首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragmentation is a critical issue for tree populations because the creation of small patches can reduce local population size and increase isolation, both of which can promote inbreeding and its negative consequences, as well as loss of genetic diversity. To test the hypothesis that patch size and isolation influence mating patterns or seed production in forest trees, we utilize the spatial array of trees of an urban population of Chinese Pine (Pinus tabulaeformis Carr.) planted in patches around Beijing. Our design includes 28 urban patches, with patch size ranging from 1 to 2000 adult trees and isolation (edge distance index) ranging from 37.5 m to 245.8 m. We examined the average number of seeds per cone and percentage of viable seed per cone for each patch as measures of seed production. By utilizing seven paternally inherited chloroplast microsatellite loci, we estimated the mating pattern parameters for each patch, including the level of selfing, the amount of immigrant pollen and the effective number of pollen sources (Nep). Using a general linear model selection procedure based on AIC value, we found patch size was the best predictor of the selfing and immigration rate; smaller patches had a higher selfing and immigration rate. Small patches with one adult had relatively high Nep which indicates connectivity among urban patches. However, due to the reduced amount of immigrant pollen and limited diversity of local pollen, intermediate sized patches (with 5–10 adults) had the lowest Nep among the study patches. For patches with more than 10 adults, Nep was increased with patch size. The percentage of viable seeds per cone significantly decreased with patch size, indicating a possible negative consequence of inbreeding. The effect of patch size on mating patterns and seed production suggests that the patches of trees experience less connectivity than trees within continuous forest. These findings indicate that forest management practices should emphasize the maintenance of an optimal patch size because, despite the fact that tree species show the potential for long distance pollen movement, the number of local trees strongly influences the mating patterns.  相似文献   

2.
Natural regeneration is an important process to reverse the loss of forests. Understanding the process of natural regeneration is crucial for achieving sustainable forest management. In this study, we examined the effects of seed and pollen dispersal in naturally regenerated populations of Castanopsis fargesii. Genetic variation in six populations along two successional series (three successional stages in each series: early, pre-climax, and climax) was assayed using RAPD (random amplified polymorphic DNA) markers. High genetic variability was observed as measured with Shannon's information index. A majority of genetic variation was distributed within populations (Φst = 0.1271) and significant isolation by distance existed among populations. A contrasting pattern of genetic variation along these two series was observed, representing different scenarios of natural regeneration processes. The ratio of the number of migrants between the mature populations to the number of migrants from the mature to immature populations was estimated as 1.146 ± 0.099 to 1.981 ± 0.164, implying that comparable seed and pollen dispersal might exist at a fine spatial scale (∼2 km2). The results suggest the critical role of seed dispersal in shaping genetic composition and diversity in the second-growth forests. Barriers to seed dispersal from a variety of genetic sources could result in low genetic diversity in naturally regenerated populations. Management that facilitates the connectivity of newly regenerated stands with mature forests could be effective for natural regeneration given the predominant role of short-distance dispersal of seeds in this species.  相似文献   

3.
We attempted to evaluate the genetic diversity of long-distance transported pollen flowing over fragmented Pinus densiflora populations during a mating season. A P.?densiflora clonal seed orchard, which was located in a rural area where many fragmented populations exist, was selected for pollen capture. Immigrant pollen captured by three clones having different flowering times was regarded as the pollen flowing over fragmented populations during a mating season. The genetic diversity (H e) values of the immigrant pollen captured by the three clones were high (H e?>?0.894). The correlation of paternity (r p) values of the seeds having immigrant parent generated from the three clones were calculated to be negative. From these parameters, the pollen cloud is considered to have maintained high genetic diversity during the mating season. The genetic composition of the pollen cloud showed slight variation. The pollen captured by different trees (i.e., clonal ramets of the three clones) was significantly different based on analysis of molecular variance. Especially, the pollen pools captured by trees planted in the western side of the orchard were significantly different from the gene pool of the surrounding populations. Factors affecting this differentiation could be that the donors of the pollen transported to the orchard vary with time, as well as nonuniform dispersal of the pollen. From these results, the pollen flowing over fragmented P.?densiflora populations is considered to have high genetic diversity, compensating to some extent for fragmentation.  相似文献   

