首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
利用热扩散技术(TDP)分别监测新疆杨冠基部、杆基部处液流密度的变化,并结合同步气象观测,分析液流密度与大气蒸发潜力(ET0)的关系,结果表明:典型晴天日,新疆杨树冠、杆基部的液流密度日变化格局总体上与大气蒸发潜力相一致,但前者与ET0的相关性更强,可用Hill函数式得到较好的拟合,而后者与ET0间呈斜率不等的线性关系;在午间,冠基部液流密度是杆基部的3倍以上,在清晨,冠基部液流比杆基部液流提前平均约1 h启动。冠、杆基部边材液流间的"净"量因季节而异,在生长旺盛的7、8月份略有"亏损",而在6、9月份略有"盈余",新疆杨单株日吸收水分量与冠层日失水量并不完全一致。6—9各月冠基部液流日平均通量一般呈晴天>云天>阴天的规律,这与太阳辐射及大气蒸发潜力的变化格局相一致,而基部液流有时会呈现出云天>晴天的趋势。  相似文献   

2.
In western Japan, Moso bamboo (Phyllostachys pubescens) forests have been expanding by replacing surrounding vegetation such as coniferous plantation forests and natural broadleaved forests. It has been speculated that the replacement of surrounding vegetation by bamboo forests could alter the vegetation water cycle and available water resources. We quantified stand-scale transpiration (E) in a bamboo forest on the basis of sap-flux measurements and compared the E value with values for coniferous forests. The annual E was estimated to be 567 mm. Seasonal trends in E primarily corresponded to seasonal trends in the vapor pressure deficit. Annual E for the bamboo forest was higher than that for the coniferous forests by 12% of annual precipitation (P). This difference in annual E is comparable with the difference in annual interception evaporation (I) relative to P between bamboo and coniferous forests; previous studies reported lower I for bamboo forests by ∼10% of P. Thus, the sum of E and I was comparable for bamboo and coniferous forests. As this study is the first measuring E of bamboo forests, further studies are required to examine the generality of our results.  相似文献   

3.
Many of the world's Eucalyptus plantations are grown on short rotations of 15 years or less, which often covers the most rapid phase of stand development and peaks in growth rates and leaf areas. Since transpiration is related to stand leaf area these short rotations that make use of rapid early growth rates, may also maximise plantation water use, which has implications for predicting their water requirements and impacts on catchment hydrology. This study examined the transpiration, leaf area and growth rates of Eucalyptus globulus Labill. plantations aged 2–8 years. Transpiration (E), estimated using the heat pulse technique, increased from 0.4 mm day−1 at age 2 years to a peak of about 1.6–1.9 mm day−1 in stands aged 5–7 years. This was associated with similar trends for stand leaf area index (LAI) and periodic annual increments of aboveground biomass, which both peaked at about age 4–6 years resulting in a linear relationship between E and LAI. While stand sapwood areas were continuing to increase at age 8 years, E was already declining due to reductions in sap velocity, from 13.5 cm h−1 at age 2 years to 6.3 cm h−1 at age 8 years and reduced sapwood area growth rates. Trees compensated for this reduction in sap velocity with declines in the leaf area (AL) to sapwood area (AS) relationship (AL:AS) with age. There was also a reduction in growth efficiency (aboveground biomass increment per LAI) with age. However, reductions in WUE were small after age 4 years, which explained the linear relationship between E and LAI. If E continues to decline successive short rotation lengths may not only make use of rapid early growth rates but could also increase plantation water use compared to longer rotations over the same period of time.  相似文献   

