首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and unburned stands at each of four sites in Arizona and New Mexico for three growing seasons after burning (2004–2006). Prescribed burns increased bark beetle attacks on ponderosa pine over the first three post-fire years from 1.5 to 13% of all trees, increased successful, lethal attacks on ponderosa pine from 0.4 to 7.6%, increased mortality of ponderosa pine from all causes from 0.6 to 8.4%, and increased mortality of all tree species with diameter at breast height >13 cm from 0.6 to 9.6%. On a per year basis, prescribed burns increased ponderosa pine mortality from 0.2% per year in unburned stands to 2.8% per year in burned stands. Mortality of ponderosa pine 3 years after burning was best described by a logistic regression model with total crown damage (crown scorch + crown consumption) and bark beetle attack rating (no, partial, or mass attack by bark beetles) as independent variables. Attacks by Dendroctonus spp. did not differ significantly over bole heights, whereas attacks by Ips spp. were greater on the upper bole compared with the lower bole. Three previously published logistic regression models of tree mortality, developed from fires in 1995–1996 in northern Arizona, were moderately successful in predicting broad patterns of tree mortality in our data. The influence of bark beetle attack rating on tree mortality was stronger for our data than for data from the 1995–1996 fires. Our results highlight canopy damage from fire as a strong and consistent predictor of post-fire mortality of ponderosa pine, and bark beetle attacks and bole char rating as less consistent predictors because of temporal variability in their relationship to mortality. The small increase in tree mortality and bark beetle attacks caused by prescribed burning should be acceptable to many forest managers and the public given the resulting reduction in surface fuel and risk of severe wildfire.  相似文献   

2.
Maritime pine (Pinus pinaster Ait.) is the tree species most affected by wildfire in the Iberian Peninsula. Prediction of the probability of fire-injured tree mortality is critical for management of burned areas, evaluation of the ecological and economic impact of wildfire and prescribed fire planning and application. Pine bark beetles (Scolytidae) frequently attack burned maritime pine stands and cause extensive post-fire mortality throughout the Iberian Peninsula. In the present study, maritime pine trees were monitored for three years following 14 wildfires in four ecotypes in Spain (11 fires in Galicia (Galician ecotype - NW Spain), one fire in Portillo (Meseta-Castellana ecotype - Central Spain), one fire in Rodenal (Rodenal ecotype - Central Spain), and one fire in Genalguacil (Sierra Bermeja ecotype - SW Spain)). Data on tree attributes, crown and bole injury, ground fire severity, Ips sp. presence and tree survival were obtained by examining 3085 trees. Logistic regression models for predicting the probability of delayed maritime pine mortality were developed by use of generalized estimated equations (GEE). An ample range of response to fire damage in mortality was evident among the four ecotypes and different models were fitted for each. The most important variables for predicting tree mortality were total crown volume damaged, presence of Ips sp. attack and cambium kill rating. The results highlight the extensive presence of Ips sp. in burned maritime pine forests and its importance in tree mortality process, the ample range of response of P. pinaster, in terms of post-fire mortality, as well as the need to develop site specific mortality models for the different ecotypes of this species following fire.  相似文献   

