首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Voles and shrews are key species in northern forest ecosystems. Thus, it is important to quantify to what extent new forestry practices such as planting of non-native tree species impact these small mammals. In northern Norway stands of coastal subarctic birch forests have increasingly been converted to non-native spruce stands during the last century. This leads to changes in the forest floor vegetation and soil conditions that can be expected to negatively impact the community of ground-dwelling small mammals. In this 10-year trapping study we contrasted seasonal small mammal population abundances in spruce plantations with four birch forest varieties. Six different small mammal species were trapped (in descending order of abundance; common shrew Sorex araneus, red vole Myodes rutilus, field vole Microtus agrestis, grey-sided vole M. rufocanus, pygmy shrew S. minutus and water shrew Neomys fodiens). None of the voles appeared to exhibit temporal dynamics resembling population cycles. The three most numerous species were clearly less abundant in the spruce plantations compared to the other forest types. Autumn abundances were most impacted by spruce plantations, indicating that growth rates in the reproductive season were more influenced than winter declines. Species associated with productive forest habitats (i.e. field vole and common shrew) were most impacted by tree species conversion. Still young spruce plantations inter-mixed with birch trees and the ecotone habitat, sustained small mammal abundances comparable to the native birch forests. This implies that managing spruce plantations to maintain a mix of different tree species and high spatial heterogeneity (i.e. more ecotones), will reduce the negative impacts on the small mammal community. On the contrary, if young spruce plantations, as they age become spruce monocultures covering larger parts of the landscapes than they do presently, the negative effects on small mammal communities may be larger than observed in the present study.  相似文献   

2.
The nutrient status of Norway spruce in pure and in mixed-species stands   总被引:1,自引:0,他引:1  
Atmospheric deposition of N and S appears to have caused nutrient imbalance in Norway spruce stands in southern Sweden. This calls for a change of forest management to procedures that promote nutrient balance. Studies have shown lower soil acidity in Norway spruce/deciduous mixed stands than in spruce monocultures, but the tree nutrient status in such mixtures has not been much investigated so far.

The nutrient status of Norway spruce foliage and top mineral soil chemistry in monocultures and in stands mixed with beech, birch, or oak was investigated through paired comparisons on 30 sites in southern Sweden (27 sites) and eastern Denmark (three sites). In total, 45 mixed stands and 34 pure stands were included in the study.

Spruce needles from mixed stands had higher concentrations and ratios to N of K, P, and Zn than needles from pure spruce stands. Among the mixed stands, the K status appeared to be positively correlated with the percentage of deciduous tree basal area. Soil samples from mixed stands had a higher Mg concentration, base saturation, and BC/Al ratio than soil samples from pure stands. The spruce needle nutrient status was comparable in pure stands on fertile sites and in mixed stands on poor sites. We did not detect any differences in spruce tree growth between pure and mixed stands.

This paper discusses possible reasons for a positive effect on the tree nutrient status in mixed-species stands and the possibility of using mixed-species stands as a forest management procedure to avoid nutrient imbalance.  相似文献   


3.
The present research examines the joint effects of climate change and management on the dead wood dynamics of the main tree species of the Finnish boreal forests via a forest ecosystem simulator. Tree processes are analyzed in stands subject to multiple biotic and abiotic environmental factors. A special focus is on the implications for biodiversity conservation thereof. Our results predict that in boreal forests, climate change will speed up tree growth and accumulation ending up in a higher stock of dead wood available as habitat for forest-dwelling species, but the accumulation processes will be much smaller in the working landscape than in set-asides. Increased decomposition rates driven by climate change for silver birch and Norway spruce will likely reduce the time the dead wood stock is available for dead wood-associated species. While for silver birch, the decomposition rate will be further increased in set-aside in relation to stands under ordinary management, for Norway spruce, set-asides can counterbalance the enhanced decomposition rate due to climate change thereby permitting a longer persistence of different decay stages of dead wood.  相似文献   

