首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clearfelling of wet eucalypt forest followed by high intensity burning and aerial sowing, a silvicultural system designed to mimic the natural dynamic of sporadic regeneration following cataclysmic disturbance, has attracted criticism for not maintaining the structural diversity that is associated with natural disturbance. A silvicultural systems trial was established at the Warra Long-Term Ecological Research site in southern Tasmania to explore alternatives to clearfelling in tall wet eucalypt forest. Stocking, density and growth of the seedling regeneration were monitored for up to 3 years after harvesting and regeneration treatments were applied from 1998 to 2007. The treatments were clearfell with understorey islands, a patchfell, stripfell, dispersed retention, aggregated retention, and single-tree/small-group selection. High intensity burning, low intensity burning and no burning were variously applied as part of these treatments.  相似文献   

2.
Liana-dominated forest patches constitute 15–20% of old-growth forests in the Eastern Amazon but are generally excluded from management for timber production. Here we ask if liana-dominated patches may be brought into production by clearing lianas and conducting enrichment planting (EP) of native timber species. We present growth results from 8 years of such EP trials. Rapid growth and low mortality of all species in this study suggest that EP in cleared liana patches can contribute to timber stocks in second and third harvests of managed forests. The most vigorous individuals of Parkiagigantocarpa and Schizolobium amazonicum in each enrichment site grew more than 1 cm diameter per year (rates were initially >2 cm yr−1), and attained dominant canopy positions and diameters equal to those of small canopy trees in the surrounding forest within 8 years of planting (mean dbh ∼18 cm and ∼20 cm, respectively, at year 8). Limited data on Ceiba pentandra plantings indicate a similar trajectory for this species (dbh ∼40 cm in 8 years). The most vigorous Swietenia macrophylla grew at least 1 cm per year in enrichment plots (mean dbh ∼10 cm in 8 years), but take longer to attain dominant positions. Tabebuia serratifolia may take much longer to reach the canopy than other species tested (rates <1 m yr−1). We attribute the excellent performance to light availability; planting in intact soil with minimal compaction and abundant organic material; and low competition rates maintained by periodic thinning of competing vegetation.  相似文献   

3.
Regeneration by seeds for cork oak (Quercus suber) and companion oaks (holm oak Quercus ilex and downy oak Quercus pubescens) is likely to be poor in the fire-prone Maures massif (southern France) but the causes are poorly known. Our objective was to assess the effective recruitment for these three oak species and their temporal pattern of recruitment, in order to determine the main limitation factors and the regeneration window of each species. We studied oak recruits (height <3 m) in naturally regenerated populations according to a gradient of fire recurrence and in five main vegetation types including shrublands and mixed mature woodlands. Fire recurrence was the main explanatory factor of oak recruitment, either directly or through vegetation type and microsite characteristics. The results indicate nil to low recruitment for holm oak and downy oak in shrublands, especially those recurrently burned and dominated by Cistus species. Cork oak recruited better than the other oaks in medium and high shrublands dominated by Erica arborea. In contrast, recruitment was high for holm and downy oak in mixed oak stands and mixed pine-oak stands that have not burned for decades. Microsite conditions such as coverage by litter and shrubs influenced oak recruitment, whereas landscape configuration and stand basal area had no influence. Our results suggest that strategic shrub-clearing, oak planting and protection of mixed oak woodlands as seed sources would help maintaining oak populations in the woodland–shrubland mosaic.  相似文献   

4.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

5.
6.
One of the arguments against using prescribed fire to regenerate oak (Quercus spp.) forests is that the improvement in species composition of the hardwood regeneration pool is temporary and multiple burns are necessary to achieve and maintain oak dominance. To explore this concern, I re-inventoried a prescribed fire study conducted in the mid-1990s to determine the longevity of the effects of a single prescribed fire on hardwood regeneration. The initial study was conducted in three oak shelterwood stands in central Virginia, USA. In 1994, each stand was divided into four treatments (spring, summer, and winter burns and a control) and the hardwood regeneration was inventoried before the fires. During the burns, fire intensity was measured and categorized in each regeneration sampling plot. Second-year postfire data showed marked differences in species mortality rates, depending on season-of-burn and fire intensity: oak and hickory (Carya spp.) regeneration dominated areas burned by medium- to high-intensity fire during the spring and summer while yellow-poplar (Liriodendron tulipifera) and red maple (Acer rubrum) seedlings dominated unburned areas and all areas treated with low-intensity fire regardless of season-of-burn. The treatments were re-inventoried in 2006 and 2007 to determine whether these fire effects were still present. The new data show that the species distributions by season-of-burn and fire intensity found in 1996 still existed 11 years after the treatments. The fact that fire effects in oak shelterwood stands can last at least a decade has important management implications for resource professionals interested in sustaining oak forests in the eastern United States.  相似文献   