3.
Crown shyness or canopy disengagement, the phenomenon wherein gaps around trees develop from swaying, whipping and shading, has been identified in the literature since the 1920s. Recent results by researchers at the University of Alberta have clearly described many of the processes involved for lodgepole pine [e.g. Rudnicki, M., Silins, U., Lieffers, V.J., Josi, G., 2001. Measure of simultaneous tree sways and estimation of crown interactions among a group of trees. Trees 15, 83–90; Rudnicki, M., Lieffers, V.J., Silins, U., 2003. Stand structure governs the crown collisions of lodgepole pine, Canadian Journal of Forestry Research 33, 1238–1244; Rudnicki, M., Silins, U., Lieffers, V.J., 2004. Crown cover is correlated with relative density, tree slenderness, and tree height in lodgepole pine. Forest Science 50, 356–363; Fish, H., Lieffers, V.J., Silins, U., Hall, R.J., 2006. Crown shyness in lodgepole pine stands of varying stand height, density, and site index in the upper foothills of Alberta. Canadian Journal of Forestry Research 9, 2104–2111]. However, explicit models of crown shyness are sparse in the literature. This paper describes the development of empirical models of crown shyness in lodgepole pine for British Columbia (BC). We measured crown area and neighbour locations on 60 trees growing in 13 stands in central BC. We estimated potential crown area (AV) using stem maps and Voronoi polygons constrained by estimates of maximum crown width, and then related observed crown area (AC) to AV and additional individual tree variables. One of the nine prediction equations was coded into a spatially explicit tree growth model modified to evaluate the effects of crown shyness at the stand level. Crown shyness models validated well against two independent sources and when linked with a light model tRAYci [Brunner, A., 1998. A light model for spatially explicit forest stand models. Forest Ecology and Management 107, 19–46], increased the below-canopy light by 0.07–0.11.  相似文献   

4.
Variability of postfire injury and stand and individual tree factors that affected survival responses of eastern Sierra Nevada conifers to wildfire were examined. Prefire measurements served as a basis of comparison for postfire conditions in a mixed conifer stand located in the eastern portion of the Lake Tahoe Basin and provided insight into predisposing influences on survival. Species composition consisted primarily of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) and California white fir (Abies concolor var. lowiana [Gord.] Lemm.) along with a minor component of sugar pine (Pinus lambertiana Dougl.). Postfire survival was higher in Jeffrey pine than white fir but was highest overall in sugar pine. Catastrophic crown loss occurred less frequently in Jeffrey pine than in the fir but was least common in sugar pine. Survival generally increased with tree size, but this relationship did not extend to the largest trees in the stand. Among an array of regression models used to evaluate selected variables for their predictive capacity regarding postfire survival, prefire stand density was found to negatively influence that of Jeffrey and sugar pine, and survival of Jeffrey pine and white fir was negatively correlated with bole char. These results provide natural resource managers guidance in the selection of viable trees for retention during the salvage harvesting operations that often follow wildfire events.  相似文献   

5.
Competition for canopy space is a fundamental structuring feature of forest ecosystems and remains an enduring focus of research attention. We used a spatial neighborhood approach to quantify the influence of local competition on the size of individual tree crowns in north-central British Columbia, where forests are dominated by subalpine fir (Abies lasiocarpa), lodgepole pine (Pinus contorta) and interior spruce (Picea glauca × engelmanii). Using maximum likelihood methods, we quantified crown radius and length as functions of tree size and competition, estimated by the species identity and spatial arrangement of neighboring trees. Tree crown size depended on tree bole size in all species. Given low levels of competition, pine displayed the widest, shortest tree crowns compared to the relatively long and narrow crowns found in spruce and fir. Sensitivity to crowding by neighbors declined with increasing tree height in all but the pine crown radius model. Five of the six selected best models included separate competition coefficients for each neighboring tree species, evidence that species generally differ in their competitive effects on neighboring tree crowns. The selected crown radius model for lodgepole pine, a shade-intolerant species, treated all neighbors as equivalent competitors. In all species, competition from neighbors exerted an important influence on crown size. Per-capita effects of competition across different sizes and species of neighbors and target trees varied, but subalpine fir generally displayed the strongest competitive effects on neighbors. Results from this study provide evidence that species differ both in their response to competition and in their competitive influence on neighbors, factors that may contribute to maintaining coexistence.  相似文献   