4.
Fire history and stand structure was examined in twelve virgin forest stands situated within forest reserves in northern Sweden. The selected stands represented fire refuges as well as different successional stages after fire. Six of the stands were dominated by Norway spruce (Picea abies L. Karst.), three were dominated by Scots pine (Pinus sylvestris L.), and three were dominated by hairy birch (Betula pubescens Ehrh.) or aspen (Populus tremula L.). In 3 of the southernmost stands, the average fire interval was 34 to 65 years during the late 1600s to late 1800s, but since 1888 no fires had occurred in any of the stands. The absence of fire disturbance since 1888 is probably caused by the fire suppression in the overall landscape. The standing volume of living trees ranged between 87 and 511 m3 ha−1 while the volume of dead trees, including both snags and logs, ranged between 27 and 201 m3 ha−1. The volume of dead trees constituted ca. 30% of the total stem volume. In the conifer dominated stands, there was a statistically significant relationship between total stem volume, including both living and dead trees, and site productivity. A comparison between the amount of dead and living trees indicated substantial changes in tree species composition in several stands. It is suggested that data on the amount of dead trees, especially logs, and its distribution over decay classes could be used to examine the continuity of certain tree species. All stands had a multi-sized tree diameter distribution, which in most cases was similar to a reversed J-shaped distribution. In general spruce was numerous in the seedling cohort and in small diameter classes, indicating that its proportion in the stands was stable, or was increasing at the expense of pioneer tree species such as pine, aspen and silver birch (Betula pendula Roth.). The most numerous species in the seedling cohort, rowan (Sorbus aucuparia L.), was almost totally missing in the tree layer, indicating a high browsing pressure preventing rowan seedlings from growing into trees. The general increase of spruce and the sparse regeneration of pioneer species, in the stands previously affected by fire, are discussed in relation to natural disturbance regimes, biological diversity and nature conservation policies. It is proposed that reintroduction of fire disturbance is a necessity for future management plans of forest reserves. Other management practices to increase species diversity within forest reserves are also discussed.  相似文献   

5.
In the last decades, a large body of literature has grown to evaluate the impact of forest management on epiphytic lichens in boreal coniferous forests. However, information is still lacking on coniferous forests of the Alps. This study compares lichen diversity between spruce forest stands of four successional stages: (1) young, (2) intermediate, (3) mature forests managed for timber production with a rotation cycle of 120–180 years, and (4) old-growth protected forests. The emphasis was placed on the occurrence of nationally rare and calicioid species (lichens and fungi traditionally referred to as Caliciales, known to be indicative of forest age and continuity). For each forest successional stage, four plots were selected. In each plot, 7 spruce individuals were surveyed for epiphytic lichens according to a standardised sampling method. Species richness increased from young to mature stands, while no difference was detected between mature and old-growth stands. This pattern was also confirmed for rare and calicioid species which are, however, more frequent in old-growth stands. Differences in species composition were also found between the different forest successional stages. Mature and old-growth plots slightly overlap, indicating that to some extent comparable lichen assemblages could be found in these stands. A nested pattern of species assemblages was found, old-growth stands hosting most of the species which were also found in stands belonging to the previous forest successional stages. Our results support the hypothesis that the management regime applied to spruce forests of the Italian Alps renders mature stands managed for timber production somewhat similar to old-growth stands as lichen habitat. However, we found a higher complexity in old-growth forests, and many species of conservation concern clearly preferred old-growth stands. In this perspective, a further prolongation of the normal cycle it is likely to be a most favourable conservation-oriented management to be recommended at least within protected areas and Natura 2000 sites, where conservation purposes should receive a high priority.  相似文献   

6.
Abstract

The choice of species in forestry is important, and a real issue as large areas of wind-damaged forest land in southern Sweden need to be regenerated. To compare the growth potential between the most common tree species in Sweden, ratios between site quality derived from site index values determined with site properties were used. A regression function to determine site index for birch from site properties was used to complement the known relationships between site properties and site index for spruce and pine. In large regions of Sweden the distribution of site quality classes was calculated to compare the special characteristics and demands of the three species. On average, the growth difference for pine compared to spruce was about 60% in southern Sweden and 95% in northern Sweden. Corresponding figures between birch and spruce were 40% and 60%. Birch was expected to produce around 60% of pine in northern Sweden and about 70% in southern Sweden. However, it must be stressed that the comparison is based on survey data encompassing mainly naturally regenerated birch, whereas spruce and pine are mainly planted.  相似文献   

