首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Progress in implementing ecosystem approaches to conservation and restoration is slowed by legitimate concerns about the effects of such approaches on individual imperiled species. The perceived conflict between the restoration of fire-excluded forests and concomitant reduction of dense fuels and high-severity wildfire, versus the recovery of endangered species, has led to a policy ambiguity that has slowed on-the-ground action at a time when active management is urgently needed, both for ecosystem restoration and species conservation. The Mexican spotted owl (Strix occidentalis lucida) in the southwestern U.S.A. is emblematic of this perceived conflict, with numerous appeals and lawsuits focused on the species and vast acres of forest managed with habitat quality for this species in mind. We use spatial analysis across large landscapes in Arizona to examine potential conflicts between the desire to reduce the likelihood of uncharacteristically severe wildfire and restore native fire regimes, and the concurrent desire and legal mandate to manage forests for the recovery of the owl. Our spatially explicit analysis indicates that real conflicts between these management objectives exist, but that locations where conflicts might inhibit active forest management represent less than 1/3 of the 811,000 ha study region. Furthermore, within the areas where conflicts might be expected, the majority of the forest could be managed in ways that would reduce fire hazard without eliminating owl habitat. Finally, management treatments that emphasize ecosystem restoration might improve the suitability of large areas of forest habitat in the southwest that is currently unsuitable for owls. These results demonstrate that even where policy conflicts exist, their magnitude has been overstated. Active restoration of dry forests from which fire has been excluded is compatible in many areas with conservation and recovery of the owl. Identifying and prioritizing areas to meet the dual goals of ecosystem restoration and imperiled species conservation require a broad spatial approach that is analytically feasible but currently underutilized. Working together, conservation biologists, restoration ecologists, and forest managers can employ landscape-level spatial analysis to identify appropriate areas for management attention, identify suitable management practices, and explore the predicted consequences of alternative management scenarios on forests, fire ecology, and the fate of sensitive species of conservation concern.  相似文献   

2.
Natural disturbances including wildfire, insects and disease are a growing threat to the remaining late successional forests in the Pacific Northwest, USA. These forests are a cornerstone of the region's ecological diversity and provide essential habitat to a number of rare terrestrial and aquatic species including the endangered northern spotted owl (Strix occidentalis caurina). Wildfires in particular have reduced the amount of late successional forests over the past decade, prompting land managers to expand investments in forest management in an attempt to slow losses and mitigate wildfire risk. Much of the emphasis is focused specifically on late successional reserves established under the Northwest Forest Plan to provide habitat for spotted owls. In this paper, we demonstrate a probabilistic risk analysis system for quantifying wildfire threats to spotted owl habitat and comparing the efficacy of fuel treatment scenarios. We used wildfire simulation methods to calculate spatially explicit probabilities of habitat loss for fuel treatment scenarios on a 70,245 ha study area in Central Oregon, USA. We simulated 1000 wildfires with randomly located ignitions and weather conditions that replicated a recent large fire within the study area. A flame length threshold for each spotted owl habitat stand was determined using the forest vegetation simulator and used to predict the proportion of fires that resulted in habitat loss. Wildfire modeling revealed a strong spatial pattern in burn probability created by natural fuel breaks (lakes and lava flows). We observed a non-linear decrease in the probability of habitat loss with increasing treatment area. Fuels treatments on a relatively minor percentage of the forested landscape (20%) resulted in a 44% decrease in the probability of spotted owl habitat loss averaged over all habitat stands. The modeling system advances the application of quantitative and probabilistic risk assessment for habitat and species conservation planning.  相似文献   