6.
长白落叶松人工林树冠形状的模拟   总被引:17,自引:3,他引:17  
李凤日 《林业科学》2004,40(5):16-24
以长白山地区 2 6a生长白落叶松人工林为研究对象 ,采用枝解析的方法 ,测定了 2 5株林木 (直径 10 5~2 4 9cm)的树冠变量 ,并建立了预测树冠外侧形状的冠形模型。基于枝条着枝深度 (DINC)和林木变量所建立的树冠形状模型包括 :基径、枝长、着枝角度和弦长等预估模型。对于大小相同树木的主要枝条来讲 ,这些树冠变量是随着DINC的增加而增大 ;而林木的胸径 (DBH)和树高 (HT)变量很好地反映了不同大小树木的冠形变化。冠形预测模型预测效果良好 ,充分体现了树冠结构的变化趋势 :树冠形状在树冠的中上部呈抛物线体 ,而在树冠的下部则为近圆柱体。文中所建模型 ,可以合理地描述长白落叶松人工林的树冠形状及其变化规律。  相似文献   

7.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

8.
Crown dimensions are important for the quantification of tree interactions in some growth models. This study investigates the potential for structural indices and other spatial measures to improve the prediction of crown radius and crown length for birch (Betula spp.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) in forests in Wales. Crown dimensions were measured for 125 birch and 154 spruce in six fully stem-mapped research plots. These data were used to test the performance of a crown radius model and a crown length model which estimated crown dimensions on the basis of allometric relationships with stem dimensions. Spatial data from the six plots were used to calculate the structural indices mean directional index, diameter correlation index, species mingling, dbh and height dominance, and dbh differentiation, as well as the Hegyi competition index, and basal area of neighbours and larger neighbours, for each crown measurement sample tree, using various numbers of nearest neighbours. Two non-spatial indices, BAL and BALMOD, were also calculated for all sample trees for comparison. These spatial and non-spatial variables were then incorporated into modified crown dimension models. Model performances, in terms of efficiency and relative bias, were compared to determine whether the inclusion of spatial or non-spatial variables resulted in any improvements over models using tree dimensions alone. Crown length and radius were found to be correlated with most of the spatial measures studied. Models incorporating spatial variables gave improvements in performance over allometric models for every data set, and performed more consistently than models containing non-spatial variables. The greatest improvements were achieved for suppressed birch in unthinned forests which had irregularly shaped and strongly displaced crowns. The spatial variable contributing to the most efficient model for each data set varied widely. This points to the complexity of tree spatial interactions and indicates that there is a great deal of scope for investigating other structural indices and crown dimension model forms.  相似文献   

9.
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001–2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase residual tree growth and vigor. Our study: (1) compared bark beetle-caused conifer mortality in forested areas thinned from 1985 to 1998 to similar, non-thinned areas and (2) identified site, stand and individual tree characteristics associated with conifer mortality. We sampled ponderosa pine (Pinus ponderosa var ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) trees in pre-commercially thinned and non-thinned plantations and ponderosa pine and white fir (Abies concolor var lowiana Gordon) in mixed conifer forests that were commercially thinned, salvage-thinned, and non-thinned. Clusters of five plots (1/50th ha) and four transects (20.1 × 100.6 m) were sampled to estimate stand, site and tree mortality characteristics. A total of 20 pre-commercially thinned and 13 non-thinned plantation plot clusters as well as 20 commercially thinned, 20 salvage-thinned and 20 non-thinned mixed conifer plot clusters were established. Plantation and mixed conifer data were analyzed separately. In ponderosa pine plantations, mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) caused greater density of mortality (trees ha−1 killed) in non-thinned (median 16.1 trees ha−1) compared to the pre-commercially thinned (1.2 trees ha−1) stands. Percent mortality (trees ha−1 killed/trees ha−1 host available) was less in the pre-commercially thinned (median 0.5%) compared to the non-thinned (5.0%) plantation stands. In mixed conifer areas, fir engraver beetles (Scolytus ventralis LeConte) (FEN) caused greater density of white fir mortality in non-thinned (least square mean 44.5 trees ha−1) compared to the commercially thinned (23.8 trees ha−1) and salvage-thinned stands (16.4 trees ha−1). Percent mortality did not differ between commercially thinned (least square mean 12.6%), salvage-thinned (11.0%), and non-thinned (13.1%) mixed conifer stands. Thus, FEN-caused mortality occurred in direct proportion to the density of available white fir. In plantations, density of MPB-caused mortality was associated with treatment and tree density of all species. In mixed conifer areas, density of FEN-caused mortality had a positive association with white fir density and a curvilinear association with elevation.  相似文献   

