首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stumps are the largest coarse woody debris component in managed forests, but their role in nutrient cycling is poorly understood. We studied carbon (C) and nitrogen (N) dynamics in Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and silver birch (Betula pendula) stumps, which had decomposed for 0, 5, 10, 20, 30 and 40 years after clear-cutting in southern Finland. Carbon and N were released significantly faster from birch stumps than from conifer stumps. In 40 years, conifer stumps lost 78% and birch stumps 90% of their initial C. In contrast, the amount of N in stumps increased, indicating that external N accumulated in the stumps. After 40 years of decomposition, the amount of N was 1.7 and 2.7 times higher than the initial amount in pine and spruce stumps, respectively. Nitrogen was released from birch stumps, but only after they had decomposed for 20 or more years. On average, 59% of N stored in birch stumps was released during 40 years. The results indicate that the stumps of the major tree species in Fennoscandian forests are long-term C and, especially, N pools which serve as N sinks, thus potentially diminishing N leaching into ground water and watercourses after harvesting. This suggests that the removal of stumps for bioenergy production may markedly affect the nutrient status and nutrient cycling of boreal forests.  相似文献   

2.
JOHANSSON  M .-B. 《Forestry》1995,68(1):49-62
Needle litter from 14 stands of Scots pine (Pinus silvestris,L.), 13 stands of Norway spruce (Picea abies (L.) Karst.) andleaf litter from three stands of white birch (Betula pubescensEhrh.) were analysed for chemical composition. The concentrationsof the elements N, P, K, Ca, Mg and Mn as well as solid organiccomponents (lignin, cellulose and hemicelluloses) and solubleswere determined. When the average chemical compositions werecompared the Scots pine needle litter was clearly the most nutrient-poorlitter type. Of the solid organic-chemical components the ligninfraction dominated in the spruce and birch litter whereas thecellulose dominated in the pine needle litter. When Norway spruce and Scots pine were growing in adjacent standson soils with the same bedrock origin the spruce litter hadsignificantly higher concentrations of nutrients (N, P, K, Ca,Mg, Mn) than the pine needle litter. At sites where Norway spruceand white birch were growing in adjacent stands, the birch leaflitter had generally higher concentrations of nutrients. However, significant or nearly significant differences were onlyobtained for Mg (P = 0.002), K (P = 0.056) and N (P = 0.087),probably due to the few replicates of stands compared. Concerningorganic chemical components, the spruce needle litter had significantlyhigher concentrations of lignin and mannan than all the otherlitters and lower levels of ethanol-soluble substances, celluloseand galactan than the pine needle litter. Further, it had lowerconcentrations of water solubles, rhamnan and xylan than thebirch litter. No relationships were established between the nutrient statusof the conifer litters and the site index H100 (the dominantheight of the trees at a reference age of 100 years) of thestands. Concentrations of solid carbohydrates in the litterswere, however, positively correlated with site index (P <0.001). Further, the concentration of nitrogen in the pine needlelitter was negatively correlated with the latitude of the sites(P < 0.01). The influence of litter chemistry on the decompositionof litter and nutrient cycling of forests is discussed.  相似文献   

3.
The wood bulk density, bark mass and decomposition rate constants of cut stumps of the main European boreal tree species were assessed along a 40-year chronosequence of clear-felled sites with and without prescribed burning. Using the single exponential model, the annual decomposition rate constants k of above-ground stumps were calculated as 0.048, 0.052 and 0.068 year−1 for Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula sp.), respectively. Bark decomposed faster than wood and bark fragmentation increased the rate of decomposition. There was a significant negative effect of burning on decomposition rate for pine wood, and for pine and spruce bark but not for spruce and birch wood or for birch bark. The decomposition of bark of all species was slower with larger diameter stumps but only slightly slower in the case of birch wood. Our results suggest (i) using different decomposition rate constants for wood and bark, (ii) taking into account fragmentation as it greatly increases the volume loss, and (iii) adjusting of k in carbon dynamics studies on burned sites. Such refinements to estimates of coarse woody debris decomposition constants could aid in identification of ecosystems and management scenarios necessary to maximize carbon storage and conserve biodiversity. Prescribed burning for restoration purposes decreases decomposition rates and consequently ensures longer persistence of stumps for maintaining biodiversity in intensively managed forests.  相似文献   