3.
Regional conservation planning frequently relies on general assumptions about historical disturbance regimes to inform decisions about landscape restoration, reserve allocations, and landscape management. Spatially explicit simulations of landscape dynamics provide quantitative estimates of landscape structure and allow for the testing of alternative scenarios. We used a landscape fire succession model to estimate the historical range of variability of vegetation and fire in a dry forest landscape (size ca. 7900 km2) where the present-day risk of high severity fire threatens the persistence of older closed canopy forest which may serve as Northern Spotted Owl (Strix occidentalis caurina) habitat. Our results indicated that historically, older forest may have comprised the largest percentage of the landscape (∼35%), followed by early successional forest (∼25%), with about 9% of the landscape in a closed canopy older forest condition. The amount and condition of older forest varied by potential vegetation type and land use allocation type. Vegetation successional stages had fine-grained spatial heterogeneity in patch characteristics, with older forest tending to have the largest patch sizes among the successional stages. Increasing fire severities posed a greater risk to Northern Spotted Owl habitat than increasing fire sizes or frequencies under historical fire regimes. Improved understanding of historical landscape-specific fire and vegetation conditions and their variability can assist forest managers to promote landscape resilience and increases of older forest, in dry forests with restricted amounts of habitat for sensitive species.  相似文献   

4.
5.
6.
Abstract

Changing forest policies in both riparian and upland areas to help protect threatened and endangered species have contributed to the reduction of timber harvests in western Washington. The economic, biodiversity, and environmental impacts of these policy actions have been substantial. Policy simulations across 9.4 million acres of timber-land show that relative to proactive management strategies, current habitat conservation and environmental programs (largely based on a reservation strategy) result in net present value reductions to forestland owners of $9.9 billion. Accompanying these asset value reductions are employment losses (sustained) of 30% and tax receipt losses of 26%. The policy simulations further demonstrate that proactive management will not decrease the long-term percentage of the upland landscape occupied by functionally old forests relative to the reservation strategy. In the riparian area, adoption of a reservation strategy actually decreases (by 29%) the percent of the landscape occupied by functionally old forests relative to a proactive management approach. These results illustrate the importance of proactively managing western Washington forests to provide maximum functionally old forest habitat for endangered upland animals (such as the northern spotted owl and the marbled murrelet) as well as riparian species.  相似文献   

7.
Forests characterized by mixed-severity fires occupy a broad moisture gradient between lower elevation forests typified by low-severity fires and higher elevation forests in which high-severity, stand replacing fires are the norm. Mixed-severity forest types are poorly documented and little understood but likely occupy significant areas in the western United States. By definition, mixed-severity types have high beta diversity at meso-scales, encompassing patches of both high and low severity and gradients in between. Studies of mixed-severity types reveal complex landscapes in which patch sizes follow a power law distribution with many small and few large patches. Forest types characterized by mixed severity can be classified according to the modal proportion of high to low severity patches, which increases from relatively dry to relatively mesic site conditions. Mixed-severity regimes are produced by interactions between top-down forcing by climate and bottom-up shaping by topography and the flammability of vegetation, although specific effects may vary widely across the region, especially the relation between aspect and fire severity. History is important in shaping fire behavior in mixed-severity landscapes, as patterns laid down by previous fires can play a significant role in shaping future fires. Like low-severity forests in the western United States, many dry mixed-severity types experienced significant increases in stand density during the 20th century, threatening forest health and biodiversity, however not all understory development in mixed-severity forests increases the threat of severe wild fires. In general, current landscapes have been homogenized, reducing beta diversity and increasing the probability of large fires and insect outbreaks. Further loss of old, fire tolerant trees is of particular concern, but understory diversity has been reduced as well. High stand densities on relatively dry sites increase water use and therefore susceptibility to drought and insect outbreaks, exacerbating a trend of increasing regional drying. The need to restore beta diversity while protecting habitat for closed-forest specialists such as the northern spotted owl call for landscape-level approaches to ecological restoration.  相似文献   