10.
Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine, the pine engraver beetle, Ips pini (Say), Ips calligraphus (Germar), Ips latidens (LeConte), Ips knausi Swaine and Ips integer (Eichhoff) were the primary bark beetle species associated with ponderosa pine mortality. In this study we examine stand conditions and physiographic factors associated with bark beetle-caused tree mortality in ponderosa pine forests across five National Forests in Arizona. A total of 633 fixed-radius plots were established across five National Forests in Arizona: Apache-Sitgreaves, Coconino, Kaibab, Prescott, and Tonto. Prior to the bark beetle outbreak, plots with mortality had higher tree and stocking compared with plots without pine mortality. Logistic regression modeling found that probability of ponderosa pine mortality caused by bark beetles was positively correlated with tree density and inversely related with elevation and tree diameter. Given the large geographical extent of this study resulting logistic models to estimate the likelihood of bark beetle attack should have wide applicability across similar ponderosa pine forests across the Southwest. This is particularly true of a model driven by tree density and elevation constructed by combining all forests. Tree mortality resulted in significant reductions in basal area, tree density, stand density index, and mean tree diameter for ponderosa pine and for all species combined in these forests. Most of the observed pine mortality was in the 10–35 cm diameter class, which comprise much of the increase in tree density over the past century as a result of fire suppression and grazing practices. Ecological implications of tree mortality are discussed.  相似文献   

11.
A crown profile model was developed for radiata pine (Pinus radiata D. Don) in Galicia (northwestern Spain). Data from 443 trees located in 56 permanent plots, established by the Unidade de Xestión Forestal Sostible (UXFS) of the University of Santiago de Compostela in plantations of this species in the region, were used. The crowns of the trees were measured by a visual method based on similar triangles. Both simple geometric shapes and mathematical equations were used to describe the crown profiles. As crown profile models usually require variables that are expensive to measure, equations to estimate the maximum crown radius and the height to the maximum crown radius were also developed, using other easily measured tree and stand variables. Several models were fitted using a system of equations approach and accounting for an autocorrelated, heteroscedastic error structure. The selected crown profile model consists of a system of two allometric equations for the crown below (primarily shade needles) and above (primarily sun needles) maximum crown radius. The model explained 88% of the variability in crown radius with a mean error of 0.24 m.  相似文献   

12.
Trees are able to respond to their local biotic and abiotic environment with morphological adjustments which improve resource acquisition and, thus, growth. In forests, light is broadly recognised as one of the major factors determining growth, and morphological responses comprise changes in crown architecture and stem stature. On sloping terrain, the interplay of phototropism and gravitropism may further affect morphological growth characteristics. However, different tree species are expected to show species-specific responses. In this study, we analysed three growth characteristics of tree individuals belonging to four species of two functional groups (evergreen: Schima superba, Castanopsis eyrei, deciduous: Quercus serrata var. brevipetiolata, Castanea henryi) in a species-rich Chinese subtropical forest. Crown projection area, relative crown displacement and stem inclination were related to biotic (local species richness, functional richness, competition, stand age) and abiotic (slope aspect and inclination, soil depth) variables in the local neighbourhood of the tree individuals. We hypothesised that (i) there are species-specific differences in the morphological response of crown architecture and stem stature and (ii) that crown size and asymmetry as well as stem inclination are influenced by both, biotic and abiotic factors. In contrast to our expectations we were unable to reveal any species-specific differences in any of the three growth characteristics. The results of mixed effects models showed that crown area was mainly affected by the target tree's dbh and biotic variables related to neighbours (competition, functional diversity), whereas stem inclination was mainly influenced by slope. Relative crown displacement was influenced by both, biotic and abiotic variables. We conclude that growth responses resulting in crown displacement and stem inclination seem to be an important mechanism to ameliorate foraging for light in our study area, but that these responses appear to be species-independent. The interplay of stem inclination and crown displacement allows for a plastic response of tree individuals in biotically and abiotically heterogeneous environments. Our results indicate that forest management in this region should focus on functionally diverse stands which are promoting crown area positively resulting in increased growth rates of individual trees.  相似文献   