4.
The occurrence of Heterobasidion annosum in stumps and growing trees was investigated on 15 forest sites in southern Finland where the previous tree stand had been Norway spruce (Picea abies) infected by H. annosum, and the present stand was either Scots pine (Pinus sylvestris), lodgepole pine (Pinus contorta), Siberian larch (Larix siberica), silver birch (Betula pendula) or Norway spruce 8–53 years old. Out of 712 spruce stumps investigated of the previous tree stand, 26.3% were infected by the S group and 0.3% by the P group of H. annosum. The fungus was alive and the fruit bodies were active even in stumps cut 46 years ago. In the subsequent stand, the proportion of trees with root rot increased in spruce stands and decreased in stands of other tree species. On average, one S type genet spreading from an old spruce stump had infected 3.0 trees in the following spruce stand, 0.5 trees in lodgepole pine, 0.3 trees in Siberian larch, 0.05 trees in Scots pine and 0.03 trees in silver birch stand. Although silver birch generally was highly resistant to the S type of H. annosum, infected trees were found on one site that was planted with birch of a very northern provenance.  相似文献   

5.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

6.
The aim of this study was to determine how soil chemistry and the distribution of fine roots (<1 mm) in the organic and upper mineral soil horizons were affected by an admixture of birch (Betula pendula Roth and B. pubescens Ehrh.) in Norway spruce (Picea abies (L.) Karst) stands. The surface organic horizons (LF and H) and mineral soil were characterized to a depth of 10 cm on three sites in southern and central Sweden. On these sites, replicated plots had been established that contained either ca. 30-year-old birch growing as a shelter over similar-aged spruce (mixed plots) or spruce only. The treatments had been created 8–11 years before this study was done. A fourth site, with plots containing ca. 90-year-old spruce or birch/spruce, and a fifth site, with 30-year-old spruce and a low admixture (12% by basal area) of birch, were also included in the study. Concentrations of Ca and Mg and pH in the LF layer were significantly higher in plots with a birch admixture. In the H-horizon, concentrations of K, Ca and Mg were significantly higher in mixed plots than in plots with pure spruce. Consequently, base saturation was higher in mixed plots than in pure spruce plots. A shelter of birch decreased the total amount of spruce fine roots (<1 mm), as revealed at one of the sites. Total fine root biomass (birch + spruce) in the organic and mineral soil horizons (to 10 cm) did not differ significantly between the pure spruce stands and the spruce stands with a birch shelter.  相似文献   

7.
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.  相似文献   

8.
A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.  相似文献   

9.
Relationships between climate and radial growth of Oxalis-Myrtillus-site type Norway spruce and Scots pine stands under different cement dust loads were investigated. Dendrochronological methods were used. Long-term alkaline (pH 13.2-12.7) dust pollution emitted over 40 years from a cement plant was the reason of alkalisation (pH 7.8-8.1) and high concentrations of K, Ca and Mg in soil of affected territories. Two study sites, Kunda and Malla (2.5 and 5.0 km E from the emission source), were influenced by the dust emissions of the cement plant. Two other study sites, Eru (38 km W) and Revoja (34 km W), were situated on a relatively unpolluted area and served as control sites. The relationships between the radial growth and climate were almost similar on the control and dust-polluted sites. The climatic variables that had a significant effect on the radial growth of Norway spruce at both control and polluted sites were the temperature and precipitation of summer months of the current and preceding years. Specific to the Scots pine stands growing under dust pollution was a significant positive impact of the current spring temperature on the radial growth. A positive effect of precipitation during winter months on the radial growth was found at all sites. A significant negative effect of cement dust on the radial growth of Scots pine stands during the period of large amounts of dust emission (1966-1991) was detected. The effect of cement dust emissions on the radial growth of Norway spruce stands was also negative but weak. The decrease in the dust emissions since 1992 improved the growth conditions at pine stand sites.  相似文献   

10.
The biological control agent Rotstop® composed of a suspension of spores of Phlebiopsis gigantea (Fr.) Jül. is widely used for protecting conifer stumps from aerial infection by Heterobasidion species. The efficacy of Rotstop application on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) stumps was determined in several locations and at different seasons in Latvia. Mean efficacy in controlling natural infection by Heterobasidion spp. in spruce stumps was 64%, calculated on the basis of number of infected stumps, and 89%, calculated on the basis of area of infected wood on sample discs cut from the stumps. Corresponding proportions for pine were 82% and 95%. The results show that Rotstop can be successfully used for stump treatment in Latvia, although improved efficacy is desirable, particularly in spruce. A Latvian isolate of P. gigantea, selected from numerous isolates in preliminary tests, was included in one experiment and was shown to be as effective as the Rotstop isolate. In untreated spruce stumps Heterobasidion spp. and P. gigantea were present in the same stump three times more frequently than in untreated pine stumps. Heterobasidion spp. infection in untreated spruce stumps was low when P. gigantea covered more than 10% of stump dissection.  相似文献   

