首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As in many other developing countries, the state government of Acre, Brazil, is developing a program for compensating forest holders (such as communities of rubber tappers and indigenous peoples as well as small, medium and large private land holders) reducing their emission of atmospheric heat-trapping gases by not deforesting. We describe and then apply to Acre a method for estimating carbon stocks by land cover type. We then compare the results of our simple method, which is based on vegetation mapping and ground-based samples, with other more technically demanding methods based on remote sensing. We estimated total biomass carbon stocks by multiplying the measured above-ground biomass of trees >10 cm DBH in each of 18 forest types and published estimates for non-forest areas, as determined by measurement of 44 plots throughout the state (ranging from 1 to 10 ha each), by land-cover area estimated using a geographical information system. State-wide, we estimated average above-ground biomass in forested areas to be 246 ± 90 Mg ha−1; dense forest showed highest (322 ± 20 Mg ha−1) and oligotrophic dwarf forest (campinarana) the lowest biomass (20 ± 30 Mg ha−1). The two most widespread forest types in Acre, open canopy forests dominated by either palms and bamboo (for which ground-based data are scant), support an estimated 246 ± 44 and 224 ± 50 Mg ha−1 of above-ground biomass, respectively. We calculate the total above-ground biomass of the 163,000 km2 State of Acre to be 3.6 ± 0.8 Pg (non-forest biomass included). This estimate is very similar to two others generated using much more technologically demanding methods, but all three methods, regardless of sophistication, suffer from lack of field data.  相似文献   

2.
Data on the biomass and productivity of southeast Asian tropical forests are rare, making it difficult to evaluate the role of these forest ecosystems in the global carbon cycle and the effects of increasing deforestation rates in this region. In particular, more precise information on size and dynamics of the root system is needed. In six natural forest stands at pre-montane elevation (c. 1000 m a.s.l.) on Sulawesi (Indonesia), we determined above-ground biomass and the distribution of fine (d < 2 mm) and coarse roots (d > 2 mm), estimated above- and below-ground net production, and compared the results to literature data from other pre-montane paleo- and neotropical forests. The mean total biomass of the stands was 303 Mg ha−1 (or 128 Mg C ha−1), with the largest biomass fraction being recorded for the above-ground components (286 Mg ha−1) and 11.2 and 5.6 Mg ha−1 of coarse and fine root biomass (down to 300 cm in the soil profile), resulting in a remarkably high shoot:root ratio of c. 17. Fine root density in the soil profile showed an exponential decrease with soil depth that was closely related to the concentrations of base cations, soil pH and in particular of total P and N. The above-ground biomass of these stands was found to be much higher than that of pre-montane forests in the Neotropics, on average, but lower compared to other pre-montane forests in the Paleotropics, in particular when compared with dipterocarp forests in Malesia. The total above- and below-ground net primary production was estimated at 15.2 Mg ha−1 yr−1 (or 6.7 Mg C ha−1 yr−1) with 14% of this stand total being invested below-ground and 86% representing above-ground net primary production. Leaf production was found to exceed net primary production of stem wood. The estimated above-ground production was high in relation to the mean calculated for pre-montane forests on a global scale, but it was markedly lower compared to data on dipterocarp forests in South-east Asia. We conclude that the studied forest plots on Sulawesi follow the general trend of higher biomasses and productivity found for paleotropical pre-montane forest compared to neotropical ones. However, biomass stocks and productivity appear to be lower in these Fagaceae-rich forests on Sulawesi than in dipterocarp forests of Malesia.  相似文献   