7.
Age structure and regeneration dynamics of subalpine fir (Abies fargesii) forest were studied across the altitudinal range in both the north and south aspects of the Qinling Mountains, China. Ages of individual fir trees were determined based on the number of rings counted from cores and the number of years to reach coring height estimated using age–height regression. Fir age structure and regeneration dynamics were similar in both the north and south aspects. A unimodal population age structure was found at the low- and mid-elevations in both aspects, indicating that environmental factors might play an important role in shaping A. fargesii age structure and regeneration at those sites. There was a recruitment pulse during the time period 1830–1890 at each altitudinal site, but no stem recruitment occurred at the low- and mid-elevations in the last century, which might be attributed to the intensive cover of understory bamboo. Fir trees were, however, persistently recruited at the upper limits during the last 150 years, and the fir tree density at the upper limits was significantly higher than that at the lower limits in both aspects. The fir population at the upper limits showed a significant increase in recruitment and stem density relative to the fir population at the low- and mid-elevations in the last century. We propose that the differences in recruitment might promote variations in stand structure and regeneration dynamics of the subalpine fir forests along the altitudinal gradient in the Qinling Mountains, China.  相似文献   

8.
Wu Gang  Li Junqing 《林业研究》1998,9(4):290-291
The distribution, regeneration and succession ofFagus in China were systematically analyzed in comparison with those in Europe and in northern America. The results showed that it was very likely that China was the distribution center ofFagus, which originated in eastern Asia, migrated into northern America and then into Europe. Distribution ofFagus in China is relatively independent with seven species. The main reason for wide distribution ofFagus in Europe, but unitary species, is possibly the influence of the climate in Quaternary Period, and also related with influence of the ocean climate. This study was supported by National Natural Sciences Foundation of China (39500116 and 39670145) (Responsible Editor: Chai Ruihai)  相似文献   

9.
We used a 5-decade chronosequence of harvest openings to characterize population and community-level responses of small mammals to forest management targeting oak regeneration in southern Indiana. Live-trapping at 42 different sites allowed modeling of occupancy and relative abundance using environmental covariates while incorporating imperfect detection. Species richness was higher in smaller openings on southwest-facing aspects. Similarity between species richness of different age classes decreased with increasing site age. Eastern chipmunk (Tamias striatus) relative abundance was greater in early seral stages, i.e., at young sites with low basal areas. Relative abundance of white-footed mice (Peromyscus leucopus) exhibited different responses to coarse woody debris on sites versus microsites. Pine voles (Microtus pinetorum) and short-tailed shrews (Blarina brevicauda) were more likely to occupy older sites. We observed a greater relative abundance of short-tailed shrews at sites with steep and northeast-facing slopes. Northeast-facing slopes also resulted in higher short-tailed shrew occupancy rates. Incorporating detection probability enabled us to derive more accurate estimates of relative abundance and, when coupled with a Bayesian framework, permitted the estimation of occupancy for uncommon species. Our estimated responses can be used by forest managers to determine the potential impacts of even-aged and uneven-aged oak management on small mammals, and the statistical methodology we used can be applied even more broadly to improve understanding of wildlife responses to forest management.  相似文献   

10.
Beech trees occur in significantly lower latitudes in continental East Asia than in Europe and North America. They are common deciduous trees in the deciduous forests of the temperate zone in Europe, the eastern part of North America and Japan. In continental East Asia, however, they are absent in the deciduous forests of the temperate zone, but occur in the forests of mountains in the moist subtropical zone, south of 34° Northern Latitude. The lower limits of their distribution in these mountains show a significantly different pattern from the usual distribution pattern of plants and vegetation: it declines as the latitude decreases. The altitudinal belts of beech species lie higher in the northern than in the southern parts of their distribution areas in China. Based on an analysis of the climate and the phenology of these deciduous trees, we show that the prevailing monsoon conditions are the main factor affecting the distribution of the Chinese beech species.  相似文献   

11.
The eastern Canadian boreal forest exhibits a specific disturbance regime where forest fires are less frequent than in the western part. This particularity may explain the abundance of irregular stands with distinct ecological features. To ensure sustainable forest management, these characteristics require the implementation of an adapted silviculture regime. In this context, two selection cutting methods were developed and compared with more conventional techniques, initially designed for cutting more regular stands of the boreal forest (cutting leaving small merchantable stems, careful logging preserving advance regeneration). The comparison focused on the capacity of treatments to maintain the primary attributes of irregular boreal forests, including complex vertical structure, abundant tree cover, species composition, and an abundance of dead wood. Mortality and regeneration processes were also compared.  相似文献   