11.
Narrowing the uncertainties in carbon (C) and nitrogen (N) dynamics during decomposition of coarse woody debris (CWD) can significantly improve our understanding of forest ecosystem functioning. We examined C, N and pH dynamics in the least studied CWD component—tree bark in a 66-year-long decomposition chronosequence. The relative C concentration decreased by ca. 32% in pine bark, increased by ca. 18% in birch bark and remained stable in spruce and aspen bark. Nitrogen increased in bark of all tree species. In conifer bark, it increased along with epixylic succession. Over 45 years, the relative C/N ratio in bark decreased by 63 and 45% for coniferous and deciduous species, respectively. Bark pH did not change. Due to bark fragmentation, the total C and N amounts in bark of individual logs of aspen, birch, pine and spruce decreased at average rates of 0.03, 0.02, 0.26 and 0.05 year?1, and 0.02, 0.02, 0.03 and 0.03 year?1, respectively. At the forest stand level, the total amounts of C and N in log bark were 853 and 21 kg ha?1 or 11.2 and 45.5% of the C and N amounts stored in downed logs and ca. 2.3–3.8 and 2.2–2.4%, respectively, of total C and N amounts stored in forest litter. In boreal forests, decomposing log bark may act as a long-term source of N for wood-inhabiting communities.  相似文献   

12.
Whole-tree harvesting (WTH), where logging residues are removed in addition to stems, is widely practised in Fennoscandian boreal forests. WTH increases the export of nutrients from forest ecosystems. The extent of nutrient removals may depend on tree species, harvesting method, and the intensity of harvesting. We developed generalized nutrient equations for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten), and birch (Betula pendula Roth and Betula pubescens Ehrh.) stands to be able to calculate the amounts of nitrogen, phosphorus, potassium, and calcium in stems and above-ground biomass (stem and crown) as a function of stand volume. The equations were based on Fennoscandian literature data from 34 pine, 26 spruce, and 5 birch stands, and they explained, depending on the tree species and nutrient, 61–99% and 56–87% of the variation in the nutrient amounts of stems and above-ground biomass, respectively. The calculations based on the equations showed that nutrient removals caused by stem-only harvesting (SOH) and WTH per harvested stem m3 were smaller in pine than in spruce and birch stands. If the same volume of stem is harvested, nutrient removals are, in general, nearly equal at thinnings and final cuttings in SOH, but larger in thinnings than final cuttings in WTH. If the principal aim is to minimize the nutrient removals per harvested stem m3, the harvesting should be done at mature pine stands. The effect of biomass removal on overall site nutrient status depends on site-specific factors such as atmospheric deposition, weathering of minerals, and the size of the nutrient pools in the soil.  相似文献   

13.
Fungal isolations and genetic fingerprinting were used to determine whether Phlebiopsis gigantea stump treatment against Heterobasidion annosum sl. using a single genotype (Rotstop) would affect the genetic diversity of P. gigantea populations. The survival time of P. gigantea was longer in Norway spruce (Picea abies) stumps compared to Scots pine (Pinus sylvestris) as no isolates were obtained from pine stumps 6 years after treatment, whereas in about half of the spruce stumps the fungus was still present. The usage of Rotstop did not seem to increase the occurrence of the fungus 5 years after the treatment in fresh (1‐year‐old) untreated stumps within the same forest stands. All the isolates from the 6‐year‐old treated spruce stumps were identical in genotype with the Rotstop‐strain, whereas all isolates from the fresh untreated spruce and pine stumps differed from it. Within the treated pine stand, the biocontrol usage seemed to have caused a slight reduction in genetic markers not related to Rotstop, but there were no statistically significant differences between the marker frequencies and the local natural population. Thus, Rotstop is not likely to cause any immediate threat to the genetic diversity of P. gigantea.  相似文献   

14.
Abstract

The choice of species in forestry is important, and a real issue as large areas of wind-damaged forest land in southern Sweden need to be regenerated. To compare the growth potential between the most common tree species in Sweden, ratios between site quality derived from site index values determined with site properties were used. A regression function to determine site index for birch from site properties was used to complement the known relationships between site properties and site index for spruce and pine. In large regions of Sweden the distribution of site quality classes was calculated to compare the special characteristics and demands of the three species. On average, the growth difference for pine compared to spruce was about 60% in southern Sweden and 95% in northern Sweden. Corresponding figures between birch and spruce were 40% and 60%. Birch was expected to produce around 60% of pine in northern Sweden and about 70% in southern Sweden. However, it must be stressed that the comparison is based on survey data encompassing mainly naturally regenerated birch, whereas spruce and pine are mainly planted.  相似文献   