8.
Species distributions are determined by complex interplays between multi-scale factors. Conservation management, however, often occurs at a single scale of the site level. This is true for bird communities of restored savannas and mixed woodlands in the central U.S. In this region, many historic open-canopy oak savanna habitats have become closed canopy mixed woodlands due to loss of landscape-scale disturbance from fire and grazing. Site-level management efforts return some mixed woodland habitats back to savanna through fire and mechanical thinning. Savanna and woodland historically formed complex mosaic landscapes at the ecotone between prairies and Eastern deciduous forests and now exist within landscapes that vary in amount of open (e.g., perennial grassland and row crop agriculture) and woodland habitat. To understand the interplay between site and landscape level factors in savanna restoration, we sampled the breeding bird community in four combinations of site and landscape: restored savanna in open landscapes, restored savanna in woodland landscapes, and closed canopy woodland in both landscapes. We found that the outcome of site-level savanna restoration depended on the surrounding landscape. Compared to other treatment types, restored savannas in open landscapes supported a distinctive bird community characterized by high species richness, bird abundance, and percent of ground feeders, shrub nesters, and edge species. Both savanna and woodland sites in the open landscape had a higher percent of species of conservation concern, while at both site and landscape levels, woodland was associated with a higher percent of area sensitive species and habitat specialists. Our results suggest savanna restoration efforts should focus on sites that exist either in open country or on edges where closed canopy forest meets open country. This strategy would combine site and landscape level benefits of savanna restoration for avian diversity, while also preserving the conservation benefits of large tracts of intact forest.  相似文献   

9.
Fires occur frequently in dry forests of the Inland West. Fire effects vary across the landscape, reflecting topography, elevation, aspect, slope, soils, and vegetation attributes. Patches minimally affected by successive fires may be thought of as ‘refugia’, islands of older forest in a younger forest matrix. Refugia support species absent within the landscape matrix. Our goal was to predict the occurrence of pre-settlement refugia using physiographic and topographic variables.We evaluated 487 plots across a 47000 ha landscape using three criteria to identify historical fire refugia: different structure from surrounding matrix; different fire regime from surrounding matrix; presence of old individuals of fire-intolerant tree species. Several combinations of aspect, elevation, and topography best predicted refugial presence.Less than 20% of the pre-settlement landscape was identified as historical fire refugia. Refugia were not connected except by younger stands within the matrix. Current management goals of increasing amounts and connectivity of old, refugia-like forests for the benefit of species associated with late-successional habitat increase the risk of insect and pathogen outbreaks and catastrophic wildfires.  相似文献   

10.
Simulation models of disturbance and succession are being increasingly applied to characterize landscape composition and dynamics under natural fire regimes, and to evaluate alternative management strategies for ecological restoration and fire hazard reduction. However, we have a limited understanding of how landscapes respond to changes in fire frequency, and about the sensitivity of model predictions to assumptions about successional pathways and fire behavior. We updated an existing landscape dynamics model (LADS) to simulate the complex interactions between forest dynamics, fire spread, and fire effects in dry forests of the interior Pacific Northwest. Experimental model runs were conducted on a hypothetical landscape at fire rotations ranging from 5 to 50 years. Three sensitivity analyses were carried out to explore the responses of landscape composition to (1) parameters characterizing succession and fire effects on vegetation, (2) the probability of fire spread into different successional stages, and (3) the size and spatial pattern of static fire refugia. The area of old open-canopy forests was highest at the shortest fire rotations, and was particularly sensitive to the probability of stand-replacement fire in open-canopy forests and to the fire-free period required for ingrowth to occur in open-canopy forests. The area of old closed-canopy forests increased with lengthening fire rotation, but always comprised a relatively small portion of the landscape (<10%). The area of old closed-canopy forests increased when fire spread was more rapid in open-canopy forests than in closed-canopy forests, and when the physical landscape incorporated large “fire refugia” with low fire spread rates. Old closed-canopy forests appear to comprise a relatively minor landscape component in mixed-severity fire regimes with fire rotations of 50 years or less. However, these results are sensitive to assumptions about the spatial interactions between fire spread, landscape vegetation patterns, and the underlying physical landscape.  相似文献   

