首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Stump sprouts are an important form of regeneration for a number of species in the southern Appalachians, especially the oaks (Quercus spp.). Alternative regeneration systems to clearcutting such as shelterwood and leave-tree systems are being implemented in many hardwood stands in the Appalachians. However, the effects of these alternative silvicultural systems on stump sprouts are not known. Therefore, we evaluated the impact of three silvicultural systems: a clearcut, leave-tree, and shelterwood on stump sprouting. These treatments were implemented in seven stands in Virginia and West Virginia in the Appalachian Plateau (AP) and Ridge and Valley (RV) physiographic provinces. The stands were even-aged oak dominated Appalachian hardwood stands with ages ranging from 62 to 100 years.  相似文献   

2.
Shelterwood silviculture is commonly used to regenerate oaks in upland stands. However, competition from other species such as tulip-poplar (Liriodendron tulipifera) may deter oak regeneration when these traditional shelterwood techniques are used. The shelterwood-burn technique is a relatively new tool for regenerating oak-dominated stands on some upland sites while simultaneously minimizing undesirable hardwood intrusion with prescribed fire. Once successful oak regeneration has been achieved, three options are available which will result in different vegetative structure and composition within a stand and subsequently different habitats for songbirds. These options are: complete or partial canopy retention, post-harvest prescribed burning and complete canopy removal. Canopy retention, burning and removal treatments will create, respectively, two-age stands that are likely to harbor a diverse mixture of mature forest and early successional species; park-like woodlands with open woodland species; or early-successional habitats with shrubland species. We suggest that shelterwood-burn systems and the management options associated with them offer viable alternatives for managing both songbird and timber resources where oak-dominated stands are the desired goal in upland southeastern sites.  相似文献   

3.
Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2–4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while woody shrubs gained understory dominance. In 2001, a research study was installed in southern Alabama to develop management options that could be used to reduce fuel loads and restore the ecosystem. As part of a nationwide fire and fire surrogates study, treatments included a control (no fire or other disturbance), prescribed burning only, thinning of selected trees, thinning plus prescribed burning, and herbicide plus prescribed burning. After two cycles of prescribed burning, applied biennially during the growing season, there were positive changes in ecosystem composition. Although thinning treatments produced revenue, while reducing midstory hardwoods and encouraging growth of a grassy understory, burning was needed to discourage regrowth of the hardwood midstory and woody understory. Herbicide application followed by burning gave the quickest changes in understory composition, but repeated applications of fire eventually produced the same results at the end of this 8-year study. Burning was found to be a critical component of any restoration treatment for longleaf communities of this region with positive changes in overstory, midstory and understory layers after just three or four burns applied every 2 or 3 years.  相似文献   

4.
Oak regeneration failure in the hardwood forests of eastern North America has been well documented. Silvicultural treatments of prescribed burning and canopy thinning (fire surrogate) are being studied as possible management tools to promote oak regeneration in oak dominated forests. We examined oak seed production and predation by acorn weevils (Coleoptera: Curculionidae) from two experimental forests in southeastern Ohio, under four different silvicultural treatments. Treatments consisted of replicate stands that received a prescribed burning, thinning, and thinning followed by a prescribed burn, in addition to an untreated control. Initial thinning and prescribed burning treatments were conducted in winter/spring of 2000–2001, with a second prescribed burn in spring 2005. Within each treatment unit, nine black oak and nine chestnut oak trees were selected for study and two 0.25 m2 seed fall traps were placed beneath each tree. Seed collections were completed for five seasons from 2001 to 2005. Data were analyzed using a randomized complete block design, utilizing a mixed-model repeated measures analysis. Overall, stand level treatments resulted in only a slight increase in acorn production (in the burn and thin + burn stands) relative to the control; however, this response was species specific. Masting, the intermittent production of large seed crops, was evident in our study though occurrence of a mast event was not influenced by the treatments. Chestnut oak displayed greater yearly, as well as individual variation in seed production than did black oak. Treatments had no effect on predation by acorn weevils. Predation percentages were lowest during mast years for chestnut oak; however, percentages were mostly stable for black oak across all 5 years. Our data suggest that variation due to climate and genotype are more influential in affecting seed production and masting cycles than are stand level disturbances. Thus, stand level management activities are not likely to have a large influence on oak seed production and oak regeneration must be more strongly influenced at other stages of its life history.  相似文献   