13.
Crown size is a good indicator of the growth potential of trees and is often used in forest management for outlining thinning guidelines or constructing forest growth models. The aim of this study was to analyse mean crown radius as a function of stem size, stand density and site productivity in even-aged stands of pedunculate oak (Quercus robur L.). Data included measurements of 620 trees from 53 plots in nine thinning experiments and one operational stand in Sweden, Denmark and Great Britain, representing a wide spectrum of thinning practices ranging from the strictly unthinned control to extremely heavy thinning with essentially solitary trees. Three sets of models were constructed based on different predictor variables, including indicators of individual stem size (diameter at breast height, DBH), stand density/thinning grade (quadratic mean diameter and stand basal area) and site productivity (stand top height). Preliminary results indicated a significant effect of DBH and (nominal) thinning grade on crown radius. The response pattern of the final models indicated an increasing crown radius with increasing DBH, with increasing thinning grade (decreasing stand density) and with decreasing site productivity. The models are valid for predicting the crown radius of pedunculate oak in even-aged forest stands.  相似文献   

14.
15.
Abstract

This study compares the results of the prediction of crown height characteristics using airborne laser scanner (ALS) data and intensive field measurements in boreal forests. The data consisted of 31 sample plots located in Kalkkinen, southern Finland. Crown height models were constructed at both the tree and plot level. Scots pine, Norway spruce and birches were used. The models included independent variables of tree levels, such as tree height, crown area and independent plot-level variables, i.e. canopy height and density quantiles and proportion of vegetation hits. Field measurement-based models used tree height and diameter at breast height as the independent tree-level variables, whereas basal area, mean diameter and height were used as the plot-level variables. The results indicated that the ALS-based crown height models were more accurate than the field measurement-based models when plot-level information was used as independent variables. However, the field measurement-based tree-level models for Scots pine and Norway spruce were more accurate than the ALS-based models. Even so, the accuracy of the different models was very similar and the study data set was quite small. The results of this study can be used for different tree growth studies and for the assessment of tree stock quality in boreal forests.  相似文献   

16.
Forest thinnings implemented with cut-to-length and whole-tree harvesting systems followed by underburning were evaluated for their effects on bark beetle prevalence in pure, uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) interspersed with isolated California white fir (Abies concolor var. lowiana [Gord.] Lemm.). Based on pitch tube counts in a stand with a moderate bark beetle population in its pine component, the Jeffrey pine beetle (Dendroctonus jeffreyi Hopkins) generally preferred larger trees before treatment implementation, but after exhibiting mixed pretreatment tendencies concerning stand density demonstrated a posttreatment proclivity toward higher density. Cut-to-length thinning followed by underburning increased the pine beetle population while whole-tree thinning unaccompanied by burning reduced it. Tree mortality was induced by the bark beetle infestation but was not its sole cause. Pitch tube abundance on white fir far exceeded that on Jeffrey pine, and the greatest influence on the fir engraver (Scolytus ventralis LeConte) population was the prevalence of its host tree. The responses presented herein to these thinning and burning practices, which are being increasingly utilized in forest restoration efforts in the western USA, provide natural resource managers insight into potential forest health outcomes when implemented in Jeffrey pine and similar dry site forest types.  相似文献   