4.
We conducted a 1-year greenhouse experiment to assess the impact of nutrient manipulations on seedling growth, biomass partitioning, and leaf gas exchange between two fast growing Pinus taeda clones that differed in growth efficiency. After 1 year we observed significant treatment and treatment by clone effects on growth, biomass partitioning, and gas exchange parameters. Fertilization increased total seedling biomass 18% primarily through an increase in foliage and coarse-roots. Clones did not differ in total seedling biomass, however, clone 85 produced more stem than clone 93 leading to 37% greater stem:leaf, while clone 93 maintained more branch biomass. The logging residue treatment increased stem:leaf by 30%, but had no effect on total biomass or partitioning. Differences in leaf morphology resulted in significantly greater canopy leaf area in clone 93 than clone 85. Increased foliar N concentration from fertilization had only minor effects on specific photosynthesis under saturating light (ASat), but lowered stomatal conductance (gs), transpiration (E), and internal to external CO2 concentration ratio (Ci/Ca) as well as improved water use efficiency (WUE) independently of genotype. When gas exchange data was scaled to the canopy level both genotypes achieved similar canopy level CO2 assimilation rates, but our data suggests they did this by different means. Although we did see a small effect of nutrient limitations in total canopy photosynthesis under saturating light (ACanopy), ASat, and total leaf area (TLA), our foliar N concentration ([N]) indicated that our level of logging residue incorporation did not cause [N] to decrease below sufficiency limits. From a practical standpoint, a better understanding of strategies for capturing and partition C may lead to better selection of clonal material, thereby, optimizing productivity.  相似文献   

5.
A petroleum ether extract of the traditional Chinese herbal drug Duhuo (roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan), showed significant activity in a functional two-microelectrode voltage clamp assay with Xenopus oocytes which expressed recombinant γ-aminobutyric acid type A (GABAA) receptors of the subtype α1β2γ2S. HPLC-based activity profiling of the active extract revealed six compounds responsible for the GABAA receptor modulating activity. They were identified by microprobe NMR and high resolution mass spectrometry as columbianetin acetate (1), imperatorin (3), cnidilin (4), osthol (5), and columbianedin (6). In concentration-dependent experiments, osthol and cnidilin showed the highest potentiation of the GABA induced chloride current (273.6% ± 39.4% and 204.5% ± 33.2%, respectively at 300 μM). Bisabolangelone (2) only showed minor activity at the GABAA receptor. The example demonstrates that HPLC-based activity profiling is a simple and efficient method to rapidly identify GABAA receptor modulators in a bioactive plant extract.  相似文献   

6.
The Forest Inventory and Analysis (FIA) unit of the U.S. Forest Service has collected, compiled, and made available plot data from three measurement periods (identified as 1977, 1990, and 2003, respectively) within Minnesota. Yet little if any research has compared the relative utility of these datasets for developing empirical yield models. This paper compares these and other subdatasets in the context of fitting a basal area (B) yield model to plot data from the aspen (Populus tremuloides Michx.) forest type. In addition, several models and fitting methods are compared for their applicability and stability over time. Results suggest that the three parent datasets, along with their subdatasets, provide very similar three parameter B yield model prediction capability, but as model complexity increases, variability in coefficient estimates increases between datasets. The absence of data for older aspen stands and the inherent noise within B data prevented the exact determination of an overall best model. However, the model B = b1Sb2(1 − exp( − b3A)) with site index (S) and stand age (A) as predictors was found consistently among the highest in precision and stability. Additionally, nonlinear least squares and nonlinear mixed-effects fitting procedures produced similar model fits, but the latter is preferred for its potential to improve model projections. The results indicate little practical difference between datasets from different time periods and different sizes when used for fitting the models. Additionally, these results will likely extend to other states or regions with similar remeasurement data on aspen and other forest types, thus facilitating the development of other ecological models focused on forest management.  相似文献   