5.
Regeneration by seeds for cork oak (Quercus suber) and companion oaks (holm oak Quercus ilex and downy oak Quercus pubescens) is likely to be poor in the fire-prone Maures massif (southern France) but the causes are poorly known. Our objective was to assess the effective recruitment for these three oak species and their temporal pattern of recruitment, in order to determine the main limitation factors and the regeneration window of each species. We studied oak recruits (height <3 m) in naturally regenerated populations according to a gradient of fire recurrence and in five main vegetation types including shrublands and mixed mature woodlands. Fire recurrence was the main explanatory factor of oak recruitment, either directly or through vegetation type and microsite characteristics. The results indicate nil to low recruitment for holm oak and downy oak in shrublands, especially those recurrently burned and dominated by Cistus species. Cork oak recruited better than the other oaks in medium and high shrublands dominated by Erica arborea. In contrast, recruitment was high for holm and downy oak in mixed oak stands and mixed pine-oak stands that have not burned for decades. Microsite conditions such as coverage by litter and shrubs influenced oak recruitment, whereas landscape configuration and stand basal area had no influence. Our results suggest that strategic shrub-clearing, oak planting and protection of mixed oak woodlands as seed sources would help maintaining oak populations in the woodland–shrubland mosaic.  相似文献   

6.
In southeastern pine–oak ecosystems, ecological restoration targets oaks for removal by chemical, mechanical, burning, or combinations of treatments. Managers often pursue oak removal indiscriminately despite the poorly understood historical structure, cover, and ecological function within these ecosystems. Restoration treatments often cite the impediment that oak litter represents to prescribed fire spread and effectiveness. We evaluated the burning characteristics of eight southeastern Quercus spp. by burning collected litter under controlled conditions in a combustion chamber. Replicated burns consisted of 15 g of litter on a 35 cm × 35 cm grid of xylene-soaked cotton strings. Burning characteristics measured included maximum flame height (cm), flaming duration (s), smoldering duration (s), residual ash, and mass loss rate (g s−1). We compared all 8 oaks using ANCOVA, with litterbed depth as a covariate. The oaks differed for all burning characteristics measured (P < 0.001). Rank comparisons placed Quercus stellata and Quercus laevis as the species with greatest fire intensity, sustainability, and consumability, equivalent in many measures to longleaf pine and other fire resisters. Quercus virginiana and Quercus hemisphaerica burned with the least intensity, sustainability, and consumability, burning similarly to sand pine and other fire evaders. These results show that oaks common to southeastern United States ecosystems have litter properties, similar to pines, which vary in their ability to sustain fire. Understanding the pyric properties of oak species also suggests that managers prioritize removal of species that hinder prescribed fire effectiveness for restoration of southeastern USA pine–oak ecosystems.  相似文献   

7.
Recurrent problems with regeneration of oaks (Quercus spp.) have been documented across a wide range of ecosystems. In oak-dominated forests of the central and Appalachian hardwood regions of the United States, a lack of competitive oak regeneration has been tied, in part, to fire suppression in these landscapes, and managers throughout the region are using prescribed fire to address this concern. To examine fire effects on oak regeneration, researchers have generally relied on inventories or population studies of existing seedlings. These studies are valuable but do not permit examination of the role of fire in enhancing the establishment and growth of new oak seedlings stemming from oak mast events. In this study, white (Quercus alba) and chestnut oak (Quercus prinus) acorn mast crops serendipitously occurred in year three (fall 2005) of a landscape-scale prescribed fire experiment. We examined establishment, survival, height and diameter of new seedlings on sites on the Cumberland Plateau in eastern Kentucky. Treatments were fire exclusion, a single prescribed fire (1x-burn; 2003), and repeated prescribed fire (3x-burn; 2003, 2004, and after acorn drop in 2006), all conducted in late spring. Initial densities of newly established chestnut and white oak seedlings were statistically similar across treatments (P = 0.42), despite fires on the 3x-burn site having occurred after acorns were on the ground. Oak seedling density was significantly predicted by oak basal area on all sites (R2 = 0.12–0.46), except for chestnut oak on fire-excluded sites (R2 = 0.04). Litter depth was less on 3x-burn sites compared to 1x-burn and fire-excluded sites, whereas canopy openness was greater on both burn treatments compared to fire-excluded sites. Seedling mortality was generally higher on fire-excluded sites compared to burn sites, especially for white oak. Oak seedling mortality in the first two growing seasons was significantly predicted by initial litter depth and open sky, with greater litter depth and lower percent open sky leading to higher mortality. In the third growing season none of the measured variables predicted chestnut oak seedling survival; for white oak, percent open sky remained a significant predictor of mortality. Initially, seedlings on the fire-excluded sites had similar height but smaller diameter; after three growing seasons there were few differences in seedling height or diameter among treatments. Our findings suggest a potential role for prescribed fire in establishing forest floor and light conditions that may enhance the success of new oak germinants, although different responses among species may suggest the need to target management for individual oak species.  相似文献   