7.
Natural regeneration of windthrow areas is an important issue when planning forestry measures after forest disturbances. Seedling recruitment was investigated in storm-damaged hemiboreal mixed forests in eastern Estonia. The establishment and growth of seedlings from natural regeneration was registered for tree species in soil pits and in mounds of uprooted trees in stands that were either heavily or moderately damaged. Seedling growth is expected to be better in large but shallow soil pits created by uprooted Norway spruce [Picea abies (L.) Karst.] and poorer in small but deep pits created by the hardwoods in the area, silver birch (Betula pendula Roth.) and European aspen (Populus tremula L.). The most abundant regenerating species was birch. Pits hosted larger seedling numbers than mounds, due to soil instability in mounds. Rowan (Sorbus aucuparia L.) showed significantly faster growth than the other seedling species. Norway spruce pits were preferred to pits of other species by both birch and spruce seedlings. Black alder [Alnus glutinosa (L.) J. Gaertn.] did not show a preference for pits of a certain species of uprooted tree. Both spruce and rowan preferred hardwood mounds over spruce mounds. Storm severity also affected species composition: birch predominantly occurred on pits and mounds in heavily disturbed areas, while spruce was more abundant in the moderately damaged areas. The effects of advance regeneration and surrounding stands on seedling microsite preferences should be considered in future research and subsequent management recommendations.  相似文献   

8.
The objective was to analyse how differences in the initial proportions of tree species and site fertility affect carbon sequestration in living biomass and soil. We used the individual-based simulation model EFIMOD, which is able to simulate spatially explicit competition between trees for light and nutrients. Simulations were carried out for three site types with distinct initial stocks of soil nutrients. For each site, the 100-years undisturbed dynamics of monocultures and mixtures of three tree species (Betula pendula Roth, Pinus sylvestris L. and Picea abies (L.) H. Karst.) was predicted. Changes in the proportions of competing tree species were dependent on the fertility of the site: on poor sites, pine was the most competent species, while on rich sites, spruce increased its proportion during stand succession. Net primary production (NPP) and soil respiration were the highest in stands of two coniferous species and in stands with a high initial proportion of pine. Mixed stands were more productive than monocultures; the highest overyielding was observed with mixtures of two coniferous species. Simulated NPP and carbon stocks in all pools increased from poor to rich sites. The highest carbon stocks in standing biomass were observed for mixtures of conifer species and three-species mixtures; the greatest accumulation of forest floor occurred in stands with high proportions of pine.  相似文献   

9.
This paper summarises the results from 35 years-observed thinning experiments on 256 permanent sample plots in 10–60 year-old stands of ash, aspen, birch, oak, pine and spruce in Lithuania. Thinning enhanced crown projection area increment of residual trees. The largest effect was observed in stands of aspen and birch (growth increase by 200%), followed by ash and oak (over 100%), and spruce and pine (about 80%). Thinning also promoted dbh increment, especially in younger stands, and the increase of dbh increment was positively correlated with the thinning intensity. The strongest reaction was exhibited by oak and aspen, while ash, birch and conifers reacted to a lower extent. Low and moderate intensities of thinning stimulated volume production in younger stands while the opposite was observed in older stands with increasing removals. Spruce stands exhibited relatively strongest increase of volume increment and pine, –the weakest, while the effect on deciduous species was intermediate. The results demonstrate that significant increase in volume increment is achievable with thinning of only young forest stands, e.g. 10–20 year-old pine, birch and ash, or 10–30 year-old oak, aspen and spruce.  相似文献   

10.
There is increasing pressure to manage forests for multiple objectives, including ecosystem services and biodiversity, alongside timber production. However, few forests are currently co-managed for timber and wildlife, despite potential economic and conservation benefits. We present empirical data from a commercial Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) production system in southern Norway in which moose (Alces alces) are an important secondary product. Combining long-term hunting and forestry records, we identified temporal variation in clear-felling over the past five decades, peaking in the 1970s. Herbicide treatment of regenerating stands and a fivefold increase in moose harvest has lead to a reduction in availability of successional forest per moose of >90 % since the 1960s. Field estimates showed that spraying with the herbicide glyphosate reduced forage availability by 60 and 96 % in summer and winter, respectively, 4 years after treatment. It also reduced moose use and habitat selection of young spruce stands compared with unsprayed stands. Together these lines of evidence suggest that forest management led to an increase in moose carrying capacity during the 1970s and a subsequent decline thereafter. This is likely to have contributed to observed reductions in moose population productivity in southern Norway and is counter to sustainable resource management. We therefore call for better integration and long-term planning between forestry and wildlife management to minimise forest damage and the development of large fluctuations in ungulate populations.  相似文献   