7.
Tree thinning reduces tree-to-tree competition and likely contributes to the improvement of tree water status and productivity in water-limited systems. In this study, we examined the importance of competition for water among Quercus ilex trees in open woodlands by comparing the water consumption and physiological status of trees located along stand density gradients which ranged from 10% (low density; LD) to 100% (high density; HD) of canopy cover. The study was carried out at two sites which differed in mean annual rainfall (506 and 816 L m−2; Dsite and Wsite, respectively). Predawn and midday leaf water potential (ψd and ψm, respectively) and CO2 assimilation rate (A) were measured every two weeks from mid May to mid September, in eight trees located along a stand density gradient at each site. Sap flow and soil moisture were measured only at Dsite. Sap flow was continuously recorded by sap flowmeters (constant heating method) installed in 12 trees along two stand density gradients. Soil moisture (?) was measured every 20 cm for the first meter and then every 50 cm up to 250 cm. Measurements were conducted in 18 soil profiles, 6 located in HD and 12 in LD (six beneath and six out the canopy). At Wsite, differences among stand densities for ψ and A were very small and emerged only at the end of the dry season. At Dsite, ψ (both predawn and midday), A, ?, and sap flow density were significantly higher in LD trees than in HD ones. At Dsite, some water remained unused in the soil at the end of the dry season beyond the canopy in the LD areas, and trees did not experienced such an acute water deficit (ψd > −1 MPa) as the HD trees did (ψd < −3 MPa). Summer tree transpiration at the stand level (Estand) tended to saturate with the increase of canopy cover. Estand increases by 32% when canopy cover goes from 50% to 100%. Results confirmed that the increase of tree-to-tree competition with stand density was much more significant at dry sites. In these sites, tree thinning is recommended as a way to maintain tree functioning.  相似文献   

8.
Zhou W  Di LQ  Shan JJ  Bi XL  Chen LT  Wang LC 《Fitoterapia》2011,82(3):375-382
Shuang-Huang-Lian (SHL), a traditional Chinese formula containing Lonicerae japonicae flos (LJF), Scutellariae radix (SR) and Forsythiae fructus (FF), is commonly used to treat acute upper respiratory tract infection, acute bronchitis and light pneumonia. Forsythoside A is one of the main active ingredients in Forsythiae fructus, a key herb in SHL. In the present study, effects of different compositions in SHL on the intestinal absorption of forsythoside A were investigated. The observations from in situ intestinal circulation model showed that A/%(h− 1) of forsythoside A in FF + LSF, FF + SR and SHL were all reduced greatly compared with that in FF. However, in pharmacokinetics study, Cmax and AUC0 → 1440 of forsythoside A all increased and T1/2 prolonged in SHL, FF + LJF and FF + SR compared with FF. The results indicated that the different compositions of SHL decreased absorption but increased bioavailability of forsythoside A, which may be related to its metabolism inhibited in intestine or liver.  相似文献   

9.
Soil surface CO2 flux (Sflux) is the second largest terrestrial ecosystem carbon flux, and may be affected by forest harvest. The effects of clearcutting on Sflux have been studied, but little is known about the effect of alternative harvesting methods such as selective tree harvest on Sflux. We measured Sflux before and after (i) the creation of forest canopy gaps (simulating group tree selection harvests) and (ii) mechanized winter harvest but no tree removal (simulating ground disturbance associated with logging). The experiment was carried out in a sugar maple dominated forest in the Flambeau River State Forest, Wisconsin. Pre-treatment measurements of soil moisture, temperature and Sflux were measured throughout the growing season of 2006. In January–February 2007, a harvester created the canopy gaps (200–380 m2). The mechanization treatment consisted of the harvester traveling through the plots for a similar amount of time as the gap plots, but no trees were cut. Soil moisture and temperature and Sflux were measured throughout the growing season for 1 year prior to harvest and for 2 years after harvest. Soil moisture and temperature were significantly greater in the gap than mechanized and control treatments. Instantaneous Sflux was positively correlated to soil moisture and soil temperature at 2 and 10 cm, but temperature at 10 cm was the single best predictor. Annual Sflux was not significantly different among treatments prior to winter 2007 harvest, and was not significantly different among treatments after harvest. Annual (+1 std. err.) Sflux averaged 967 + 72, 1011 + 72, and 1012 + 72 g C m−2 year−1 in the control, mechanized and gap treatments, respectively, for the 2-year post-treatment period. The results from this study suggest selective group tree harvest significantly increases soil moisture and temperature but does not significantly influence Sflux.  相似文献   

