose representativeness at a regional forest scale is questionable. National forest inventories provide an interesting perspective for both regional scale assessment of these trends and the investigation of their variations over environmental gradients, but have been little used. 相似文献
9.
Developing sustainable extractive industries in otherwise intact tropical forest regions requires a sound understanding of the production potential of key resource populations. The oleoresin extracted from Copaifera trees is an economically important non-timber forest product harvested throughout the lowland Amazon basin. We studied oleoresin extraction from four species of Copaifera trees with known harvest histories within two contiguous extractive reserves in western Brazilian Amazonia. We conducted a large-scale experimental harvest of 179 previously unharvested Copaifera trees, in both seasonally flooded (várzea) and adjacent unflooded (terra firme) forests. The likelihood of trees yielding any oleoresin was principally determined by their species identity: C. multijuga was the only species to regularly yield oleoresin (70% of trees). Yield volumes varied both amongst species and forest types: C. multijuga (restricted to terra firme forest) had the highest mean yield of 505 ml, whilst C. guyanensis produced higher volumes of oleoresin in várzea (139 ml) than terra firme (15 ml) forest. Intraspecific differences were driven mainly by tree size. To assess extraction sustainability, we reharvested a sample of C. multijuga trees and compared the oleoresin production of 24 conspecific trees that had been initially harvested one year previously with that of 17 trees initially harvested three years previously. Reharvested trees produced just 35% of the oleoresin volume compared to that when originally drilled, but this response was not affected by the time interval between consecutive harvests. We demonstrate that, within a population of Copaifera, both morphological and environmental factors restrict total productivity; consideration of these factors should inform sustainable management practises. We additionally raise methodological considerations that may improve the comparability of studies. 相似文献
10.
The impact of forest management activities on the ability of forest ecosystems to sequester and store atmospheric carbon is of increasing scientific and social concern. The nature of these impacts varies among forest ecosystems, and spatially and temporally explicit ecosystem models are useful for quantifying the impacts of a number of alternative management regimes for the same forest landscape. The LANDIS-II forest dynamics simulation model is used to quantify changes to the live overstory and coarse woody debris pools under several forest management scenarios in a high-latitude South American forest landscape dominated by two species of southern beech, Nothofagus betuloides and N. pumilio. Both harvest type (clearcutting vs. partial overstory retention) and rotation length (100 years vs. 200 years) were significant predictors of carbon storage in the simulation models. The prompt regeneration of harvest units greatly enhanced carbon storage in clearcutting scenarios. The woody debris pool was particularly sensitive to both harvest type and rotation length, with large decreases noted under short rotation clearcutting. The roles of extended rotations and partial overstory retention are noted for enhancing net carbon storage on the forest landscape. 相似文献
11.
Plantations of Eucalyptus globulus in southwestern Australia are defoliated by Eucalyptus weevil, Gonipterus scutellatus, and a complex of chrysomelid and scarab beetles, yet there is no information on the impact of beetle defoliation to tree growth in southwestern Australia. To address this shortcoming, we used insect exclusion trials, to compare growth of insecticide treated (and thus relatively undamaged) trees with untreated (and thus defoliated) trees to determine whether defoliation by G. scutellatus and other beetles reduced the growth and harvest volume of E. globulus trees. Our results showed some evidence of beetle defoliation reducing growth of E. globulus. Mean defoliation levels of the growing tip of untreated trees ranged from 18% to 33% across the duration of the study and were significantly greater than mean defoliation levels of 5–16% on insecticide treated trees. Seasonal peaks in defoliation of 30–80% to the growing tip of untreated trees were recorded between late spring and early autumn. The greatest impact of defoliation on tree growth was evident during the 2.5 year period of insect exclusion, when higher relative growth rates were recorded for insecticide treated trees, which were significantly different from relative growth rates of untreated trees at two of the four plantations. However, our results showed only a limited impact of beetle defoliation on the total volume at harvest. Initially small trees tended to suffer more severe defoliation than initially large trees. Effects of insect exclusion treatment on harvest volume were modified by the initial tree size and the relationship between the initial tree size and levels of defoliation. 相似文献
12.