3.
Based on data acquired from the spatial information system Silva-SI, the majority of the entire forest area in Slovenia (22,220 forest compartments with a total area of 7446 km2, classified into eight forest categories) was analysed for changes in the distribution of European beech (Fagus sylvatica L.) in the period 1975–2005 using a binary logistic regression model in terms of selected site, stand and management variables. Additionally, changes in the abundance of beech in forest stands in which beech was present at the beginning and the end of the analysed period were analysed. Beech expanded its area by more than 1200 ha per year on average, i.e. the annual expansion rate amounted to 0.24%. Among the 18 studied variables, three site, four stand and no management variables were included in the binary logistic regression model of beech expansion. Beech expansion was more pronounced at lower altitudes, on sites with steep topography, and on sites with a higher proportion of beech in potential natural vegetation. The probability of beech expansion reduced by a factor of 0.54 when the distance to the nearest compartment with beech increased by 1 km. Among other stand variables, the proportion of early successional phases and the proportion of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.) also influenced the expansion of beech. During the observed period the growing stock of beech almost doubled, its proportion in total growing stock increasing from 27% to 32%. Significant differences were found in changes of beech proportion in the total growing stock among different forest categories; a decrease in the beech proportion was registered in alpine coniferous forests and thermophilous deciduous forests, while in other forest categories the proportion of beech increased. The recent development of forest stands and their current structure indicate a further expansion of beech and an increase in the proportion of beech in forest stands.  相似文献   

4.
Land use/land cover change is an important driver of global change and changes in carbon stocks. Estimating the changes in carbon stocks due to tropical deforestation has been difficult, mainly because of uncertainties in estimating deforestation rates and the biomass in the forest that have been cut. In this study, we combined detailed land-use change over a 27-year period based on satellite images and forest inventory data to estimate changes in biomass carbon stocks in the Xishuangbanna prefecture (1.9 million ha) of China. Xishuangbanna is located in southwestern China in the upper watershed of the Mekong River, and the major forest types are tropical seasonal rain forest, mountain rain forest, and subtropical evergreen broadleaf forest. In the past when the region was completely forested the total biomass carbon would have been approximately 212.65 ± 8.75 Tg C. By 1976 forest cover had been reduced to 70%, and in addition many forests had been degraded resulting in a large decrease in the total biomass carbon stocks (86.97 ± 3.70 Tg C). From 1976 to 2003, the mean deforestation rate was 13 722 ha year−1 (1.12%), and this resulted in the loss of 370,494 ha of forest, and by 2003 total biomass carbon stocks had been reduced to 80.85 ± 2.64 Tg C. The annual carbon emissions due to land-use change, mainly forest conversion to agriculture and rubber plantations, were 0.37 ± 0.03 Tg C year−1 between 1976 and 1988 and 0.13 ± 0.04 Tg C year−1 between 1988 and 2003. During the next 20 years, if rubber plantations expand into forests outside of reserves, shrublands, grasslands, and shifting cultivation below 1500 m the total biomass carbon stocks of Xishuangbanna will decrease to 76.45 ± 1.49 Tg C in 2023. This would reflect a loss of 4.13 ± 1.14 Tg C between 2003 and 2023, or an annual loss of 0.21 ± 0.06 Tg C year−1. Alternatively, if rubber plantations only expand into areas of shifting cultivation below 1500 m, and all areas presently in shrublands and grasslands are allowed to recover into secondary forests, total biomass carbon stock of the region would increase to 92.65 ± 3.80 Tg C in 2023. Under this scenario, the growth of existing forests and the expansion of new forests would result in a net sequestration of 0.60 ± 0.06 Tg C year−1. This study demonstrates that the uncertainty of biomass estimates can be greatly reduced if detailed land-use analyses are combined with forest inventory data, and that slight changes in future land-use practices can have large implications for carbon fluxes.  相似文献   