15.
The dynamics of three major mineral nutrients (K, Ca, Mg) and six heavy metals (Fe, Mn, Zn, Cu, Pb and Cd) were studied in decomposing natural, unpolluted litter in two forest types: Scots pine needle litter in a pure Scots pine forest and oak‐hornbeam leaf litter in a mixed oak‐hornbeam stand. Of the mineral nutrients, only K in the oak‐hornbeam system showed a significant decrease in concentration during the course of litter decomposition. For Ca and Mg in both systems and for K in the Scots pine system no clear relation between concentration and accumulated litter‐mass loss was observed. On the other hand, for Fe, Zn, Pb and Cd at both sites, as well as for Mn in the oak‐hornbeam stand and Cu in the Scots pine stand highly significant positive relations were found between heavy metal concentrations and accumulated mass loss. A decrease in concentration was noted only in the case of Mn in the Scots pine system. No clear pattern was found for Cu in the oak‐hornbeam stand. Concentrations of heavy metals in the decomposing litter reached levels at or above those reported to retard decomposition in other studies. At the oak‐hornbeam stand increased also the absolute amounts of Fe, Zn, Pb and Cd.  相似文献   

16.
樟子松人工林下针阔叶凋落物分解动态   总被引:32,自引:3,他引:32  
沈海龙  沈国舫 《林业科学》1996,32(5):393-402
实验在位于张广才岭西坡的东北林业大学帽儿山实验林场老山人工林实验站进行。结果如下,樟子松枯叶在凋落后第1年和第3年的失重率分别34.67%和63.75%,樟子松枯落球果、树皮和树枝在凋落后第1年的失重率仅为枯叶的36.69%、33.66%和30.12%;红松、柞树、榆树和水曲柳枯叶在凋落后第1年和第3年的干物质失重率分别为樟子松枯叶的58.70%和84.71%、81.6%和80.55%、134.94%和156.55%及124.26%和147.71%。凋落后第1年的干物质失重量达总凋落量的26.61%,其中占总凋落量的11.85%阔叶树枯叶的失重量达总失重量的20.51%;占总凋落量43.64%的樟子松枯叶的失重易达总失重量的58.29%;而占总凋落量24.28%、13.10%和6.89%的樟子松柏树皮、枯树皮和枯球果分别仅提供10.92%、5.28%和3.37%的失重量、不同枯落物的营养元素净释放率和释放量的实验分析结果表明,凋叶树枯叶在林地地力维持中起重大作用。  相似文献   

17.
Concentrations of foliar N, P, S, K, Ca, and Mg were studied in relation to stand age, tree growth, site index, and soil nutrient amounts for natural white spruce stands on a wide range of site conditions in the sub-boreal spruce zone of British Columbia, Canada. While Ca was sufficient in every sampled stand, relatively widespread deficiency in N was diagnosed. Deficiencies of other nutrients were diagnosed only on wet to very wet sites. Foliar N, P and K were negatively correlated with stand age and positively correlated with height and diameter growth. White spruce site index was positively correlated with foliar nutrients, and their relationships were quantified using a quadratic function. Foliar nutrients, except Ca, are positively correlated with soil nutrients measured in routine chemical analysis, and their relationships were quantified using Mitscherlich's function. It is recommended that the existing standards need to be modified should they be applied to nutrient diagnosis in natural white spruce stands. These standards appear too high for N and too low for P, K, and Ca.  相似文献   

18.
Biomass and nutrient transfer (N, P, K, Ca, Mg) of bilberry (Vaccinium myrtillus L.) leaf litter fall, as well as decomposition and nutrient release, were studied in four mature forest stands situated in Central and South Sweden. Bilberry leaf litter fall amounted to between 33 and 55 kg ha‐1 yr‐1 in the four stands. Only minor differences between sites were noted for litter concentrations of N, P and Ca, whereas K and Mg showed somewhat larger variability. Relative amounts of the five nutrient elements in the litter fall were generally in the order N > Ca > K > Mg > P. The amounts of nutrients returned to the forest floor by the annual leaf litter fall in the stands ranged from 0.4 to 0.8 kg ha‐1 for N, 0.4 to 0.6 kg ha‐1 for Ca, 0.2 to 0.7 kg ha‐1 for K, 0.1 to 0.2 kg ha‐1 for Mg and 0.04 to 0.08 kg ha‐1 for P.