Lea A. RandallRobert M.R. Barclay Mary L. ReidThomas S. Jung 《Forest Ecology and Management》2011,261(11):1950-1956
Insect outbreaks affect forest structure which may have significant effects on the habitat of other animals. Forest-dwelling insectivorous bats are likely affected by associated changes in the abundance of roost trees and insect prey, altered foraging and flying efficiency, and predation risk. We examined the short-term effects (3-13 years post-infestation) of an outbreak of spruce beetles (Dendroctonus rufipennis) on the habitat use of little brown bats (Myotis lucifugus) in the boreal forest of the southwestern Yukon, Canada. We measured bat activity, using Anabat II bat detectors, in 90 forested stands that had experienced from 0 to 90% tree mortality due to spruce beetles. We used generalized linear models to assess whether bat activity varied with tree mortality, season, tree density, canopy closure, or distance to the nearest lake or town. Bat activity did not vary significantly with tree mortality, season, or canopy closure, but decreased with increasing tree density. Bat activity was significantly greater in areas close to both the nearest lake and nearest town, and was low in areas that were far from either. Our results indicate that in the short-term, habitat use by little brown bats was not related to the severity of spruce beetle infestation, but suggest that in the long-term, bats may be positively affected by decreased tree density as beetle-killed trees fall down. 相似文献
13.
Luke P. Rapley Brad M. Potts Michael Battaglia Vinu S. Patel Geoff R. Allen 《Forest Ecology and Management》2009
Insect damage to production forests has the potential to reduce financial returns by retarding tree growth and causing mortality, however, long-term realised quantification of these losses is rare. In order to help elucidate economic damage thresholds for making spray decisions we capitalised on a natural outbreak of autumn gum moth, Mnesampela privata, in a 2-year-old Eucalyptus nitens plantation. Following the partial chemical control of this insect outbreak we measured the tree growth variables diameter at breast height over bark and height of five differing tree defoliation classes for 75 months following tree damage. At the end of this period a threshold model was fitted to describe the relationship between tree defoliation and realised tree wood volumes. The model revealed that realised stand wood volume was not significantly affected up until defoliation exceeded 60% and then declined sharply after this defoliation level was reached. Further support for this defoliation threshold was evident from multiple comparisons among defoliation classes that showed 50% defoliated trees did not have significantly different wood volume compared to more lightly defoliated trees, but did have significantly greater wood volume compared to trees that were 72% or more defoliated. To determine if the realised differences in wood volume resulted in differences in yield over a plantation rotation the E. nitens growth model NITGRO was used to on-grow trees to age 15 years for a ‘best case’ (type 1 growth response, constant growth rates from last inventory until harvest) and ‘worst case’ (type 2 growth response, divergent growth rates from last inventory until harvest) scenario. The threshold model was then fitted to the outcomes of both scenarios and the economic consequences of defoliation were clearly dependent on the growth function assumed. 相似文献
14.
David W. Huffman Daniel C. Laughlin Kristen M. Pearson Sanjeev Pandey 《Forest Ecology and Management》2009
Large herbivores have potential to affect invertebrate community structure through numerous processes, but little work has been done to evaluate the relative importance of direct and indirect factors. In this study, we measured arthropod community assemblages on Ceanothus fendleri A. Gray (Fendler's ceanothus) plants that were growing inside and outside of 4-m2 exclosures. We used univariate analyses and structural equation modeling (SEM) to evaluate relationships within this herbivore–plant–arthropod system in ponderosa pine (Pinus ponderosa Laws.) forests of northern Arizona, USA. Results showed that individual arthropod abundance, family diversity, family richness, and functional group richness were significantly greater on plots where C. fendleri plants were protected from large ungulate herbivores (e.g., mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni)) than on unprotected plots in each of the three study years. Results also indicated the following: (1) arthropod abundance was significantly greater on protected plants than unprotected plants; (2) rarefaction curves suggested arthropod family richness was similar between protected and unprotected plants in two of the three years when scaled by number of individuals but the estimated total richness was consistently higher on protected plants; (3) arthropod abundance was directly affected by protection from herbivores, plant stem length, and number of flowers; (4) arthropod family richness was related to the number of individuals collected and affected by stem length. Results from this study illustrate that arthropod communities are directly affected by foraging vertebrate herbivores as well as indirectly affected through complex plant-mediated factors in this model system. Protection of preferred forage plants such as C. fendleri from ungulate herbivores can potentially increase diversity of arthropod assemblages in these forests, help conserve biological diversity, and enhance ecosystem restoration efforts. 相似文献
15.