12.
Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0–10 cm) across 6–8-year-old silvicultural canopy gaps in three 50–70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3) pools, net N mineralization and nitrification rates, and NH4+ and NO3 ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3 pools, net N mineralization and nitrification rates, and NH4+ and NO3 IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of mineral soil samples between gap and forest positions revealed that soil originating from gaps had greater net nitrification rates than forest samples, regardless of incubation environment. Overall, our results suggest that increased N availability in 6–8-year-old silvicultural gaps in young western Oregon forests may be due more to the quality and quantity of litterfall inputs resulting from early-seral species colonizing gaps than by changes in temperature and moisture conditions caused by gap creation.  相似文献   

13.
Bark beetles are largely known for their ability to undergo intermittent population eruptions that transform entire landscapes and pose significant economic hardships. However, most species do not undergo outbreaks, and eruptive species usually exert only minor disturbances. Understanding the dynamics of tree-killing noneruptive species can provide insights into how beetles persist at low densities, and how some spatiotemporal patterns of host predisposition may more likely favor breaching eruptive thresholds than others. Elucidating mechanisms behind low-density populations is challenging, however, due to the requirement of long-term monitoring and high degrees of spatial and temporal covariance. We censused more than 2700 trees annually over 7 years, and at the end of 17 years, in a mature red pine plantation. Trees were measured for the presence of bark beetles and wood borers that breed within the primary stem, root weevils that breed in root collars, and bark beetles that breed in basal stems. We quantify the sequence of events that drive this decline syndrome, with the primary emergent pattern being an interaction between below- and above-ground herbivores and their fungal symbionts. This interaction results in an expanding forest gap, with subsequent colonization by early-successional vegetation. Spatial position strongly affects the likelihood of tree mortality. A red pine is initially very likely to avoid attack by tree-killing Ips beetles, but attack becomes increasingly likely as the belowground complex spreads to neighboring trees and eventually make trees susceptible. This system is largely internally driven, as there are strong gap edge, but not stand-edge, effects. Additional stressors, such as drought, can provide an intermittent source of susceptible trees to Ips beetles, and elevated temperature slightly accentuates this effect. New gaps can arise from such trees as they subsequently become epicenters for the full complex of organisms associated with this decline, but this is not common. As Ips populations rise, there is some element of positive feedback, in that the proportion of killed trees that were not first colonized by root organisms increases. This positive feedback is very weak, however, and we propose the slope between beetle population density and reliance on host stress as a quantitative distinction along a gradient from noneruptive through eruptive species. Almost all trees colonized by Ips were subsequently colonized by wood borers, likely a source of negative feedback. We discuss implications to our overall understanding of cross-scale interactions, between-guild interactions, forest declines, and eruptive thresholds.  相似文献   

14.
Changes to ecosystems caused by introduced herbivores can be predictable, stepwise transitions or unpredictable and even irreversible state changes. This study's objectives were to explore effects on forest succession and soil development 5 years after moose (Alces alces L.) were fenced out of areas within and adjacent to a national park in Newfoundland, Canada. Study plots spanned a range of understorey broadleaf plant associations with regenerating balsam fir (Abies balsamea (L.) Mill.), an important winter forage plant for moose and a dominant canopy tree throughout Newfoundland. After 5 years, height–diameter ratios were significantly larger for larger basal diameters of understorey balsam fir in unfenced, but not in fenced subplots, suggesting that growth of the conifer is compromised within the exclosure. In contrast, for most broadleaf trees and shrubs, moose removal by fencing results in greater heights and basal diameters than in control subplots. The competitive advantage of broadleaf trees and shrubs over balsam fir in the short-term may be a result of past sustained heavy moose browsing benefiting plants that are better at investing resources into below-ground growth or benefiting plants that have broader leaf canopies. It is not clear how long the broadleaf transition state we document will continue. Restorative actions intended to mimic usual patterns of forest regeneration in this region of Newfoundland might best consider moose removal with site preparation and/or planting to historic densities.  相似文献   

15.
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxylon and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30–60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F. brayleyana, provided a clear representation of early successional species, with marked increase in Amax in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as falling along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar Amax across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.  相似文献   

16.
Five aromatic plants, Carum carvi (caraway), Apium graveolens (celery), Foeniculum vulgare (fennel), Zanthoxylum limonella (mullilam) and Curcuma zedoaria (zedoary) were selected for investigating larvicidal potential against mosquito vectors. Two laboratory-reared mosquito species, Anopheles dirus, the major malaria vector in Thailand, and Aedes aegypti, the main vector of dengue and dengue hemorrhagic fever in urban areas, were used. All of the volatile oils exerted significant larvicidal activity against the two mosquito species after 24-h exposure. Essential oil from mullilam was the most effective against the larvae of A. aegypti, while A. dirus larvae showed the highest susceptibility to zedoary oil.  相似文献   