5.
Conversion of tropical forests to oil palm plantations in Malaysia and Indonesia has resulted in large-scale environmental degradation, loss of biodiversity and significant carbon emissions. For both countries to participate in the United Nation’s REDD (Reduced Emission from Deforestation and Degradation) mechanism, assessment of forest carbon stocks, including the estimated loss in carbon from conversion to plantation, is needed. In this study, we use a combination of field and remote sensing data to quantify both the magnitude and the geographical distribution of carbon stock in forests and timber plantations, in Sabah, Malaysia, which has been the site of significant expansion of oil palm cultivation over the last two decades. Forest structure data from 129 ha of research and inventory plots were used at different spatial scales to discriminate forest biomass across degradation levels. Field data was integrated with ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar) imagery to both discriminate oil palm plantation from forest stands, with an accuracy of 97.0% (κ = 0.64) and predict AGB using regression analysis of HV-polarized PALSAR data (R2 = 0.63, p < .001). Direct estimation of AGB from simple regression models was sensitive to both environmental conditions and forest structure. Precipitation effect on the backscatter data changed the HV prediction of AGB significantly (R2 = 0.21, p < .001), and scattering from large leaves of mature palm trees significantly impeded the use of a single HV-based model for predicting AGB in palm oil plantations. Multi-temporal SAR data and algorithms based on forest types are suggested to improve the ability of a sensor similar to ALOS PALSAR for accurately mapping and monitoring forest biomass, now that the ALOS PALSAR sensor is no longer operational.  相似文献   

6.
Forests are important for providing wood for products and energy and the demand for wood is expected to increase. Our aim was to estimate the potential supply of woody biomass for all uses from the forests in the European Union (EU), while considering multiple environmental, technical and social constraints.The potential woody biomass supply was estimated for the period 2010-2030 for stemwood, residues (branches and harvest losses), stumps and other biomass (woody biomass from early thinnings in young forests). We estimated the theoretical biomass potential from recent, detailed forest inventory data using the EFISCEN model. Constraints reducing the availability of woody biomass were defined and quantified for three mobilisation scenarios (high, medium, low). Finally, the theoretical potentials from EFISCEN were combined with the constraints to assess the realisable potential from EU forests.The realisable potential from stemwood, residues, stumps and other biomass was estimated at 744 million m3 yr−1 overbark in 2010 and could range from 623 to 895 million m3 yr−1 overbark in 2030, depending on the mobilisation scenario. These potentials represented 50-71% of the theoretical potential. Constraints thus significantly reduced the biomass potentials that could be mobilised. Soil productivity appeared to be an important environmental factor when considering the increased use of biomass from forests. Also the attitude of private forest owners towards increased use of forest biomass can have an important effect, although quantifying this is still rather difficult.The analysis showed that it is possible to increase the availability of forest biomass significantly beyond the current level of resource utilisation. Implementing these ambitious scenarios would imply quite drastic changes in forest resource management across Europe.  相似文献   

7.
Biomass and carbon sequestration rate of a young (four year old) mixed plantation of Dalbergia sissoo Roxb., Acacia catechu Willd., and Albizia lebbeck Benth. growing in Terai region (a level area of superabundant water) of central Himalaya was estimated. The plantation is seed sown in the rainy season of year 2004 and spread over an area of 44 ha. Allometric equations for both above and below ground components were developed for three tree species. The density of trees in the plantation was 1322 trees ha−1 The diameters of trees were below 10 cm. Five diameter classes were defined for D. sissoo and A. catechu and 3 for A. lebbeck. 5 trees were harvested in each diameter class. Individual tree allometry was exercised for developing the allometric equations relating tree component (low and above ground) biomass to d.b.h. Post analysis equations were highly significant (P > 0.001) for each component of all species. In the plantation Holoptelia integrifolia Roxb. (Family Ulmaceae) has been reduced to shrub form because of frost. Only the aboveground biomass of H. integrifolia and other shrubs were estimated by destructive harvesting method. Herbaceous forest floor biomass and leaf litter fall were also estimated. The total forest vegetation biomass was 10.86 Mg ha−1 in 2008 which increased to 19.49 Mg ha−1 in 2009. The forest is sequestering carbon at the rate of 4.32 Mg ha−1 yr−1.  相似文献   