10.
Greenhouse gas emissions from managed peatlands are annually reported to the UNFCCC. For the estimation of greenhouse gas (GHG) balances on a country-wide basis, it is necessary to know how soil–atmosphere fluxes are associated with variables that are available for spatial upscaling. We measured momentary soil–atmosphere CO2 (heterotrophic and total soil respiration), CH4 and N2O fluxes at 68 forestry-drained peatland sites in Finland over two growing seasons. We estimated annual CO2 effluxes for the sites using site-specific temperature regressions and simulations in half-hourly time steps. Annual CH4 and N2O fluxes were interpolated from the measurements. We then tested how well climate and site variables derived from forest inventory results and weather statistics could be used to explain between-site variation in the annual fluxes. The estimated annual CO2 effluxes ranged from 1165 to 4437 g m−2 year−1 (total soil respiration) and from 534 to 2455 g m−2 year−1 (heterotrophic soil respiration). Means of 95% confidence intervals were ±12% of total and ±22% of heterotrophic soil respiration. Estimated annual CO2 efflux was strongly correlated with soil respiration at the reference temperature (10 °C) and with summer mean air temperature. Temperature sensitivity had little effect on the estimated annual fluxes. Models with tree stand stem volume, site type and summer mean air temperature as independent variables explained 56% of total and 57% of heterotrophic annual CO2 effluxes. Adding summer mean water table depth to the models raised the explanatory power to 66% and 64% respectively. Most of the sites were small CH4 sinks and N2O sources. The interpolated annual CH4 flux (range: −0.97 to 12.50 g m−2 year−1) was best explained by summer mean water table depth (r2 = 64%) and rather weakly by tree stand stem volume (r2 = 22%) and mire vegetation cover (r2 = 15%). N2O flux (range: −0.03 to 0.92 g m−2 year−1) was best explained by peat CN ratio (r2 = 35%). Site type explained 13% of annual N2O flux. We suggest that water table depth should be measured in national land-use inventories for improving the estimation of country-level GHG fluxes for peatlands.  相似文献   

11.
Chlorophyll fluorescence measurements were performed on the foliage of 3-year-old (11/2+11/2) nursery-grown Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings after exposure to controlled freezing temperatures, in the laboratory, to assess low temperature tolerance. The seedlings were propagated in an Irish nursery and lifted at monthly intervals overwinter 1999 and 1999–2000. Excised shoots from first-order laterals were frozen, in the dark. After freezing, needles were immediately assessed using chlorophyll fluorescence. The excised shoots were then maintained under controlled conditions for 14 days and visually assessed for needle damage. The chlorophyll fluorescence parameter, F v/F m, accurately predicted cold hardiness and was linearly related to visual needle damage and short-term survival. An equation was constructed using F v/F m data for determining the LT50, that is, the freeze temperature causing 50% seedling damage. The predictions of F.LT50 (fluorescence-based empirical determination of LT50) have been tested over two seasons (i.e., against a second independent data set) with variability between 0 and 1.8°C of visual estimates, though predictions were often 1.1°C of the visual assessment. This approach provided a simple, rapid and accurate prediction of cold tolerance, under climatic conditions where in situ measurements are unreliable. The method can be used to predict if Douglas-fir seedlings have developed sufficient tolerance for lifting to the cold-store, or for planting.  相似文献   

12.
13.
[目的]分离并量化土壤自养呼吸和异养呼吸,探讨各自贡献率及其随季节变化的动态特征。[方法]采用壕沟法和气体红外分析法,研究黄河小浪底库区山地栓皮栎人工林土壤总呼吸、自养呼吸和异养呼吸速率的季节动态变化、贡献率和环境影响因子。[结果]表明:栓皮栎人工林总土壤呼吸、自养呼吸和异养呼吸均呈夏季速率高、冬季速率低。栓皮栎土壤总呼吸、自养呼吸及异养呼吸速率与5 cm土壤温度均呈极显著指数相关,温度敏感性系数Q_(10)值大小为自养呼吸(3.40)异养呼吸(2.90)土壤总呼吸(2.45);栓皮栎土壤总呼吸、自养呼吸、异养呼吸速率与0 10 cm土壤体积含水量均显著线性相关;土壤总呼吸、自养呼吸速率与0 10 cm土壤电导率显著相关。土壤总呼吸和异养呼吸的温度敏感系数Q_(10)值均在冬季最大,夏秋季最小;而自养呼吸的Q_(10)值则呈相反的变化趋势。栓皮栎人工林自养呼吸和异养呼吸对土壤总呼吸的月贡献率为13.23%37.33%和62.67%86.76%,且自养呼吸的贡献率与土壤温度的季节变化规律相似。土壤总呼吸、异养呼吸与自养呼吸的CO2年通量分别为1 616.41、1 199.39、417.02 g·m~(-2)·a~(-1)。[结论]经过区分与定量化土壤总呼吸及其组分,确定异养呼吸为本研究区栓皮栎人工林土壤总呼吸的主要组分,作用于异养呼吸的生物与非生物因子均能显著影响整个森林生态系统表层CO_2总排放通量的大小,进一步为该研究区森林生态系统碳循环与能量流动的进一步量化研究提供参考。  相似文献   