11.
A fire-risk model was developed using a stand-structure approach for the forests of the eastern slopes of the Washington Cascade Range, USA. The model was used to evaluate effects of seven landscape-scale silvicultural regimes on fire risk at two spatial scales: (1) the risk to the entire landscape; and (2) the risk to three reserve stands with stand structures associated with high conservation priorities (layered canopy, large trees, multiple species). A 1000 ha landscape was projected five decades for each management regime using an individual tree, distance-independent growth model. Results suggest that a variety of silvicultural approaches will reduce landscape fire risk; however, reserve stand fire risk is minimally decreased by thinning treatments to neighboring stands. Intensive fuel reduction through prescribed burning and selection of reserve stands in favorable topographic positions provide substantial fire risk reductions.  相似文献   

12.
Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ∼2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and Ontario (Canada), where spatially distinct timber harvest and fire suppression histories have differentially altered forest conditions (composition, age–class distribution, and landscape structure) among major management areas, effectively resulting in forest landscape “bifurcation.” We used a forest landscape simulation model to evaluate potential for four hypothetical management and two natural disturbance scenarios to restore forest conditions and reduce bifurcation, including: (1) a current management scenario that simulated timber harvest and fire suppression practices among major landowners; (2) three restoration scenarios that simulated combinations of wildland fire use and cross-boundary timber harvest designed to emulate natural disturbance patterns; (3) a historical natural disturbance scenario that simulated pre-EuroAmerican settlement fire regimes and windthrow; and (4) a contemporary fire regime that simulated fire suppression, but no timber harvest. Forest composition and landscape structure for a 200-year model period were compared among scenarios, among major land management regions within scenarios, and to six RNV benchmarks. The current management scenario met only one RNV benchmark and did not move forest composition, age–class distribution, or landscape structures toward the RNV, and it increased forest landscape bifurcation between primarily timber-managed and wilderness areas. The historical natural disturbance scenario met five RNV benchmarks and the restoration scenarios as many as five, by generally restoring forest composition, age–class distributions, and landscape structures, and reducing bifurcation of forest conditions. The contemporary natural disturbance scenario met only one benchmark and generally created a forest landscape dominated by large patches of late-successional, fire-prone forests. Some forest types (e.g., white and red pine) declined in all scenarios, despite simulated restoration strategies. It may not be possible to achieve all objectives under a single management scenario, and complications, such as fire-risk, may limit strategies. However, our model suggests that timber harvest and fire regimes that emulate natural disturbance patterns can move forest landscapes toward the RNV.  相似文献   

13.
Forestry practices such as fuel-reduction burning and maintenance of road networks can negatively impact avian assemblages, both directly by changing habitat structure and indirectly by creating conditions favorable for predators or competitors. The Brigalow Belt forests include some of the largest contiguous areas of native forest in the temperate and sub-humid zones of eastern Australia. Over 1 million ha of these forests are proposed to be converted from forestry to conservation tenure, yet the impacts on the avifauna of current and potential future forest management practices are not known. We investigated the influence of road edges and habitat type and structure on the avifauna of a 356 000 ha forest. Survey sites were either <50 m or >300 m from a road, and in either cypress pine Callitris glaucophylla forest, spotted gum Corymbia citriodora forest with a regenerating cypress pine/buloke Allocasuarina luehmannii understorey or spotted gum forest with an open understorey due to fuel-reduction burning. The avifauna differed significantly among vegetation types but not with proximity to a road, with the greatest differences between cypress pine and both types of spotted gum forest. The noisy miner Manorina melanocephala, an aggressive avian competitor, appears to be the factor mediating these assemblage-level differences. Noisy miners were rare in cypress pine forest but were three times more numerous than any other species in spotted gum forest. Spotted gum forest with a regenerating understorey had fewer noisy miners. Although total bird abundance was highest in open spotted gum forest, the species richness and abundance of passerines smaller than noisy miners was significantly lower in this forest type. Abundance of small passerines was eight times higher in sites where <3 noisy miners were recorded. Only one species, the eastern yellow robin, was influenced by proximity to a road edge. Cypress pine forest is potentially an important refuge for smaller birds. The results suggest that burning regimes that reduce regeneration of the cypress pine and buloke subcanopy in spotted gum forest potentially are exacerbating the problem of noisy miner domination of the avifauna.  相似文献   