11.
The effects of three common tree species - Scots pine, Norway spruce and silver birch - on leaching of dissolved organic carbon and dissolved nitrogen were studied in an experimental forest with podzolised soils in southern Sweden. We analyzed soil water collected with lysimeters and modeled water fluxes to estimate dissolved C and N fluxes. Specific UV absorbance (SUVA) was analyzed to get information about the quality of dissolved organic matter leached from the different stands. Under the O horizon, DOC concentrations and fluxes in the birch stands were lower than in the spruce and pine stands; annual fluxes were 21 g m−2 y−1 for birch and 38 g m−2 y−1 and 37 g C m−2 y−1 for spruce and pine, respectively. Under the B horizon, annual fluxes for all tree species ranged between 3 and 5 g C m−2 y−1, implying greater loss of DOC in the mineral soil in the coniferous stands than in the birch stands. We did not find any effect of tree species on the quality of the dissolved organic matter, as measured by SUVA, indicating that the chemical composition of the organic matter was similar in leachates from all three tree species. Substantial amounts of nitrogen was leached out of the soil profile at the bottom of the B horizon from the pine and birch stands, whereas the spruce stands seemed to retain most of the nitrogen in the soil. These differences in N leaching have implications for soil N budgets.  相似文献   

12.
Composition, structure, and species-specific patterns of recruitment and growth were characterized in two yellow birch (Betula alleghaniensis Britt.)–conifer stands in Quebec, Canada, to improve our understanding of the dynamics of these complex ecosystems. The mixture of mid- and shade-tolerant species in the canopy, the inverse J-shape stem diameter distribution, and the age distribution were indicative that the two stands were in a late-successional stage. Recruitment of mid-tolerant species above 1.3 m in height appeared to be periodic and synchronized with historical spruce budworm (Choristoneura fumiferana Clem.) outbreaks, while the coniferous component of these mixedwood stands recruited continuously. Results suggest that recruitment of yellow birch and red maple (Acer rubrum L.) requires disturbances of a certain intensity that affect at least 25 % of the forest cover. In contrast, balsam fir (Abies balsamea (L.) Mill.) and red spruce (Picea rubens Sarg.) can recruit under the canopy without relying on moderate or large canopy disturbances. Results suggest that the historical disturbance regime, and differences in shade tolerance between species, largely govern the contemporary composition of these stands. This study improves the comprehension of mechanisms that regulate the dynamics of yellow birch-conifer stands and will be useful for the subsequent elaboration of forest management strategies.  相似文献   

13.
Forest plantations in the northeastern United States comprise a small proportion of the total forest area. Most plantations are typically softwood dominated and managed for sawlog and pulpwood production, while high-yield hardwood plantations for bioenergy feedstocks have not been as widely investigated. The objective of this study was to compare the biomass production of planted white spruce (Picea glauca (Moench) Voss) and hybrid poplar (Populus spp.) plantations (four clones) in monoculture, and in mixture of the two on a typical reforestation site in Maine. Three years following planting, hybrid poplar height and ground line diameter growth rates began to diverge among clones, and by 6?years, the Populus nigra?×?Populus maximowiczii (NM6) clone clearly outperformed three Populus deltoides?×?Populus nigra clones (D51, DN10 and DN70) both in pure stands and in mixtures with white spruce. In mixture, we found the yield of white spruce to decline as the yield of hybrid poplar increased. Overall, yields of white spruce monocultures were comparable to those reported in eastern Canada, while the hybrid poplar biomass yields were substantially lower than those reported from studies on abandoned agricultural lands, likely due to the harsher soil conditions at our site. The dominance of rocky and poorly drained sites (like the one tested in this study) across Maine will likely limit the feasibility of widespread hybrid poplar plantations, and thus constrains their potential use as a bioenergy feedstock.  相似文献   