8.
We calculate greenhouse-gas emissions from land-use change in Mato Grosso and Rondônia, two states that are responsible for more than half of the deforestation in Brazilian Amazonia. In addition to deforestation (clearing of forest), we also estimate clearing rates and emissions for savannas (especially the cerrado, or central Brazilian savanna), which have not been included in Brazil's monitoring of deforestation. The rate of clearing of savannas was much more rapid in the 1980s and 1990s than in recent years. Over the 2006–2007 period (one year) 204 × 103 ha of forest and 30 × 103 ha of savanna were cleared in Mato Grosso, representing a gross loss of biomass carbon (above + belowground) of 66.0 and 1.8 × 106 MgC, respectively. In the same year in Rondônia, 130 × 103 ha of forest was cleared, representing gross losses of biomass of 40.4 × 106 MgC. Data on clearing of savanna in Rondônia are unavailable, but the rate is believed to be small in the year in question. Net losses of carbon stock for Mato Grosso forest, Mato Grosso savanna and Rondônia forest were 29.0, 0.5 and 18.5 × 106 MgC, respectively. Including soil carbon loss and the effects of trace-gas emissions (using global warming potentials for CH4 and N2O from the IPCC's 2007 Fourth Assessment Report), the impact of these emission sources totaled 30.9, 0.6 and 25.4 × 106 Mg CO2-equivalent C, respectively. These impacts approximate the combined effect of logging and clearing because the forest biomasses used are based on surveys conducted before many forests were exposed to logging. The total emission from Mato Grosso and Rondônia of 56.9 × 106 Mg CO2-equivalent C can be compared with Brazil's annual emission of approximately 80 × 106 MgC from fossil–fuel combustion.  相似文献   

9.
There are conflicting reports on the role of disturbances in maintaining liana community structure, and in determining their relationship with trees. The effects of plant invasion on these attributes of lianas are not known. The study investigated the effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana, in three distinct forest types to reflect both human disturbances and invasion: Undisturbed, Disturbed-Invaded and Disturbed Forests (UF, DIF and DF respectively). Trees ≥10 cm dbh were identified and their dbh measured in two 0.25 ha plots in each forest type. The trees were examined for the presence of lianas (≥2 cm dbh) and their dbh measured. A total of 380 lianas ≥2 cm dbh belonging to 20 genera and 12 families were identified in the 1.5 ha forest. Twelve liana species were unique to the DIF suggesting the probable positive influence of plant invasion on their colonisation. Liana density differed significantly across the forest types (df = 2, p = 0.043) with the UF recording the greatest number. The mean liana stem diameter and basal area were greater in the DF. Large diameter lianas were absent in the UF. Tree density and number of trees hosting lianas were greater in the UF followed by the DIF and DF. Liana infestation was generally high with 90% in the DF, 88.2% in the UF, and 85.7% in the DIF. Both liana load per tree species and mean liana load per infested tree were highest in the UF followed by the DIF and then the DF. Liana density was highly dependent on tree density in all the forest types (df = 1, r2 = 0.50, p = 0.007; df = 1, r2 = 0.99, p = 0.000 and df = 1, r2 = 0.72, p = 0.000 in the UF, DIF and DF respectively). There was a significant positive relationship between liana dbh and host dbh in the UF (df = 1, r2 = 0.096, p = 0.000), DIF (df = 1, r2 = 0.11, p = 0.000) and DF (df = 1, r2 = 0.16, p = 0.008). There was no significant relationship between host dbh and liana loads in all the forest types.  相似文献   

10.
Selective logging is an important socio-economic activity in the Congo Basin but one with associated environmental costs, some of which are avoidable through the use of reduced-impact logging (RIL) practices. With increased global concerns about biodiversity losses and emissions of carbon from forest in the region, more information is needed about the effects of logging on forest structure, composition, and carbon balance. We assessed the consequences of low-intensity RIL on above-ground biomass and tree species richness in a 50 ha area in northwestern Gabon. We assessed logging impacts principally in 10 randomly located 1-ha plots in which all trees ?10 cm dbh were measured, identified to species, marked, and tagged prior to harvesting. After logging, damage to these trees was recorded as being due to felling or skidding (i.e., log yarding) and skid trails were mapped in the entire 50-ha study area. Allometric equations based on tree diameter and wood density were used to transform tree diameter into biomass.Logging was light with only 0.82 trees (8.11 m3) per hectare extracted. For each tree felled, an average of 11 trees ?10 cm dbh suffered crown, bole, or root damage. Skid trails covered 2.8% of the soil surface and skidding logs to the roadside caused damage to an average of 15.6 trees ?10 cm dbh per hectare. No effect of logging was observed on tree species richness and pre-logging above-ground forest biomass (420.4 Mg ha−1) declined by only 8.1% (34.2 Mg ha−1). We conclude from these data that with harvest planning, worker training in RIL techniques, and low logging intensities, substantial carbon stocks and tree species richness were retained in this selectively logged forest in Gabon.  相似文献   