8.
Postfire tree species compositions are predicted to be the same prior to fire according to the direct regeneration hypothesis (DRH). We studied 94 upland boreal forest stands between 5 and 18 years after fire in Ontario, Canada. Postfire species-specific regeneration density was positively related to prefire stand basal area for Pinus banksiana, Populus spp., Betula papyrifera and Picea mariana, but not for Picea glauca and Abies balsamea. In addition, seedling density of Populus spp., B. papyrifera, P. mariana, P. glauca and A. balsamea were positively affected by build up index and, except Populus spp., their density increased with age of burn. To facilitate testing the DRH, we introduced a term called compositional difference (CD) that is the difference in a species relative percentage between the postfire and prefire stand. The testable null hypothesis is CD = 0 for a given species. CD was not different from 0 for P. banksiana, was 19.8% for Populus spp., 10.4% for B. papyrifera, −17.9% for P. mariana, −14.6% for P. glauca, and −14.9% for A. balsamea, indicating fire increases broadleaves at the expenses of mid- and late-successional coniferous species. Compositional increases of Populus spp. and B. papyrifera in postfire stands occurred mostly where these species were a minor component prior to fire. In conclusion, the DRH was supported by the specific positive relationships between postfire regeneration densities and prefire basal area for P. banksiana, Populus spp., B. papyrifera and P. mariana. However, if the DRH is used for predicting postfire composition, P. banksiana is the only species that had the same composition between postfire and prefire stands. Nevertheless, CD for P. banksiana was negatively related to its prefire composition. Similarly, CD for other species was negatively related to their prefire compositions with varying effects of build up index and age of burn. Our results suggest, if fire occurrences increase with global change, the boreal landscape will be more dominated by hardwoods and mixtures of conifers and hardwoods.  相似文献   

9.
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and unburned stands at each of four sites in Arizona and New Mexico for three growing seasons after burning (2004–2006). Prescribed burns increased bark beetle attacks on ponderosa pine over the first three post-fire years from 1.5 to 13% of all trees, increased successful, lethal attacks on ponderosa pine from 0.4 to 7.6%, increased mortality of ponderosa pine from all causes from 0.6 to 8.4%, and increased mortality of all tree species with diameter at breast height >13 cm from 0.6 to 9.6%. On a per year basis, prescribed burns increased ponderosa pine mortality from 0.2% per year in unburned stands to 2.8% per year in burned stands. Mortality of ponderosa pine 3 years after burning was best described by a logistic regression model with total crown damage (crown scorch + crown consumption) and bark beetle attack rating (no, partial, or mass attack by bark beetles) as independent variables. Attacks by Dendroctonus spp. did not differ significantly over bole heights, whereas attacks by Ips spp. were greater on the upper bole compared with the lower bole. Three previously published logistic regression models of tree mortality, developed from fires in 1995–1996 in northern Arizona, were moderately successful in predicting broad patterns of tree mortality in our data. The influence of bark beetle attack rating on tree mortality was stronger for our data than for data from the 1995–1996 fires. Our results highlight canopy damage from fire as a strong and consistent predictor of post-fire mortality of ponderosa pine, and bark beetle attacks and bole char rating as less consistent predictors because of temporal variability in their relationship to mortality. The small increase in tree mortality and bark beetle attacks caused by prescribed burning should be acceptable to many forest managers and the public given the resulting reduction in surface fuel and risk of severe wildfire.  相似文献   