14.
Forests long subjected to management for timber production contain only a fraction of the volumes of coarse woody debris (CWD) found in pristine forests. This is a threat to many organisms that depend on CWD. Forest management practices have been altered to achieve an increase in the amounts of CWD. Few studies have attempted to analyze the occurrence of CWD at the landscape level. We studied the occurrence of CWD in stands of different ages and management background in a boreal forest landscape in central Sweden. Volume of CWD in unmanaged stands (nature reserves and set-asides) was twice that in managed stands. The composition of CWD was influenced by stand age and management regime. Standing CWD was more common in unmanaged stands than in managed stands. Pine CWD was particularly prevalent in young forest stands (8–59 years of age). Bark-covered CWD was most common on deciduous and spruce wood and uncommon on pine. Bark area in young forest stands was almost 10 times lower than that in other managed stands. Using the age distribution of stands, we estimated the volume and bark area of CWD in the landscape. Recent clear-cuts harvested in accordance with new management guidelines contained more early decay CWD per ha than old managed stands. Young forests covered over half the landscape and had significantly lower volumes of spruce and deciduous CWD compared with other stands. The consequences of these results for biodiversity-oriented forest management are discussed.  相似文献   

15.
Carbon (C) sequestration was studied in managed boreal forest stands and in wood products under current and changing climate in Finland. The C flows were simulated with a gap-type forest model interfaced with a wood product model. Sites in the simulations represented medium fertile southern and northern Finland sites, and stands were pure Scots pine and Norway spruce stands or mixtures of silver and pubescent birch.

Changing climate increased C sequestration clearly in northern Finland, but in southern Finland sequestration even decreased. Temperature is currently the major factor limiting tree growth in northern Finland. In southern Finland, the total average C balance over the 150 year period increased slightly in Scots pine stands and wood products, from 0.78 Mg C ha−1 per year to 0.84 Mg C ha−1 per year, while in birch stands and wood products the increase was larger, from 0.64 Mg C ha−1 per year to 0.92 Mg C ha−1 per year. In Norway spruce stands and wood products, the total average balance decreased substantially, from 0.96 Mg C ha−1 per year to 0.32 Mg C ha−1 per year. In northern Finland, the total average C balance of the 150 year period increased under changing climate, regardless of tree species: in Scots pine stands and wood products from 1.10 Mg C ha−1 per year to 1.42 Mg C ha−1 per year, in Norway spruce stands and wood products from 0.69 Mg C ha−1 per year to 0.99 Mg C ha−1 per year, and in birch stands and wood products from 0.43 Mg C ha−1 per year to 0.60 Mg C ha−1 per year.

C sequestration in unmanaged stands was larger than in managed systems, regardless of climate. However, wood products should be included in C sequestration assessments since 12–55% of the total 45–214 Mg C ha−1 after 150 years' simulation was in products, depending on tree species, climate and location. The largest C flow from managed system back into the atmosphere was from litter, 36–47% of the total flow, from vegetation 22–32%, from soil organic matter 25–30%. Emissions from the production process and burning of discarded products were 1–6% of the total flow, and emissions from landfills less than 1%.  相似文献   


16.
To preserve biodiversity in managed forest landscapes dead and living trees are retained at final cuttings. In the present study we evaluated the effect of these practices for saproxylic (wood-dependent) beetles inhabiting dead aspen trees (Populus tremulae). For saproxylic beetles, tree retention at final cuttings can be expected to be especially valuable for species adapted to sun-exposed dead wood, a substrate that only rarely occurs in well managed forest stands. Therefore, the current evaluation was conducted as a comparison of species richness, species density (number of species per sample), assemblage composition and occurrence of individual species between clear-cuts, where aspen trees were retained, and closed forest stands with aspen trees. The study was conducted in central Sweden and the beetles were sampled by sieving of bark from CWD (coarse woody debris) of aspen. There was no significant difference in rarefied species richness between forest and clear-cut sites. Species composition differed significantly between the two stand types. Generalized linear mixed-effects models predicted the species density to be 34% lower in CWD objects in forest sites than on clear-cuts. This pattern could partly be explained by differences in CWD diameter, decay class and bark types between the two stand types (clear-cut/forest). Stand type was a significant predictor of occurrence in individual CWD objects for 30% of analysed individual beetle species. For all species except one, the variable stand type predicted higher occurrence on clear-cuts than in forest stands. To conclude, our results demonstrate that retention of aspen on clear-cuts contributes to population recruitment of a different assemblage of species than CWD within stands.  相似文献   