17.
The single-tree selection system is an important option for management of Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) forests because it provides continuous cover, requires low investments for tending, and promotes natural regeneration as well as high stand resistance and elasticity. It is often regarded as a very conservative system that usually results in only minor spatiotemporal changes in forest structure and composition. We studied management history, structural changes, regeneration dynamics, and light climate of a traditional single-tree farmer selection silver fir-Norway spruce forest (site typology Bazzanio-Abietetum). Stand structure was analyzed on five 0.25 ha permanent plots in 1994, 2001, and 2008. Regeneration density and height growth, forest floor vegetation, and light climate were also assessed on 1.5 × 1.5 m regeneration subplots in 2001 and 2008. Tree cores extracted from dominant trees from both species in two plots were used for reconstructing stand history and age structure of the canopy layer. We documented the forest response to three types of selection management regimes: excessive, normal, and conservative. Excessive management with harvest intensity significantly above the increment was documented until the late 1950s, including two peaks of heavy fellings (diameter limit cut) in the 1880s and 1930s, which favoured establishment of Norway spruce and released regeneration. The period that followed was characterized by normal selection management, but was nevertheless marked by a decline of silver fir as a result of air pollution and several droughts. This led to sanitary fellings that were carried out from the late 1970s to the early 1990s. In the last two decades conservative management followed, which led to suppression and decline of regeneration, especially of Norway spruce, and loss of selection structure. Although we recorded lower regeneration potential of silver fir compared with Norway spruce within the seedling category, silver fir outcompeted Norway spruce within the small-sized tree category (1 cm < dbh ? 10 cm) because of its superior height growth in low light levels (diffuse light <6%) and occupied a greater share of the canopy. Nevertheless, we anticipate that over the long-term the low light regime will also cause regeneration decline of silver fir and broadleaves. Our research revealed significant structural changes in a single-tree farmer selection forest during the last 150 years. These were a result of variable management regime and environment. A farmer single-tree selection system could better mimic the natural disturbance regime if spatiotemporal combinations of diverse felling regimes would be used.  相似文献   

18.
Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

19.
In a growth chamber, we tested how the seasonal timing of placing a physical barrier (simulating a possible effect of log storage) and inflicting root damage impacted aspen (Populus tremuloides Michx.) root systems and their suckering capability. Roots from 4-year-old saplings were used, and one half of these root systems had the above-ground portion cut in the winter (dormant) while the other half was cut during the growing season in the summer. Damage was inflicted to the roots by driving a large farm tractor over them, and a covering treatment was applied using a polystyrene board to prevent suckers from emerging from the soil. Soil temperatures for the winter-cut root systems were kept at 5 °C over the growing season, using a water bath, while for the summer-cut root systems soil temperatures were maintained at 17 °C over the growing season. In the winter-cut root systems, both log storage and root wounding caused a 40% reduction in living root mass and carbohydrate reserves, as well as reducing sucker numbers and their growth performance. In the summer-cut root systems log storage and root wounding reduced living root mass by approximately 35% as well as sucker growth, but had less of an impact on the number of suckers produced.  相似文献   

20.
We examined the relative susceptibility of four mahogany species, Khaya ivorensis, Khaya anthotheca, Entandrophragma angolense, and E. utile, to Hypsipyla robusta attack. Seeds were obtained from one to three parent trees for each species. The research was conducted in the moist semideciduous forest zone in Ghana and used a randomized complete block design. Tree height and diameter and height to first branch were measured until 24 months after out-planting in the field. H. robusta damage was assessed by counting the numbers of shoots attacked, branches, and dead shoots. Khaya spp. grew better but experienced more attack than Entandrophragma spp. The relative susceptibility to H. robusta attack, from most to least, of the four species was: K. anthotheca > K. ivorensis > E. angolense > E. utile. At 24 months, the mean number of shoots attacked per tree ranged from 1.0 for an E. utile seed source to 3.6 on for a K. anthotheca seed source. At 15 months, K. anthotheca and K. ivorensis started branching at about 1.5 m, but height of clear trunk increased over time due to self-pruning. As K. anthotheca grew taller, the number of H. robusta attacks per tree declined. This suggested that selection of genotypes and species that are tolerant of H. robusta attack based on infestation of young plants may not be appropriate. Genetic factors more completely reflecting the response of different species and genotypes to H. robusta attack may manifest themselves at later growth stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号