10.
Low-intensity fires were important for maintaining the structure of Eastern deciduous forests (EDFs) for thousands of years before European settlement of North America, though fire suppression became a standard management practice in the 1930s. More recently, prescribed fires have been reintroduced to EDF habitats to aid in the restoration of native plant diversity, but invasions of non-native species such as Microstegium vimineum (Japanese stiltgrass) may increase prescribed fire intensity and suppress colonization of native species. As fire becomes a more common management tool in these habitats, it is vital to predict fire temperature effects on the native and non-native species present in the system. In this study, we found that prescribed fires in areas invaded by Microstegium can be 250-300 °C hotter than fires in nearby native-dominated areas. We then compared the effects of fire on germination rates of six native and three non-native EDF understory species representing the range of functional groups common in this habitat. We manipulated both fire intensity (temperature and length of exposure) and type of fire effect (direct flame and indirect furnace heat) to generate germination curves and make predictions about potential prescribed fire effects on populations of these species. There were very different responses among species to both direct (flame) and indirect (furnace) heating. Germination of three native species, Lycopus americana (American water horehound), Verbesina alternifolia (wingstem), and Vernonia gigantea (tall ironweed), showed signs of being stimulated by heating at low temperatures, while germination of all non-native species (M. vimineum, Elaeagnus umbellata, and Schedonorus phoenix) were inhibited at these lower intensities. High fire intensity (temperatures above 300 °C) effectively killed most species, though one native species, Senna hebacarpa (American senna) and one non-native species, E. umbellata (autumn olive), were capable of tolerating 500 °C temperatures. We conclude that high-intensity prescribed fires in habitats invaded by Microstegium may reduce seed germination of some non-native species, but may also inhibit the regeneration of native understory species.  相似文献   

11.
Forest tree species in the eastern US such as American chestnut (Castanea dentata (Marsh.) Borkh) and oaks (Quercus spp.) have been negatively impacted by forest changes over the past century. Many mature, introduced pine (Pinus spp.) plantations exist in the Midwest US following establishment 50–60 years ago yet have little economic and ecological value. As oak and chestnut have similar site preferences to pines, these stands may be ideal sites for hardwood restoration plantings. We sought to determine optimal management strategies for converting pine plantations by manipulating their canopies. We underplanted hybrid American chestnut and northern red oak (Quercus rubra L.) seedlings into three canopy treatments (control, shelterwood, clearcut) and included an open field treatment. For each of two growing seasons, 0, 30, or 60 g 19N–6P–12K of controlled-release fertilizer (CRF) were also applied to seedlings. Soil chemical parameters and leaf nutrients were analyzed throughout the study. Chestnut and oak seedlings had significantly greater height after two growing seasons in the clearcut and shelterwood than the control and open field, and chestnut had significantly greater diameter as well. Chestnut height and RCD growth were threefold that of oak after two growing seasons. In general, fertilization increased seedling growth more in the clearcut and open field than shelterwood and control for both species. Soils had significantly higher pH, K, and S in the open field than in pine stands. Results suggest that pine plantations may serve as target sites for restoration of these hardwood species. Shelterwoods and clearcuts are both favorable conversion options for oak and chestnut, and addition of CRF may augment further growth increase, especially in open environments.  相似文献   