14.
Data on tree biomass are essential for understanding the forest carbon cycle and plant adaptations to the environment. We determined biomass accumulation and allometric relationships in the partitioning of biomass between aboveground woody biomass, leaves and roots in Nothofagus antarctica. We measured above- and belowground biomass of N. antarctica trees across different ages (5–220 years) and crown classes (dominant, codominant, intermediate and suppressed) in three site qualities. The biomass allocation patterns were studied by fitting allometric functions in biomass partitioning between leaves (ML), stem and branches (MS) and roots (MR). These patterns were tested for all pooled data and according to site quality and crown classes. Biomass accumulation varied with crown class and site quality. The root component represented 26–72% of the total biomass depending on age and site. N. antarctica scaling exponents for the relationships MLvs. MS, MAvs. MR, and MSvs. MR were close to those predicted by the allometric biomass partitioning model. However, when biomass allocation was analyzed by site quality the scaling exponents varied following the optimal partitioning theory which states that plants should allocate more biomass to the part of the plant that acquires the most limiting resource. In contrast, the crown class effect on biomass partitioning was almost negligible. In conclusion, to obtain accurate estimations of biomass in N. antarctica trees the allometric approach appears as an useful tool but the site quality should be taken into consideration.  相似文献   

15.
Niu XF  Zhou P  Li WF  Xu HB 《Fitoterapia》2011,82(4):620-625
Chelerythrine (CHE), a quaternary benzo[c]phenanthridine alkaloid, which is an agent in traditional Chinese medicine exhibits a wide spectrum of pharmacological effects. In this study, we examined the anti-inflammatory activities and mechanism of CHE in vivo and in vitro, respectively. Further, in the analgesic test, CHE also showed pronounced inhibition of the acetic acid-induced writhing response. These results clearly suggested that CHE is a bioactive agent which has a significant anti-inflammatory action, which may be relevant to the inhibition of the release/production of exudates and prostaglandin E2 mediated through cyclooxygenase-2 regulation.  相似文献   

16.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

17.
Eucalyptus plantations occupy almost 20 million ha worldwide and exceed 3.7 million ha in Brazil alone. Improved genetics and silviculture have led to as much as a three-fold increase in productivity in Eucalyptus plantations in Brazil and the large land area occupied by these highly productive ecosystems raises concern over their effect on local water supplies. As part of the Brazil Potential Productivity Project, we measured water use of Eucalyptus grandis × urophylla clones in rainfed and irrigated stands in two plantations differing in productivity. The Aracruz (lower productivity) site is located in the state of Espirito Santo and the Veracel (higher productivity) site in Bahia state. At each plantation, we measured stand water use using homemade sap flow sensors and a calibration curve using the clones and probes we utilized in the study. We also quantified changes in growth, leaf area and water use efficiency (the amount of wood produced per unit of water transpired). Measurements were conducted for 1 year during 2005 at Aracruz and from August through December 2005 at Veracel. Transpiration at both sites was high compared to other studies but annual estimates at Aracruz for the rainfed treatment compared well with a process model calibrated for the Aracruz site (within 10%). Annual water use at Aracruz was 1394 mm in rainfed treatments versus 1779 mm in irrigated treatments and accounted for approximately 67% and 58% of annual precipitation and irrigation inputs respectively. Increased water use in the irrigated stands at Aracruz was associated with higher sapwood area, leaf area index and transpiration per unit leaf area but there was no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency at the Aracruz site was also not influenced by irrigation and was similar to the rainfed treatment. During the period of overlapping measurements, the response to irrigation treatments at the more productive Veracel site was similar to Aracruz. Stand water use at the Veracel site totaled 975 mm and 1102 mm in rainfed and irrigated treatments during the 5-month measurement period respectively. Irrigated stands at Veracel also had higher leaf area with no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency was also unaffected by irrigation at Veracel. Results from this and other studies suggest that improved resource availability does not negatively impact water use efficiency but increased productivity of these plantations is associated with higher water use and should be given consideration during plantation management decision making processes aimed at increasing productivity.  相似文献   