11.
Uncertainties in biomass estimates in Amazonian forests result in a broad range of possible magnitude for the emissions of carbon from deforestation and other land-use changes. This paper presents biomass equations developed from trees directly weighed in open forest on fertile soils in the southern Amazon (SA) and allometric equations for bole-volume estimates of trees in both dense and open forests. The equations were used to improve the commonly used biomass models based on large-scale wood-volume inventories carried out in Amazonian forest. The biomass estimates from the SA allometric equation indicate that equations developed in forests on infertile soils in central Amazonia (CA) result in overestimates if applied to trees in the open forests of SA. All aboveground components of 267 trees in open forests of SA were cut and weighed, and the proportion of the biomass stored in the crowns of trees in open forest was found to be higher than in dense forest. In the case of inventoried wood volume, corrections were applied for indentations and hollow trunks and it was determined that no adjustment is needed for the form factor used in the RadamBrasil volume formula. New values are suggested for use in models to convert wood volume to biomass estimates. A biomass map for Brazilian Amazonia was produced from 2702 plots inventoried by the RadamBrasil Project incorporating all corrections for wood density and wood volume and in factors used to add the bole volume of small trees and the crown biomass. Considering all adjustments, the biomass map indicates total biomass of 123.1 Gt (1 Gt = 1 billion tons) dry weight (aboveground + belowground) for originally forested areas in 1976 in the Brazilian Legal Amazon as a whole (102.3 Gt for aboveground only) at the time of the RadamBrasil inventories, which were carried out before intensive deforestation had occurred in the region. Excluded from this estimate are 529,000 km2 of forest lacking sufficient RadamBrasil inventory data. After forest losses of 676,000 km2 by 2006 – not counting 175,000 km2 of this deforested area lacking RadamBrasil data – the estimated dry biomass stock was reduced to 105.4 and 87.6 Gt (aboveground + belowground and only above-ground). Thus, in 2006 the carbon storage in forested areas in Brazilian Amazonia as a whole will be around 51.1 Gt (assuming 1 Mg dry biomass = 0.485 Mg C). Biomass estimates by forest type (aggregated into 12 vegetation classes) are provided for each state in the Brazilian Legal Amazon.  相似文献   

12.
We evaluated the economic effects of a predicted shift from Norway spruce (Picea abies (Karst) to European beech (Fagus sylvatica (L) for a forest area of 1.3 million ha in southwest Germany. The shift was modelled with a generalised linear model (GLM) by using presence/absence data from the National Forest Inventory in Baden-Württemberg, a digital elevation model, and regionalised climate parameters from the period 1970 to 2000. Two scenarios from the International Panel on Climate Change (IPCC) (B1, A2) for three different time scales (2030, 2065, and 2100) were investigated. The GLM predicted a decrease of the suitable area for growing Norway spruce between 21% (B1, 2030) and 93% (A2, 2100) in comparison to 2000. This corresponds to a reduction in the potential area of Norway spruce from between 190,000 and 860,000 ha. The financial effect of this reduction in area was then evaluated by using a classical Faustmann approach, namely the land expectation value (LEV) as an economic parameter for forests of Norway spruce versus European beech. Underlying cash flows were derived from a distance dependent, single-tree growth simulator (SILVA) based on data for prices and costs of the year 2004. With an interest rate of r = 2%, the predicted loss in the potential area of Norway spruce is related to a decrease of the LEV between 690 million and 3.1 billion Euro. We discuss the sensitivity of these results to changing interest rates, risk levels, and rotation lengths. Results suggest that managing forestland for profitability will be increasingly difficult under both climate scenarios.  相似文献   