12.
In Scots pine Pinus sylvestris forests, the important ecological effects of natural fires could be emulated using prescribed fire. Species that may benefit from fire effects include capercaillie Tetrao urogallus, a large forest grouse. A key component of forest habitats for capercaillie is the ericaceous shrub, bilberry Vaccinium myrtillus, which is eaten by capercaillie, and supports abundant arthropods, taken by young chicks. We carried out an experiment testing whether prescribed burning would be a valuable technique for capercaillie habitat management. The study took place at Abernethy Forest, the largest ancient native pinewood in Britain, and a key capercaillie site, holding c 8-20% of the British population. Prescribed fire in woodland is highly novel in Britain. We therefore also tested mowing, which might replicate some fire effects more cheaply and safely. Twenty-five experimental blocks were established within open pine stands with ground vegetation including bilberry, but dominated by heather Calluna vulgaris. Each block held three 700 m2 plots, randomly assigned to control, mow and burn. Vegetation, arthropods and capercaillie dung were monitored over a 7-year period, including 1 year prior to treatment. Mean bilberry cover, initially around 12%, increased in mown and burnt areas, but there were also increases in controls, following unusual natural die-back of heather. By the sixth season after treatment, bilberry cover was significantly higher in burnt and mown areas than controls, averaging 27% (95% confidence intervals 24-30), compared to 20% (19-21) in controls. Biomass of spiders, an important dietary group for capercaillie chicks, as measured by pitfall trapping, was significantly higher in burnt and mown plots than controls, by about 56% (38-76). However, biomass of caterpillars, often considered a more important dietary group, did not show clear differences between treatments. An alternative analysis was used to ‘statistically remove’ natural heather die-back; this enhanced the treatment differences in bilberry cover and spider biomass. Capercaillie dung counts suggested that burnt, and especially mown areas, had more summer capercaillie usage than controls. Capercaillie conservation at sites similar to Abernethy is likely to benefit from either prescribed fire or mowing, because these techniques increase bilberry and spider abundance. This study illustrates the value of collaboration between researchers and land-managers, in developing and testing novel management techniques. We support the idea that ‘dominance reduction’, delivered through managed disturbance, offers a general principle to guide land-managers wishing to maintain biodiversity, particularly where key species, like capercaillie, are strongly associated with sub-dominant plant species like bilberry.  相似文献   

13.
We determine the time frame after initial fuel treatment when prescribed fire will be likely to produce high enough mortality rates in ponderosa pine (Pinus ponderosa var. scopulorum Dougl. ex Laws.) regeneration to be successful in maintaining treatment effectiveness in the Black Hills of South Dakota. We measured pine regeneration in disturbed stands and young pine growth rates to estimate the susceptibility of pine regeneration to prescribed fire with time since initial treatment. We also determined surface fuel accumulation rates for stands after prescribed fire to help estimate likely fire behavior in maintenance prescribed fire. Given our estimates of regeneration density and tree size, and likely fire behavior, we then used small pine tree mortality—fire effect relations to estimate the effects of prescribed fire on developing understory pine at specific times since initial treatments.  相似文献   

14.
Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

15.
Following decades of fire suppression in eastern forests, prescribed fire as a tool to restore or enhance oak (Quercus spp.)-dominated communities is gaining widespread acceptance in the Appalachian Mountains and elsewhere. However, the interactions of fire with biotic components such as wildlife that might be impacted by prescribed fire are poorly documented. For tree-roosting bats, fire can enhance roosting habitat by creating snags and increasing solar radiation at existing roosts. In 2007 and 2008, we examined roost selection of forest-interior dwelling northern myotis (Myotis septentrionalis) maternity colonies in stands treated with prescribed fire (hereafter, fire) and in unburned (hereafter, control) stands on the Fernow Experimental Forest, West Virginia. Using radio telemetry, we tracked 36 female northern myotis to 69 roost trees; 25 in the fire treatment and 44 in the control treatment. Using logistic regression and an information-theoretic model selection approach, we determined that within the fire treatment, northern myotis maternity colonies were more likely to use cavity trees that were smaller in diameter, higher in crown class, and located in stands with lower basal area, gentler slopes, and higher percentage of fire-killed stems than random trees. Moreover, roosts often were surrounded by trees that were in the upper crown classes. In the control treatment, northern myotis were more likely to roost nearer the tops of larger diameter cavity trees in early stages of decay that were surrounded by decaying trees in the upper crown classes than random trees. Roost trees in the fire treatment were associated with larger overall canopy gaps than roost trees within the control treatment. Regardless of treatment, northern myotis maternity colonies roosted in black locust (Robinia pseudoacacia) in greater proportion than its availability. Ambient temperatures recorded at a subset of roost trees in fire and control treatments indicated that daily minimum temperatures were similar, but daily mean and maximum temperatures were higher in the fire treatments, possibly due to larger canopy gaps created by the senescence and decay of the surrounding fire-killed overstory trees. Northern myotis roost-switching frequency, distance between successive roosts, and duration of individual roost tree use were similar between the fire and control treatments, suggesting similar roost tree availability despite a significantly higher proportion of potential roost trees in the fire treatment. Northern myotis readily exploited alterations to forest structure created by the reintroduction of fire, which accelerated snag creation and enlarged existing or created new canopy gaps, but it remains to be determined if these conditions translate into increased recruitment and survivorship.  相似文献   