The decomposition of the local bilberry leaf litter was followed by means of litterbags during three years. At all sites there was an extremely rapid mass loss from the litter (between 45% and 54%) during the first four to five months of decomposition. After this initial phase, the decomposition rates decreased markedly and after three years the accumulated mass losses of the litters varied between 64% and 78% at the studied sites. After two and three years of decomposition, three of the sites exhibited almost similar litter mass losses whereas at the fourth site the litter was decomposed to a significantly lower degree. The pattern of nutrient release from the decomposing bilberry leaf litter differed somewhat from site to site. Minor differences were, however, noted for P, Ca and Mg while N and K were more strongly retained in the litter at one of the sites.  相似文献   

19.
From 2001 to 2003, the litter decomposition dynamics of dominant tree species were conducted using a litterbag burying method in the broadleaf-Korean pine forest, spruce-fir forest and Ermans birch forest, which represents three altitudinal belts in Changbai Mountain, northeast China. The spatial and temporal dynamics of litter decomposition and the effects of litter properties were examined. Furthermore, the decomposition trend of different species was simulated by the Olson model, and results showed that annual mass loss rates increased over time, but was not significantly correlated. Leaf decomposition rates increased after decomposing for 638 days (1.75 years), and the order of dry weight remaining rates of leaf litter for different species is: Asian white birch (Betula platyphylla) (24.56%) < Amur linden (Tilia amurensis) (24.81%) < Korean pine (Pinus koraiensis) (38.48%) < spruce (Picea jezoensis var. microsperma) (41.15%) < Ermans birch (Betula ermanii) (41.53%) < fir (Abies nephrolepis) (42.62%). The dry weight remaining rates of twig litter was smaller than that of leaf litter, and followed the order of Amur linden (44.98%) < fir (64.62%) < Korean pine (72.07%) < spruce (73.51%) < Asian white birch (77.37%) < Ermans birch (80.35%). The simulation results by the Olson model showed that, in leaf, the 95%-decomposition rates ranged from 4.5 to 8.0 years, and annual decomposition rate (k) followed the order of Amur linden (0.686) > Asian white birch (0.624) > Korean pine (0.441) > spruce (0.406) > fir (0.397) > Ermans birch (0.385); in twig, it ranged from 7.8 to 29.3 years, and k follows the order: Amur linden (0.391) > fir (0.204) > Korean pine (0.176) > spruce (0.157) > Asian white birch (0.148) > Ermans birch (0.102). In general, the differences of decomposition rate are evident between leaf and twig litter and among species, and were higher in broad-leaved species compared with coniferous species at the same elevation, and decreased with the ascending of elevation. __________ Translated from Acta Ecologica Sinica, 2006, 26(4): 1,037–1,046 [译自: 生态学报]  相似文献   

20.
Hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) is an economically damaging defoliator that undergoes periodic outbreaks in Newfoundland, Canada. It defoliates and causes extensive tree mortality to its primary host, balsam fir (Abies balsamea [L.] Mill.). We quantified tree survival using data from permanent sample plots (PSPs) and growth reduction or release using dendrochronology, and related these impacts to defoliation severity determined from annual aerial defoliation survey data. Such impact relationships are necessary as a fundamental input to a Decision Support System. Growth and survival of balsam fir, black spruce (Picea mariana (Mill.) B.S.P.) and white birch (Betula papyrifera Marsh.) were assessed from 1996 to 2008 in 48 Newfoundland Forest Service PSPs, selected based on four classes of defoliation severity. Two years of severe (71-100%) defoliation resulted in almost complete mortality for balsam fir, 10 years after defoliation, whereas survival was 70-80% for black spruce and white birch. Lower defoliation severity (1-2 years of moderate (31-70%) or 1 year of severe) resulted in approximately 60% survival for balsam fir and no reduction in survival for black spruce and white birch. Maximum growth reduction of balsam fir was 10-15% with 1 year of moderate-severe defoliation, 35-40% with 2 years of moderate defoliation, and about 50% with 2 years of severe defoliation. Growth recovered to pre-defoliation rates 5 years after defoliation ceased in all severity classes. Growth reduction and recovery of black spruce were more variable and lower than for balsam fir, and white birch exhibited only minor (<10%) growth reduction during the defoliation year or 1 year after defoliation. Control measures should focus on avoiding severe defoliation for two consecutive years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号