4.
Using nine microsatellite loci, we studied the effects of selective logging on genetic diversity, mating system and pollen dispersal in a population of the tree species Hymenaea courbaril, located in a 546 ha plot in the Tapajós National Forest, Pará State, Brazil. We analyzed 250 offspring (nursery reared seedlings) collected after a logging episode from 14 open-pollinated seed trees. These were compared to 367 seedlings from 20 open-pollinated seed trees previously collected from the pre-logging primary forest. The genetic diversity was significantly lower in the post-logging seed cohort. In contrast to the pre-logging population, significant levels of selfing were detected in the post-logging population (tm = 0.962, P < 0.05). However, correlated matings were reduced and the effective number of pollen donors almost doubled after harvesting (3.8 against 7.2). Logging also reduced pollen immigration into the plot (from 55% to 38%) and we found no significant correlation between the size of the pollen donors and the number of seeds fathered. Inside the plot, pollen dispersal distance was shorter before logging than after (827 and 952 m, respectively) and the reproductive pollination neighbor area (Aep) was larger (average of 178 ha). The individual and average variance effective population size within families (ranged from 1.80 to 3.21, average of 2.47) was lower than expected in panmictic populations (Ne = 4). The results indicate that while logging greatly reduced the levels of genetic diversity after logging, it also increased genetic recombination within the population and constrained crossing among related individuals. The results show that low-density tropical tree species such as H. courbaril, when harvested in moderate levels may be resilient to a reduction in the reproductive population and may maintain similar levels of outcrossing and pollen dispersal after logging.  相似文献   

5.
Short distance pollen dispersal shapes the local genetic structure of plant populations and determines the opportunity for genetic drift and local selection. In this paper we focus on short distance dispersal (SDD) of pollen in a low-density stand of a savannah oak, Quercus lobata Née. Specifically, we are interested in the proportional contributions of pollen donors, the pollen dispersal kernel that describes local matings, the extent to which wind influences mating success, and the extent to which pollen sources vary within the large canopy of these trees. Using maximum likelihood paternity analysis, we assigned sires for 474 outcrossed progeny of five seed trees, representing 120 of 160 potential mating pairs within a 250 m radius of each focal tree (ca. 20 ha plots). We first established that the effective number of pollen donors for progeny with sires within the plot was about 10 individuals, with average weighted pollination distances of 114.1 m. We estimated 18.5% pollen immigration into the 20 ha plots. We next established that the SDD portion of the dispersal kernel is best described by the exponential power, inverse power, and Weibull functions, all that capture high local dispersal with steep decay. Two of these models suggest that long distance dispersal is abundant, represented by a fat tail, while the Weibull indicates depauperate long distance dispersal, represented by a thin tail. The addition of a directional component corresponding to the predominant wind axis had no meaningful impact on these models. Finally, we established that different parts of an individual tree canopy of Q. lobata sample from the same homogeneous pollen pool showing no bias towards pollen sources near that part of the canopy. Overall findings suggest low-density Q. lobata populations show steep decay of SDD. Policies and ordinances governing the amount of allowable tree removal of savannah oak populations should recommend the preservation of local clusters of adults, as well as some connectivity among clusters.  相似文献   