16.
Exotic pests and pathogens can cause extensive mortality of native species resulting in cascading effects within an ecosystem. As ecosystems lose species to exotic enemies, ecosystem function may be disrupted if the ecological roles are not filled by the remaining species. To illustrate this concept, this paper examines the impacts of an exotic fungus (Discula dectructiva) on flowering dogwood (Cornus florida), historically a common understory tree species in eastern U.S. hardwood forests. Recent studies indicate that dogwood plays an important role in the health and ecological integrity of forest ecosystems throughout the eastern U.S. by increasing the availability of calcium in the biota-rich surface horizons of forest soils. However, Discula destructiva causes a disease, dogwood anthracnose, which can rapidly kill dogwood trees. This paper also illustrates how past fire has increased dogwood density and improved tree health in areas infected with anthracnose, suggesting that prescribed fire may offer a tool for land managers to maintain dogwood as a component in eastern U.S. hardwood forests by shifting the “ideal” disturbance regime of this previously fire-intolerant species.  相似文献   

17.
Many forests that historically experienced frequent low-intensity wildfires have undergone extensive alterations during the past century. Prescribed fire is now commonly used to restore these fire-adapted forest ecosystems. In this study, we examined the influence of prescribed burn season on levels of tree mortality attributed to prescribed fire effects (direct mortality) and bark beetles (Coleoptera: Curculionidae, Scolytinae) (indirect mortality) in ponderosa pine, Pinusponderosa Dougl. ex Laws., and Jeffrey pine, Pinusjeffreyi Grev. and Balf., forests in California, USA. A total of 816 trees (9.9% of all trees) died during this 3-yr study. Significantly higher levels of tree mortality (all sources) occurred following early and late season burns compared to the untreated control, but no significant difference was observed between burn treatments. The majority (461 trees) of tree deaths were attributed to direct mortality from prescribed burns and was strongly concentrated (391 trees) in the smallest diameter class (<20.2 cm diameter at breast height, dbh). For the largest trees (>50.7 cm dbh), significantly higher levels of tree mortality occurred on early season burns than the untreated control, most of which resulted from indirect mortality attributed to bark beetle attacks, specifically western pine beetle, Dendroctonus brevicomis LeConte, and mountain pine beetle, D. ponderosae Hopkins. Red turpentine beetle, D. valens LeConte, was the most common bark beetle species found colonizing trees, but tree mortality was not attributed to this species. A total of 355 trees (4.3% of all trees) were killed by bark beetles. Dendroctonus brevicomis (67 trees, 18.9%) and D. ponderosae (56 trees, 15.8%), were found colonizing P. ponderosa; and Jeffrey pine beetle, D. jeffreyi Hopkins, was found colonizing P. jeffreyi (seven trees, 2.0%). We also found pine engraver, Ips pini (Say) (137 trees, 38.6%), and, to a much lesser extent, Orthotomicus (=Ips) latidens (LeConte) (85 trees, 23.9%) and emarginate ips, I. emarginatus (LeConte) (3 trees, 0.8%) colonizing P. ponderosa and P. jeffreyi. Few meaningful differences in levels of indirect tree mortality attributed to bark beetle attack were observed between early and late season burns. The incidence of root and root collar pathogens (Leptographium and Sporothrix spp.), including species known to be vectored by bark beetles, was low (18% of trees sampled). The implications of these and other results to management of P. ponderosa and P. jeffreyi forests are discussed in detail.  相似文献   

18.
This study investigated the effects of clear-cutting and several other commonly used silvicultural systems on regeneration at seven sites in the Appalachian Mountains of Virginia and West Virginia. These even-aged oak dominated stands ranged in age from 63 to 100 yr and were located on medium quality oak sites (site indices from 18 to 23 m, base age 50). The treatments evaluated included a clear-cut, commercial harvest, shelterwood, leave-tree, group selection, preharvest herbicide, and control.