13.
During the past few decades, China has implemented several large-scale forestation programs that have increased forest cover from 16.0% in the 1980s to 20.4% in 2009. In northern China, water is the most sensitive and limiting ecological factor. Understanding the dynamic interactions between forest ecosystems and water in different regions is essential for maximizing forest ecosystem services. We examined forest cover and runoff relationships in northern China using published data from a variety of sources. In the Loess Plateau region, forest cover is not correlated with annual precipitation (r = 0.08, p > 0.05) at micro (<50 km2) and meso scales (50-1000 km2), while they are positively correlated at macro (>1000 km2) scale (r = 0.77, p < 0.05). Moreover, forest cover is negatively correlated with the runoff coefficient (r = −0.64, p < 0.05). In Northwest China, natural forest distribution is highly correlated with annual precipitation (r = 0.48, p < 0.05) but not with the runoff coefficient (r = −0.09, p > 0.05). In Northeast China, we found a positive relationship between forest cover and the runoff coefficient (r = 0.77, p < 0.05), but the correlation between forest cover and precipitation was not significant (r = 0.28, p > 0.05). The multiple stepwise regression analysis indicated that runoff was influenced by altitude, annual precipitation, forest cover, and PET (potential evapotranspiration) in Northeast China. We concluded that geographic differences could mask the true role of forests in the partitioning of rainfall into runoff and evapotranspiration (ET) in a catchment. In determining the forest-water relationship, one must consider climatic controls on ET in addition to forest cover. Forests could potentially enhance the complementary relationship between ET and PET. Therefore, a greater amount of ET in forested areas may decrease the PET on a regional scale.  相似文献   

14.
We evaluated carbon stocks in the above-ground biomass (AGB) of three dominant mangrove species (Sonneratia apetala, Avicennia alba and Excoecaria agallocha) in the Indian Sundarbans. We examined whether these carbon stocks vary with spatial locations (western region vs. central region) and with seasons (pre-monsoon, monsoon and post-monsoon). Among the three studied species, S. apetala showed the maximum above-ground carbon storage (t ha−1) followed by A. alba (t ha−1) and E. agallocha (t ha−1). The above-ground biomass (AGB) varied significantly with spatial locations (p < 0.05) but not with seasons (p < 0.05). The variation may be attributed to different environmental conditions to which these areas are exposed to such as higher siltation and salinity in central region compared to western region. The relatively higher salinity in central region caused subsequent lowering of biomass and stored carbon of the selected species.  相似文献   

15.
Forest structure and productivity was investigated in a 12-year-old Rhizophora mucronata Lam. plantation at Gazi Bay, Kenya. Sampling was carried out in 22, 10 m × 10 m quadrats laid along belt transects perpendicular to the waterline. Within each quadrat all trees with stem diameter greater than 2.5 cm were identified, position marked and counted. Vegetation measurements included tree height (m), canopy cover (%) and stem diameter measured at 1.3 m above the ground (D130); from which were derived basal area (m2/ha); stand density (stems/ha) and biomass (t/ha). Information regarding composition and distribution of juveniles was derived using linear regeneration sampling (LRS). The replanted forest had a stand density of 5132 stems/ha; with a mean canopy height and stem diameter of 8.4 ± 1.1 m (range: 3.0–11.0 m) and 6.2 ± 1.87 cm (range: 2.5–12.4 cm), respectively. The total juvenile density was 4886 saplings per hectare; 78.6% of which constituted the parental canopy. The standing biomass for the 12-year-old R. mucronata plantation was 106.7 ± 24.0 t/ha, giving a biomass accumulation rate of 8.9 t/(ha year).  相似文献   