14.
The Western Ghats in India is one of the 25 global hotspots of biodiversity, and it is the hotspot with the highest human density. This study considers variations in the regional fire regime that are related to vegetation type and past human disturbances in a landscape. Using a combination of remote sensing data and GIS techniques, burnt areas were delineated in three different vegetation types and various metrics of fire size were estimated. Belt transects were enumerated to assess the vegetation characteristics and fire effects in the landscape. Temporal trends suggest increasingly short fire-return intervals in the landscape. In the tropical dry deciduous forest, the mean fire-return interval is 6 years, in the tropical dry thorn forest mean fire-return interval is 10 years, and in the tropical moist deciduous forest mean fire-return interval is 20 years. Tropical dry deciduous forests burned more frequently and had the largest number of fires in any given year as well as the single largest fire (9900 ha). Seventy percent, 56%, and 30% of the tropical moist deciduous forests, tropical dry thorn forests, and tropical dry deciduous forests, respectively have not burned during the 7-year period of study. The model of fire-return interval as a function of distance from park boundary explained 63% of the spatial variation of fire-return interval in the landscape. Forest fires had significant impacts on species diversity and regeneration in the tropical dry deciduous forests. Species diversity declined by 50% and 60% in the moderate and high frequency classes, respectively compared to the low fire frequency class. Sapling density declined by ca. 30% in both moderate and high frequency classes compared to low frequency class. In tropical moist deciduous ecosystems, there were substantial declines in species diversity, tree density, seedling and sapling densities in burned forests compared to the unburned forests. In contrast forest fires in tropical dry thorn forests had a marginal positive effect on ecosystem diversity, structure, and regeneration.  相似文献   

15.
Summary

We utilized the Boise National Forest's Hazard/Risk model, along with fire history records and fire behavior models, to estimate the current and anticipated levels of large wildfires and associated greenhouse gas and particulate emissions based on the forest condition and wildfire regime on the BNF. The model indicated that the forests at greatest risk of large, intense wildfires are the dense pondero-sa pine-Douglas-fir forests that make up over 1.1 million acres on the forest. We conclude that without an aggressive treatment program to reduce large areas of contiguous heavy fuel loadings the forest will be burned at an annual average rate of about 7.5% of the remaining at-risk forest. Using recent fire data to develop average patterns of intensity in wildfires within this forest type, we estimate that emissions will average around 1 million tons of carbon (C) per year over the next 20 years as the bulk of the ponderosa pine forests are burned. An aggressive treatment program featuring the removal of fuels where necessary, and prescribed fire as a means of re-introducing fire to these ecosystems, would result in a 30-50 percent reduction in the average annual wildfire experienced in the dense ponderosa pine forests, a 14-35% decrease in the average annual C emissions, and a 10-31% decrease in particulate emissions. We argue that the most effective way to curb emissions is with an aggressive treatment program linked to a landscape-based ecosystem management plan. This would have the effect of breaking up large contiguous landscape patterns so that fires become more patchy and diverse in their environmental impact, resulting in significantly reduced emissions as well as improved landscape diversity.  相似文献   

16.
Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often designated as areas where only limited management action can take place within a fixed-width zone. These highly productive forests have developed heavy fuel loads capable of supporting stand-replacing crown fires that can alter wildlife habitat and ecosystem function, and contribute to stream channel erosion. Objectives of this study were to determine whether adjacent coniferous riparian and upland forests burned historically with different frequencies and seasonalities, and whether these relationships varied by forest, site, and stream characteristics. We measured dendrochronological fire records in adjacent riparian and upland areas across a variety of forest, site and stream conditions at 36 sites in three sampling areas in the northern Sierra Nevada.  相似文献   