17.
How to quantify forest management intensity in Central European forests   总被引:1,自引:0,他引:1  
Existing approaches for the assessment of forest management intensity lack a widely accepted, purely quantitative measure for ranking a set of forest stands along a gradient of management intensity. We have developed a silvicultural management intensity indicator (SMI) which combines three main characteristics of a given stand: tree species, stand age and aboveground, living and dead wooden biomass. Data on these three factors are used as input to represent the risk of stand loss, which is a function of tree species and stand age, and stand density, which is a function of the silvicultural regime, stand age and tree species. Consequently, the indicator consists of a risk component (SMIr) and a density component (SMId). We used SMI to rank traditional management of the main Central European tree species: Norway spruce (Picea abies [Karst.] L.), European beech (Fagus sylvatica L.), Scots pine (Pinus sylvestris L.), and oak (Quercus robur L. and Quercus petraea L.). By analysing SMI over their whole rotation period, we found the following ranking of management intensity: oak<beech<pine?spruce. Additionally, we quantified the SMI of actual research plots of the German Biodiversity exploratories, which represent unmanaged and managed forest stands including conifer forests cultivated outside their natural range. SMI not only successfully separate managed from unmanaged forests, but also reflected the variability of forest management and stand properties across the entire sample and within the different management groups. We suggest using SMI to quantify silvicultual management intensity of stands differing in species composition, age, silvicultural system (even-aged vs. uneven-aged), thinning grade and stages of stand conversion from one stand type into another. Using SMI may facilitate the assessment of the impact of forest management intensity on biodiversity in temperate forests.  相似文献   

18.
A stand-based model for predicting basal-area mean diameter growth for Norway spruce (Picea abies (L.) Karst.) in young mixed stands of spruce and birch (Betula pendula Roth, B. pubescens Ehrh.) was developed and compared with two existing growth models developed for older stands. The main data were from experiments with four different pre-commercial thinning regimes. A multiplicative model with four independent variables was found suitable. The independent variables were total number of trees per hectare of all the species, site index, dominant height of spruce, and a measure of competition between birch and spruce, i.e. dominant height of spruce divided by the dominant height of birch multiplied by the proportion of spruce of total number of trees. The R2 value was 0.59 and the coefficient of variation was 12%. A test with an independent data set from the National Forest Inventory (NFI) indicated that the function developed in this study is suitable for young stands at medium to highly productive areas. Large deviations between observed and predicted growth for the two existing functions were revealed in highly productive stands. The tests based on data from the NFI also indicated that the existing function developed for spruce in older mixed stands is suitable for practical purposes for young stands.  相似文献   

19.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

20.
Setting aside parcels of land is the main conservation strategy to reduce the rate of biodiversity loss worldwide. Because funding for biological conservation is limited, it is important to distinguish the most efficient ways to use it. Here, we assess implications of alternative measures to conserve biodiversity in managed boreal forest landscapes. We calculated four alternative spatio-temporal scenarios and compared these to the current management regime over 100-year time period. In the alternative scenarios, a fixed amount of funding was invested in (1) permanent large reserves (each tens of ha in size), (2) permanent small reserves (each a few ha in size), (3) temporary small reserves (based on 10-year contracts with private land owners), and (4) green-tree retention (small groups of trees retained on clear-cuts). To assess biodiversity implications, we used habitat suitability indices to calculate overall habitat availability for five groups of red-listed and habitat-specific species associated with decaying spruce logs. The possibilities for timber harvests did not differ among the scenarios, but biodiversity performance was different. The scenarios with permanent reserves tended to outperform other scenarios, suggesting that conservation policies based on permanent reserves are the most cost-efficient in the long term. Results, however, varied among time scales and species groups. In the short term, a strategy of investment in temporary small reserves was the most efficient. Habitat for species associated with old spruce dead-wood and preferring shade was rare throughout all simulations, and therefore, it is likely that these species cannot be sustained in managed forests. Species that live on fresh dead-wood and are associated with forest edges coped well in all scenarios suggesting that such species will persist in managed landscapes without additional conservation efforts. Explicit definition of conservation objectives and time frames for conservation action are thus prerequisites for successful conservation planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号