16.
The sample plot data of National Forest Inventories (NFI) are widely used in the analysis of forest production and utilization possibilities to support national and regional forest policy. However, there is an increasing interest for similar impact and scenario analyses for strategic planning at the local level. As the fairly sparse network of field plots only provides calculations for large areas, satellite image data have been applied to produce forest information for smaller areas. The aim of this study was to test the feasibility of generating forest data for a Finnish forest analysis tool, the MELA system, by means of the Landsat satellite imagery and the NFI sample plot data. The study was part of the preparation of a local forestry programme, where a strategic scenario analysis for the forest area of two villages (ca 8000 ha) was carried out. Management units that approximate forest stands were delineated by image segmentation. Stand volume and other parameters for each forest segment were estimated from weighted means of the NFI sample plots, where the individual sample plot weights were estimated by the k nearest neighbour (kNN) method. Two different spectral features were tested: single pixel values and average pixel values within a segment. The estimated forest data were compared with the forest data based on independent stand-level field assessments in two subareas, a national park and an area of forest managed for timber production.In the national park, the estimated mean volume of the growing stock from both spectral feature sets (about 160 m3 ha−1) was clearly lower than that obtained from stand-level field assessment (186 m3 ha−1). Using average pixel values within a segment resulted in a higher proportion of pine and a lower proportion of spruce volume than using single pixel values. It also resulted in an estimated felling potential nearly 10% higher over the first 10-year period in the scenario analysis of the area dedicated to timber production. However, the maximum long-term sustainable removal was at the same level (about 30,000 m3 year−1) for both feature sets over the simulated 30-year period. The resulting annual felling area in the first 10-year period was 12% lower when the segment averages were applied, but the difference subsequently levelled off. The kNN approach in estimating initial forest data for scenario analyses at the local level was found promising.  相似文献   

17.
In all, 48 sites of subalpine coniferous forest that had undergone natural regeneration for 5-310 years were selected as study locations in the Southwest China. We compared species richness (S), plant diversity (Shannon-Wiener index, H′; Margalef index, R), and above- and below-ground ecosystem carbon (C) pools of six plant communities along a chronosequence of vegetation restoration, and we also examined evidence for a functional relationship between plant diversity and C storage. Our results showed that above-ground C increased significantly (over 52-fold), mainly due to the increase of C in aboveground living plants and surface litter. Soil organic carbon (SOC) content increased from the herb community type (dominated by Deyeuxia scabrescens, P1) to mixed forest type (dominated by Betula spp. and Abies faxoniana, P4), which constituted the main C pool of the system (63-89%), but decreased thereafter (communities P5-P6). The mean C stock in the whole ecosystem - trees, litter layer and mineral soil - ranged from 105 to 730 Mg C ha−1 and was especially high in the spruce forest community type (dominated by Picea purpurea, P6). On the other hand, the relationships between C stocks (soil, aboveground) and mean annual temperature or altitude were generally weak (P > 0.05). Moreover, we did not detect a relationship between S and aboveground C storage, while we found a significant negative relationship between H′, R and aboveground C storage. In addition, our experiment demonstrated that total root biomass and litter C/N ratio were significant functional traits influencing SOC, while S, R, and H′ had little effect. Path analysis also revealed that litter C/N ratio predominantly regulated SOC through changes in the quantity of microorganisms and soil invertase enzyme activity.  相似文献   

18.
This study assessed the net above-ground carbon stock in six community forests in the Dolakha district, Nepal. A survey was conducted of above-ground timber species, using random sampling. A tree-ring chronology for Pinus roxburghii was created to construct a growth model representative of the various mainly-pine species. The allometric model combined with tree ring analysis was used to estimate carbon stock and annual growth in the above-ground tree biomass. The out-take of forest biomass for construction material and fuelwood was estimated on the basis of interviews and official records of community forest user groups. The average annual carbon increment of the community forests was 2.19 ton/ha, and the average annual carbon out-take of timber and fuelwood was 0.25 ton/ha. The net average carbon balance of 1.94 ton/ha was equivalent to 117.44 tons of carbon per community forest annually. All the community forests were actively managed leading to a sustainable forest institution, which acts as a carbon sink. It is concluded that community forests have the potential to reduce emissions by avoiding deforestation and forest degradation, enhance forest carbon sink and improve livelihoods for local communities.  相似文献   