17.
Changes in historical forest composition and structure may have cascading effects throughout the forest community. Perhaps nowhere is there a better example of current forests that carry a legacy from their past than in eastern North America. The Cerulean Warbler (Dendroica cerulea), a declining Neotropical migratory bird of high conservation concern, is one excellent example of a species that seems to be sensitive to both landscape configuration and subtle features of eastern forests of North America. We used the Cerulean Warbler as a model species to demonstrate how an appreciation of fine-scale structural attributes of forests may improve our ability to conserve late-successional forest species. To do this we evaluated the extent to which multiscale habitat features were associated with density, spatial distribution, and nesting success of Cerulean Warblers in 12 mature forest sites in southeast Ohio, 2004–2006. Results suggest that adjacency of regenerating clear-cuts did not influence density or nesting success of Cerulean Warblers in adjacent mature forest. Instead, variation in demographic parameters was best explained by local habitat features. Density and nesting success were positively associated with canopy openness, numbers of large-diameter trees, and number of grapevines—all of which are typical of heterogeneous steady-state phase forests. Thus, improved management for Cerulean Warblers may require creating features (e.g., large canopy gaps) that mimic old-growth forests. Although fragmentation and habitat loss remain important contributors to population declines of many mature forest species, our work provides evidence that subtle changes in forest structure, particularly to features associated with old forests, warrant additional attention from the conservation community.  相似文献   

18.
Forest Stewardship Council (FSC) is one of the leading forest certification schemes. While many studies concern political aspects and social outcomes of FSC, little is known about the contribution of certification to biodiversity conservation. In Europe, the Russian Federation and Sweden have the largest areas of FSC-certified forest. We assessed the potential of FSC certification for boreal biodiversity conservation in terms of standard content, and outcomes as habitat area set aside and habitat network functionality. First, we compared the biodiversity conservation indicators at different spatial scales in Swedish and Russian FSC standards. Second, focusing on one large state forest management unit in each country, we compared the areas of formally and voluntarily set aside forests for biodiversity conservation. Third, we evaluated the structural habitat connectivity by applying morphological spatial pattern analysis, and potential functional connectivity by using habitat suitability index modelling for virtual species. The Russian standard included indicators for all spatial scales of biodiversity conservation, from tree and stand to landscape and ecoregions. The Swedish standard focused mainly on stand and tree scales. The area of voluntary set-asides for FSC was similar in Sweden and Russia, while formal protection in the Russian case study was three times higher than in the Swedish one. Swedish set-aside core areas were two orders of magnitude smaller, had much lower structural and potential functional connectivity and were located in a fragmented forestland holding. We conclude that to understand the potential of FSC certification for biodiversity conservation both the standard content, and its implementation on the ground, need to be assessed. We discuss the potential of FSC certification for biodiversity conservation with different levels of ambition. We stress the need for developing rapid assessment tools to evaluate outcomes of FSC for biodiversity conservation on the ground, which could be used by forest managers and FSC-auditors toward adaptive governance and management.  相似文献   

19.
Habitat loss and fragmentation have been associated with the decline of endangered species. In 1987, a catastrophic fire in the northern Great Hing'an Mountains of China, where the main habitat of sables (Martes zibellina) is located, aggravated the loss and fragmentation of the forest landscape. Due to restricted distribution and low population density, sables were listed in the national first-grade protected species in China. The objective of this paper was to identify to what extent the habitat of sables had been restored 13 years after the fire. Based on the behavioral data, which came from field survey information by radio-tracking, GPS (Global Positioning System) and forest inventory data, suitability habitat maps were derived using the Ecological Niche Suitability Model (ENSM). In addition, the habitat structure was analyzed with selected landscape indices. Although forest cover mostly had been restored by 2000, the results indicated that, compared to the pre-fire situation, the areas of suitable habitat had been reduced significantly, especially those of less suitable, marginally suitable and moderately suitable designation. Fragmentation was aggravated, and suitable patches were found to be further isolated with the exception of those in most suitable areas. The ratio of the patch perimeter to area in unsuitable, moderately suitable and suitable areas decreased, while the ratios within other suitability types increased. Moreover, the percentage of soft boundaries decreased slightly, which can influence the redistribution of sables. The results above indicated that the suitable habitat had deteriorated, and the restoration of the sables' habitat remained to be done.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号