6.
Pollen flow from external sources is important for the conservation of tree species in fragmented forests or small populations, because it can be sufficient to prevent differentiation among them, and appears to be able to prevent the loss of their genetic diversity through genetic drift. In this study, we examined the genetic heterogeneity of pollen pools accepted by each Quercus semiserrata seed parent at the Khun Wang Royal Agriculture Research Center, Thailand, both within and among two mast fruiting years (2005 and 2007), using paternity analysis and analysis of molecular variance (AMOVA). The mating systems of the trees were also examined using the multilocus mating system model (MLTR), after determining the genotypes at eight microsatellite loci of 26 seed-trees and 435 seeds from 8 seed-trees in the 2 mast fruiting years. The average distance of effective pollen flow within the plot was estimated to be 52.4 m, and 95% of effective pollen was dispersed within 200 m, indicating that effective pollen flow is highly localized and that most effective pollen is contributed by near-neighbor trees. The proportion of effective pollen that immigrated from external sources was estimated to be 26.2%. The AMOVA analysis based on the pollen haplotypes showed that the pollen pools, both total and for each reproductive year, significantly genetically differed among the seed parents. Using a mixed mating model, the estimate of biparental inbreeding for the total population (tm − ts) was 0.013, indicating that a low proportion of mating occurred among close relatives. The effective number of pollen donors (Nep) was estimated to be 9.987 using the TwoGener model, or 10.989 using the mixed mating model. The effective number of pollen donors of seeds was higher in the mast fruiting year 2005 than in the other examined year, 2007. Consequently the allelic richness and genetic diversity of seeds produced in 2005 were higher than those produced in 2007. Overall, the results show that high outcrossing rates, high levels of gene flow from other populations and heterogeneity in the pollen received by an individual may enhance the ability of populations to maintain effective population sizes. Therefore, these processes may be sufficient to prevent loss of genetic diversity through genetic drift of Q. semiserrata at this study site.  相似文献   

7.
In this study we investigate the effect of fragmentation and disturbance on the spatial genetic structure, heterozygosity and inbreeding in Tabebuia ochracea (Bignoniaceae) in a seasonally Neotropical dry forest in the medium São Francisco River basin, Centre-East Brazil, based on the polymorphism at seven microsatellite loci. Four populations with different histories of disturbance and fragmentation were sampled: two continuous population (CP1 and CP2), with no history of recent disturbance and two fragmented and isolated population (FP1 and FP2), with recent history of disturbance due to logging for pasture establishment. Fragmented and continuous populations did not differ in any estimated parameter. However, all populations showed low levels of polymorphism and genetic diversity and high levels of inbreeding. Also, no spatial genetic structure was detected for populations using SPAGeDI software and no differentiation between these four populations was detected by Bayesian analyses performed with STRUCTURE software (K = 1). Differentiation measure by Wright's θ (0.032) and Hedrick GST (0.032) were significant but low. Our results strongly suggest that continuous populations are seed sources for the fragmented populations and that fragmentation and disturbance have been affecting these populations of T. ochracea in the Centre-East Brazil, leading to low levels of polymorphism and genetic diversity, and high inbreeding. Therefore, conservation efforts should increase in this region, with a reduction of agriculture expansion and the remove of cultivated areas and cattle from the Mata Seca and Lagoa do Cajueiro State Parks.  相似文献   

8.
Spatial genetic structure and diversity of Cryptomeria japonica trees in old growth forest but selectively logged in approximately 300 years ago were analyzed using seven nuclear microsatellite markers and one chloroplast microsatellite marker. The individuals were sampled from a 4-ha natural forest plot (200 m × 200 m), which are consisted of three size classes including newly regenerated individuals such as regenerated individuals (REG class; stem diameter at breast height (DBH), 5–110 cm), remaining individuals (REM class; DBH ≥ 110 cm), and old stumps. Genetic diversity was similar between the three groups. These results suggest that genes from the old growth forest may have been passed on to the next generation (i.e., the current forest). DNA extraction and analysis from old stumps was partly successful and we could compare the genetic diversity between old stumps and living trees using four microsatellite loci. Patterns of spatial genetic structure detected by analyses of the nuclear and chloroplast markers differed substantially; all nuclear markers showed significant positive autocorrelation (P < 0.05) over short distances, but the chloroplast marker showed no significant autocorrelation over any distance. We concluded that Moran's I spatial autocorrelation pattern for the chloroplast microsatellite may have been influenced by the extensive pollen flow characteristic of this species, because chloroplast DNA of C. japonica is paternally inherited through pollen and is a wind-pollinated species that produces abundant pollen every few years. In contrast, Moran's I spatial autocorrelation pattern for nuclear microsatellites may reflect limited seed dispersal in gaps where the forest has regenerated and low levels of seed shadow overlap due to past logging. The average seed dispersal distance was 86.0 m at the study site and about 34.0% of the seeds were from the outside of the site, which revealed by parentage analysis. The individuals remaining after logging, and the extensive pollen flow from outside our study plot, may play important roles in maintaining the forests on this island. Gaps created by the selective logging activities appear to have been important for the regeneration of this species in the past but in the present time, natural disturbances such as typhoon and landslide are also important for gap creation.  相似文献   