18.
立地水分条件决定的植被承载力是干旱缺水地区森林合理经营的重要依据。考虑到干旱缺水地区的森林蒸散耗水在水分输出中占据绝对主导地位,其大小直接与叶面积指数(LAI)相关,将林冠LAI在生长季一段时间内的最大值(LAImax)作为植被承载力(LAIc)的量化指标,利用冠层分析仪(LAI-2000),在六盘山香水河小流域和叠叠沟小流域的44个华北落叶松人工林样地,实测了冠层LAI的季节动态变化,研究了生长季内LAImax与林分断面积、郁闭度、平均树高、密度等常用林分结构指标的关系。结果表明:LAImax与林分不同结构指标均呈幂函数关系,其决定系数(R2)依次为0.84、0.82、0.56、0.47,说明能同时反映林分密度和树体大小的林分断面积与林冠LAI相关最紧密。将LAImax与林分断面积的幂函数关系嵌入了林分平均胸径与林分密度和林龄关系的模型,用以描述LAImax与林龄和密度的关系,并利用样地实测数据拟合了模型参数。拟合建立的模型对所有样地的LAImax的计算值与实测值的相对误差平均为8.6%(0%20.4%),能较好地描述LAI与林龄和密度的关系。利用此模型,进一步导出了能依据给定的LAIc,简捷计算出不同林龄时的可承载林分密度的模型,从而为基于立地水分植被承载力的林分密度管理和森林多功能经营等提供技术支持。  相似文献   

19.
We previously reported that quercetin and rutin have potent, anti-asthmatic activity, but the structure-activity relationships of flavonoids and anti-asthmatic agents are still poorly understood. In the current study, the effects of kaempferol, fisetin, and morin on the immediate-phase response (IAR) and late-phase response (LAR) caused by exposure to aerosolized-ovalbumin (OA) in OA-sensitized guinea pigs were evaluated by determining the specific airway resistance (sRaw), recruitment of leukocytes and chemical mediators in bronchoalveolar lavage fluid (BALF), histopathological surveys, and determination of neutrophil chemotaxis. Fisetin and kaempherol (30 mg/kg, p.o.) significantly (P < 0.01) inhibited sRaw by 47.93% and 30.05% in IAR, and 54.45% and 40.50% in LAR, when compared to vehicle control, respectively. Furthermore, all three studied flavonols (30 mg/kg, p.o.) significantly (P < 0.05) inhibited the recruitment of total, as well as subtypes of, leukocytes into the lung BALF. This recruitment inhibition corresponded to the inhibition of leukocyte infiltration, particularly of eosinophils and neutrophils, into the lung in pathological surveys and formly-methionyl-leucyl-phenylalanine (FMLP)-induced neutrophil chemotaxis studies. Kaempferol inhibited FMLP-induced neutrophil chemotaxis in a concentration-dependent manner in a tested range of 1–100 μM. Fisetin inhibited histamine content and peroxidase (EPO) activity in BALF in a dose-dependent manner. All three tested flavonols significantly (P < 0.01) inhibited histamine content at 10 mg/kg, and phospholipase A2 (PLA2) and EPO activities at 30 mg/kg (p.o.) in BALF. Kaempherol had a greater anti-asthmatic effect than other flavonols. Fisetin demonstrated the greatest inhibition of sRaw, whereas morin had lesser effects. These results indicate that the lower the molecular weight, the greater the anti-asthmatic activities of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号