Plant invasions of natural communities are commonly associated with reduced species diversity and altered ecosystem structure and function. This study investigated the effects of invasion and management of the woody shrub Lantana camara (lantana) in wet sclerophyll forest on the south-east coast of Australia. The effects of L. camara invasion and management on resident vegetation diversity and recruitment were determined as well as if invader management initiated community recovery. Vascular plant species richness, abundance and composition were surveyed and compared across L. camara invaded, non-invaded and managed sites following L. camara removal during a previous control event by land managers. Native tree juvenile and adult densities were compared between sites to investigate the potential effects of L. camara on species recruitment. Invasion of L. camara led to a reduction in species richness and compositions that diverged from non-invaded vegetation. Species richness was lower for fern, herb, tree and vine species, highlighting the pervasive threat of L. camara. For many common tree species, juvenile densities were lower within invaded sites than non-invaded sites, yet adult densities were similar across all invasion categories. This indicates that reduced species diversity is driven in part by recruitment limitation mechanisms, which may include allelopathy and resource competition, rather than displacement of adult vegetation. Management of L. camara initiated community recovery by increasing species richness, abundance and recruitment. While community composition following L. camara management diverged from non-invaded vegetation, vigorous tree and shrub recruitment signals that long-term community reinstatement will occur. However, secondary weed invasion occurred following L. camara control. Follow-up weed control may be necessary to prevent secondary plant invasion following invader management and facilitate long-term community recovery. 相似文献
16.
This paper discusses determinants of the historical and current spatial extent of the floodplain forest in Leipzig as well as its tree species composition using a GIS-data based delineation model and historical forest inventories for the floodplain forest in the district of Leipzig in Germany from the 19th to the 20th century. We found that the spatial extent of the floodplain forest remained considerably stable in spite of an overall decline in the entire floodplain area from the period where the city first experienced industrialisation in the 19th century to now. However, with river regulations and the alteration of forest management from coppice-with-standards forest to high forest in the 19th century, major changes can be found in the tree species composition of the floodplain forest. Comparing these findings with references from other European floodplain forests we discuss the impact of historical and current forest management as well as the city location's influence on the extent and tree species composition of urban floodplain forests. For urban forest management in particular there is a great need to integrate biophysical, historical and forestry knowledge when predicting future developmental trends. 相似文献
17.
Y.F. Cai P. Barber B. Dell P. O’Brien N. Williams B. Bowen G. Hardy 《Forest Ecology and Management》2010
This study investigates whether tree decline in Eucalyptus gomphocephala (tuart) is associated with the functional diversity of soil bacterial communities. We selected 12 sites with different stages of decline and assessed crown health [Crown density (CD), Foliage transparency (FT), Uncompacted live crown ratio (ULCR), Crown dieback ratio (CDR) and Epicormic index (EI)] and soil bacterial functional diversity based on Biolog EcoPlates™ incubation [Average well colour development (AWCD), Shannon diversity (H′), richness (S) and Shannon evenness (E)]. Crown health indices differed between sites with EI being the most robust indicator of decline in crown health followed by CDR and CD (P < 0.05). Soil bacterial indices collected at 0–10 and 20–30 cm soil depth between December (summer, dry season) and May (autumn, start of wet season) differed between sites (P < 0.05), and significant relationships between crown health indices, except ULCR, and all soil bacterial indices were observed. Principle component analysis (PCA) showed that a decrease in the utilization of carbohydrates, carboxylic acids, amino acids and amines by the soil bacterial communities correlated to sites with poor crown health, indicating some changes in physiological responses of bacterial groups with declining tree health. Using stepwise regression analyses, in the 0–10 cm soil layer in December, itaconic acid had a 46% contribution to the EI. Carboxylic acids, including itaconic acid, have a strong ability to solubilize soil minerals in calcareous soil, and these possibly increased the availability of soil mineral nutrients in the healthier sites compared to the declining sites, particularly in the dry season. In addition, lack of soil water in the declining sites limited soil bacterial diversity and was positively correlated with EI in the 0–10 cm soil layer in December. In conclusion, soil bacterial functional diversity has a strong relationship with tuart decline and the importance of soil microbes in tuart ecosystem health must be considered in the future. 相似文献
18.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species. 相似文献
19.