9.
The comparison between estimates of historical gene flow, using variance in allelic frequencies, and estimates of contemporary gene flow, using parentage assignment, is expected to provide insights into ecological and evolutionary processes at work within and among populations. Genetic variation at microsatellite loci was used to quantify genetic structure in two wind pollinated, gravity and animal-dispersed tree species (Fagus sylvatica L. and Fagus crenata Blum.) and to derive historical estimates of gene flow. The gene dispersal distances estimated assuming effective population density to be 1/4 of the observed density were ∼77 m in European beech and ∼40 m in Japanese beech. Parentage analyses and a neighbourhood model approach were used to estimate contemporary patterns of seed and pollen dispersal. Our results suggest restricted seed dispersal abilities in both European beech (δs = 10.5 m) and Japanese beech (δs = 12.4 m), with an exponential shaped seed dispersal kernel. A non-negligible rate of seed immigration (ms = 27%) was detected in European beech sites but not in Japanese beech site. Pollen dispersal within studied sites also appeared limited (δp = 41.63 m in European beech and δp = 79.4 m in Japanese beech), despite high rate of pollen immigration (mp = 68% in European beech and mp = 40% m in Japanese beech). Interestingly, contemporary and historical estimates of gene flow were within the same order of magnitude (a few tens of meters).  相似文献   

10.
In western Japan, Moso bamboo (Phyllostachys pubescens) forests have been expanding by replacing surrounding vegetation such as coniferous plantation forests and natural broadleaved forests. It has been speculated that the replacement of surrounding vegetation by bamboo forests could alter the vegetation water cycle and available water resources. We quantified stand-scale transpiration (E) in a bamboo forest on the basis of sap-flux measurements and compared the E value with values for coniferous forests. The annual E was estimated to be 567 mm. Seasonal trends in E primarily corresponded to seasonal trends in the vapor pressure deficit. Annual E for the bamboo forest was higher than that for the coniferous forests by 12% of annual precipitation (P). This difference in annual E is comparable with the difference in annual interception evaporation (I) relative to P between bamboo and coniferous forests; previous studies reported lower I for bamboo forests by ∼10% of P. Thus, the sum of E and I was comparable for bamboo and coniferous forests. As this study is the first measuring E of bamboo forests, further studies are required to examine the generality of our results.  相似文献   

11.
12.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

13.
Hybridisation through pollen dispersal from exotic plants is increasingly recognised as a threat to the genetic integrity of native plant populations. Its genetic impact can be greater in rare taxa, due to their vulnerability to pollen swamping by more abundant congeners. We assessed the likelihood of pollen dispersal from exotic eucalypt plantations into all of Australia's rare native eucalypts, and conducted a case study of Eucalyptus perriniana, which is rare in Tasmania. The Australia-wide study involved spatial analyses of the locations for each rare species superimposed on distributions of eucalypt plantations, which were combined with known taxonomically based reproductive barriers. Of the 74 nationally listed rare eucalypt taxa, 22 had locations within 10 km of plantations of the same genus, and eight were within 1 km. These eight proximal taxa are considered priorities for monitoring. In the most extreme case, 30% of point locations originating from herbarium records and field surveys for Eucalyptus conglomerata were within 1 km of exotic plantations. In the case study, E. perriniana revealed considerable reproductive compatibility with adjacent recently established Eucalyptus nitens plantations. However, F1 hybridisation between these species was limited, with 0.2% of the 18,625 seedlings grown from 100 single-tree open-pollinated seedlots being hybrids. For now, the probability of exotic gene flow into E. perriniana appears to be low, however this probability is likely to increase as more E. nitens flowers in the surrounding landscape. These studies suggest that understanding the breeding system and biology of these populations may reveal surprising resistance to such exotic hybridisation as well as identifying high risk situations to focus conservation management.  相似文献   