Mixed model ANOVA was used to analyze treatment response in five species groups: (a) oak (Quercus spp.); (b) maple (Acer spp.); (c) black cherry (Prunus serotina Ehrh.), and yellow-poplar (Liriodendron tulipifera L.); (d) miscellaneous overstory hardwoods; and (e) midstory species that typically do not occupy main canopy positions in mature stands. Response variables included stem density, importance value, average height for all regeneration, and the tallest 365 stems ha?1. Comparisons were made among treatments, species groups, and between regeneration of sprout and seedling origin.

Alternative systems with residual trees reduced the regenerations overall mean height growth compared to the clear-cut by 0.34 to 0.74 m. Current conditions indicate oak will be a lesser component of the future stand, represented mostly through stump sprouting, and maple will likely increase in proportion among all treatments.  相似文献   

19.
Altered fire regimes and increased drought can lead to major vegetation changes, especially in ecotones. A decrease in fire can lead to woody species encroachment in prairies and increasing forest stand density. The threat of global climate change raises questions about potential increases in the length, severity, and incidence of droughts substantially altering species composition. Re-measured upland forests in south-central North America's midcontinent forest-prairie ecotone exhibited major changes in woody species composition and structure over fifty years and successional trajectories appeared to favor invasive Juniperus virginiana L. over the previous dominant Quercus species. The objective of this study was to determine whether climate and fire exclusion affected the recruitment history of dominant woody species in these upland forests located near the xeric western edge of the eastern deciduous forest biome of North America. We removed cores and cross-sections from 992 J. virginiana, Quercus marilandica Münchh. and Q. stellata Wangenh. trees from eleven forest stands located across central and northwest Oklahoma, and determined their ages using standard dendrochronological methods. Recruitment of all species increased following a severe mid-20th century drought, but a rapid increase in J. virginiana recruitment and decrease in Quercus recruitment appeared to be linked to a decrease in fire. Future fire regime changes and increased drought due to global climate change could lead to widespread shifts from Quercus- to Juniperus- dominated forests and cause substantial changes to ecosystem services.  相似文献   

20.
Water stress and fire disturbance can directly impact stand structure, biomass and composition by causing mortality and influencing competitive interactions among trees. However, open eucalypt forests of southwest Australia are highly resilient to fire and drought and may respond differently to increased fire frequency and aridity than forests dominated by non-eucalypt species. We measured the variation in stem density, basal area, stand biomass, sapwood area, leaf area and litterfall across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands along an aridity gradient in southwest Australia that had variable fire histories. Fire frequency was defined as the total number of fires over a ∼30-year period and aridity as the ratio of potential evapotranspiration to annual precipitation. Total stand biomass and sapwood area were predicted from diameter at breast height of individual jarrah and marri trees using allometric equations. Leaf area was estimated using digital cover photography. More arid and frequently burnt stands had higher stem density, especially of smaller trees, which were mainly jarrah. Overall, both standing biomass and leaf area decreased at more arid sites, while sapwood area was largely unaffected by aridity, suggesting that these stands respond to increased water limitation by decreasing their leaf area relative to their sapwood area. Biomass of marri was reduced at more arid and, to a lesser extent, at more frequently burnt stands. However, total stand biomass (jarrah and marri) and leaf area index did not vary with fire frequency, suggesting that less marri biomass (due to slower growth rates, higher mortality or less recruitment) was compensated by an increase in the density of jarrah trees (regeneration). We conclude that increased fire and drought shift tree species composition towards more fire-resistant species and result in denser stands of smaller trees. In contrast, total stand biomass declines with increasing aridity, but has no association with fire frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号