17.
We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest insects, mediated by drought stress. The number of trees dying from 2002 to 2007 was more than 200% greater than the number dying from 1997 to 2002 in mixed-conifer forest and 74% greater in ponderosa pine forest. Extent of mortality was spatially variable in both forest types. Median cumulative mortality (the ratio of dead to live trees) increased by approximately 53 and 65% in mixed-conifer and ponderosa pine forests, respectively, from 2002 to 2007. Median mortality rates from 2002 to 2007 were approximately 2.0% year−1 in mixed-conifer forest (range = 0-28.5%) and 0.4% year−1 in ponderosa pine forest (range = 0-13.6%). Mortality rates generally were not strongly related to either elevation or stand density. Mortality was nonrandom with respect to tree size classes and species. Proportions of trees dying were greatest in the largest size classes, particularly in mixed-conifer forest, where mortality in the largest size class exceeded 22% from 2002 to 2007. Mortality in mixed-conifer forest was particularly pronounced for quaking aspen (85%) and white fir (28%), the least drought tolerant species present. These results provide an early glimpse of how these forest types are likely to respond to predicted climate changes in the southwestern USA. They suggest that these forests are not resilient to climate change, and that treatments to increase resilience to climate change may be appropriate. Research on causes of spatial heterogeneity in extent of mortality might suggest valuable approaches to aid in increasing resilience.  相似文献   

18.
Estimates of above-ground biomass are required for better planning, sustainable management and monitoring of changes in carbon stocks in agroforestry systems. The objective of this study was to develop and compare biomass equations for Markhamia lutea, Casuarina equisetifolia, Maesopsis eminii and Grevillea robusta grown in a linear simultaneous agroforestry system in Uganda. These species were established in single rows in the middle of fields in 1995 from four-month old seedlings. A total of 57 trees were sampled for this study, 13 for M. lutea, 12 for C. equisetifolia, 16 for M. eminii and 16 for G. robusta. Biomass values of the various tree components (stem, branches and foliage) as well as the total above-ground biomass were fitted to linear and non-linear allometric models using total height, diameter-at-breast height (DBH), crown width as predictor variables. Although both DBH and height are typically used as independent variables for predicting above-ground biomass, the addition of height in biomass equations did not significantly improve model performance for M. eminii, M. lutea and G. robusta. However, addition of height significantly increased the proportion of variation explained in above-ground biomass for C. equisetifolia, while DBH did not significantly improve the prediction of biomass. The study confirmed the need for developing species-specific biomass equations.  相似文献   

19.
Thinnings using cut-to-length or whole-tree harvesting systems followed by underburning were evaluated for their effects on seedling and sapling demography in a pure, uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) stand containing a minor component of California white fir (Abies concolor var. lowiana [Gord.] Lemm.). Depression of seedling counts due to forest floor disturbance associated with thinning was followed by a recovery largely confined to Jeffrey pine in the whole-tree treatment where final seedling counts exceeded those found initially. The postburn substrate was more favorable for establishment of Jeffrey pine than white fir seedlings, and the largest increase in seedling counts between the initial and final inventories occurred in the burned portion of the whole-tree treatment. Live sapling losses from thinning were greatest in the cut-to-length treatment, while underburning induced complete sapling mortality. Absent treatment, several stand and site variables influenced seedling and sapling abundance, prominent among them a propensity for mahala mat (Ceanothus prostratus Benth.) to elevate counts of white fir within both size classes. These results provide land managers insight into the impacts of six combinations of thinning and burning treatment on natural regeneration in eastern Sierra Nevada Jeffrey pine and similar dry site forest types.  相似文献   

20.
Cork oak (Quercus suber) forests are acknowledged for their biodiversity and economic (mainly cork production) values. Wildfires are one of the main threats contributing to cork oak decline in the Mediterranean Basin, and one major question that managers face after fire in cork oak stands is whether the burned trees should be coppiced or not. This decision can be based on the degree of expected crown regeneration assessed immediately after fire. In this study we carried out a post-fire assessment of the degree of crown recovery in 858 trees being exploited for cork production in southern Portugal, 1.5 years after a wildfire. Using logistic regression, we modelled good or poor crown recovery probability as a function of tree and stand variables. The main variables influencing the likelihood of good or poor crown regeneration were bark thickness, charring height, aspect and tree diameter. We also developed management models, including simpler but easier to measure variables, which had a lower predictive power but can be used to help managers to identify, immediately after fire, trees that will likely show good crown regeneration, and trees that will likely die or show poor regeneration (and thus, potential candidates for trunk coppicing).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号