19.
Over the coming decades, climate change will increasingly affect forest ecosystem processes, but the future magnitude and direction of these responses is uncertain. We designed 12 scenarios combining possible changes in tree growth rates, decay rates, and area burned by wildfire with forecasts of future harvest to quantify the uncertainty of future (2010-2080), timber growing stock, ecosystem C stock, and greenhouse gas (GHG) balance for 67 million ha of forest in British Columbia, Canada. Each scenario was simulated 100 times with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Depending on the scenario, timber growing stock over the entire land-base may increase by 14% or decrease by 9% by 2080 (a range of 2.8 billion m3), relative to 2010. However, timber growing stock available for harvest was forecast to decline in all scenarios by 26-62% relative to 2010 (a range of 1.2 billion m3). Forests were an annual GHG source in 2010 due to an ongoing insect outbreak. If half of the C in harvested wood was assumed to be immediately emitted, then 0-95% of simulations returned to annual net sinks by 2040, depending on scenario, and the cumulative (2010-2080) GHG balance ranged from a sink of −4.5 Pg CO2e (−67 Mg CO2e ha−1) for the most optimistic scenario, to a source of 4.5 Pg CO2e (67 Mg CO2e ha−1) for the most pessimistic. The difference in total ecosystem carbon stocks between the most optimistic and pessimistic scenarios in 2080 was 2.4 Pg C (36 Mg C ha−1), an average difference of 126 Tg CO2e yr−1 (2 Mg CO2e yr−1 ha−1) over the 70-year simulation period, approximately double the total reported anthropogenic GHG emissions in British Columbia in 2008. Forests risk having reduced growing stock and being GHG sources under many foreseeable scenarios, thus providing further feedback to climate change. These results indicate the need for continued monitoring of forest responses to climatic and global change, the development of mitigation and adaptation strategies by forest managers, and global efforts to minimize climate change impacts on forests.  相似文献   

20.
Plant species composition (n = 95) and biomass (n = 62) samples from harvested and natural stands were analyzed to determine if forest clearcutting increased forage abundance for wood bison (Bison bison athabascae) in north-central Alberta. The sampled stands ranged from 1 to 28 and 50 to 100 years old, respectively, and were members of a Populus tremuloides/Rosa-Viburnum vegetation-type, which is a common forest community on upland sites in the boreal mixedwood zone of western Canada. In addition, a five-stand chronosequence was monitored from May to September, inclusive, to measure seasonal variation in forage abundance and nutrient content. Three-fourths of clearcuts were mechanically treated after harvesting. The data showed that clearcutting increased forage availability, but not quality. Peak summer biomass production occurred in 2–12-year-old clearcuts (∼944 kg/ha, S.D. 511, n = 30), with forage availability decreasing to natural stand levels (∼228 kg/ha, S.D. 147, n = 10) 25–30 years after harvesting. Mechanical site treatment increased forage availability by 26% above untreated clearcuts (P = 0.002). No major differences relevant to bison nutrient requirements occurred between forbs and graminoids in summer, or among age-classes within a monitored chronosequence. Crude protein content declined and fiber content increased during the growing season. Peak forage availability and maximum crude protein content occurred in July among monitored stands. Species with fair forage quality dominated the vegetation in 1–16-year-old clearcuts, with the proportion of forbs increasing as stands aged. Maximum summer carrying capacity of natural stands averaged 0.57 animal unit month per hectare (AUM/ha), depending upon the applied assumptions, with lower winter values (0.01–0.03 AUM/ha). In 2–12-year-old clearcuts, maximum summer and winter carrying capacities were <0.67 and <0.29 AUM/ha based on 25% seasonal usage, respectively. The application of a safe-use factor, down-weighting of forbs to account for dietary preferences, and adjustments for forage quality reduced summer (≤0.30 AUM/ha) and winter (≤0.07 AUM/ha) carrying capacities. Wood bison carrying capacity typically decreased when stands were >8 years old. Clearcuts provide adequate forage for wood bison during the summer, but owing to low graminoid biomass they are not suitable as winter habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号