Forests are key components of the global carbon cycle, with deforestation being an important driver of increased atmospheric carbon dioxide. Temperate old-growth forests have some of the highest above ground stores of carbon of any forest types on Earth. Unlike tropical forests, the ecology of many temperate forests is dominated by episodic disturbance, such as high intensity fire. An exemplar of a particularly carbon dense temperate forest system adapted to infrequent catastrophic fires is the Eucalyptus regnans forests of south eastern Australia. Knowledge of the growth and longevity of old-growth trees is crucial to understanding the carbon balance and fire regimes of these forest systems. In an old-growth E. regnans stand in the Styx Valley in southern Tasmania we used dendrochronological techniques and radiocarbon dating to determine the age and stem growth of E. regnans and Phyllocladus aspleniifolius, an understorey rainforest conifer. Our analysis revealed that an even-aged cohort of E. regnans and P. aspleniifolius established in 1490–1510AD, apparently after a stand-replacing fire. The stem growth rates of E. regnans in the first 100 years were very rapid compared to the co-occurring P. aspleniifolius. That the longevity of E. regnans is >500 years challenges the suggested 350–450 year timeframe proposed for the widely held model of succession from eucalypt to rainforest. These forests not only have the potential to store vast amounts of carbon, but can also maintain these high carbon densities for a long period of time. Estimates of the capacity of these forests to sequester and store carbon should explicitly consider past harvesting and fire regimes and the potential increases in the risk of fire associated with climate change. 相似文献
20.
Seventy 1–28-year-old clearcuts were sampled to characterize post-harvest vegetation development and to determine the effect of mechanical site treatment and Picea glauca (Moench) Voss (white spruce) crop-seedling planting on regenerating boreal forest stands in the John D’Or—Wood Buffalo National Park area of northern Alberta in western Canada (58°35′N, 114°37′W). Natural Populus tremuloides/Rosa–Viburnum stands of wildfire origin (n = 25), widespread occurrence, and 52–91-year-old were sampled as a benchmark for comparison. Clearcut Populus-Picea and Picea stands reverted to early successional Populus tremuloides Michx. (trembling aspen)—dominated vegetation, with maximum sucker densities (mean 18 716, S.D. 13 239) within 4 years after stand initiation. Stem exclusion occurred most intensively 5–20 years after initiation, but was expected to continue until stands were >40–50-year-old. In untreated clearcuts, tree and understory shrub cover peaked near natural stand levels 18–20 years after harvesting, and graminoid cover remained constant (∼3%) but elevated compared to natural levels (<1%); whereas forb cover decreased linearly to natural stand levels by Year 28. The early composition of clearcuts was primarily composed of species that were common to the natural stands and also vegetatively reproduced. Mechanical site treatment and crop-seedling planting delayed attainment of maximum tree cover by 7 years, with total cover similar to natural stands. Site treatment reduced total shrub cover and prolonged the occurrence of elevated forb and graminoid cover values, probably in response to disruption of the pre-treatment ground vegetation. Calamagrostis canadensis L., a common crop-seedling competitor, was typically of minor importance on the sampled clearcuts compared to levels associated with more southerly boreal clearcuts. Detrended correspondence analysis ordinations based on species cover suggested untreated and treated clearcuts >13–16-year-old approximated the composition of natural stands. The data also suggested that silvicultural planting of P. glauca will accelerate stand development toward late-successional conifer-dominated vegetation relative to unplanted and natural stands. 相似文献