14.
Two new prenylated xanthones and a new prenylated tetrahydroxanthone, garcimangosxanthone A–C (1–3), along with fourteen known xanthones were isolated from the pericarp of Garcinia mangostana. Their structures were elucidated on the basis of spectroscopic data. Compounds 1 and 2 exhibited in vitro cytotoxicity against A549, LAC and A375 cell lines with IC50 values of 5.7–24.9 μM, which were comparable to those of doxorubicin.  相似文献   

15.
We examined water use by maturing Eucalyptus regnans, growing with or without an mid-storey stratum of Acacia spp. (Acacia dealbata or A. melanoxylon), for >180 consecutive days. Study sites were located in the Upper Yarra catchment area in south-eastern Australia. Depending on their contribution to stand basal area, mid-storey Acacia spp. increased total stand water use by up to 30%. Monthly water use in such stands reached more than 640,000 L ha−1 (compared to 545,000 L ha−1 in stands where acacias were absent) in early spring. Water use was curvilinearly related to sapwood area of Acacia spp. and logistically related to sapwood area of E. regnans. Water use of all three species showed a strong relation to daily maximum air temperatures. Distinct and simple relationships provide clear guides to the likely impacts of climate change and forest management on water yield. We compared a traditional up-scaling approach, from individual tree water use to stand water use, to a new approach that incorporates variation in temperature. Development of this approach can lead to greater precision of stand water use estimates – and in turn catchment water yield – under current climate change scenarios, which predict a rise in air temperatures of 0.6–2.5 °C by 2050 for the study area. Our temperature-dependent approach suggests that under conditions of non-limiting water availability, stand water use will rise by 2% for every 0.25 °C increase in maximum air temperatures during winter, and possibly more than that during summer.  相似文献   

16.
Wang QX  Li SF  Zhao F  Dai HQ  Bao L  Ding R  Gao H  Zhang LX  Wen HA  Liu HW 《Fitoterapia》2011,82(5):777-781
A new oxysporidinone analogue (1) and a new 3-hydroxyl-2-piperidinone derivative (2), along with the known compounds (−)-4,6′-anhydrooxysporidinone (3), (+)-fusarinolic acid (4), gibepyrone D (5), beauvercin (6),cerevisterol (7), fusaruside (8), and (2S,2′R,3R,3′E,4E,8E)-1-O-D-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine (9) were isolated from Fusarium oxysporum. Compounds 1-9 were evaluated for cytotoxicity using the MTT method against cancer cell lines, PC-3, PANC-1, and A549. Beauvericin showed cytotoxicity against PC-3, PANC-1, and A549 with IC50 value of 49.5 ± 3.8, 47.2 ± 2.9, and 10.4 ± 1.6 μM, respectively. Beauvericin also exhibited anti-bacterial activity towards methicillin-resistant Staphylococcus aureus (MIC = 3.125 μg/mL) and Bacillus subtilis (MIC = 3.125 μg/mL).  相似文献   

17.
Litterfall abundance and composition of organic and inorganic nitrogen and phosphorus forms were studied for 34 months in two different forest ecosystems (Vaccinio uliginosiBetuletum pubescentis (VuBp) and Empetro nigriPinetum (EnP)) in S?owiński National Park (northern Poland). Including broadleaves, litterfall abundance in VuBp was above 25% higher than in EnP. In VuBp the mean litterfall abundance was equal to 4050 kg ha−1 year−1 with needles (31%) and broadleaves (32%) dominating while in EnP the mean litterfall abundance was equal to 2828 kg ha−1 year−1 and needless made up 59% of total. Almost all litterfall fractions in both forest ecosystems followed a clear, coherent seasonal pattern with maximal values in Autumn and minimal values in the growing season. In general, inter-annual fall variation of needles, branches, broadleaves and seeds was not significant in both ecosystems, however, for the fall of needles and branches a decreasing tendency was observed. In VuBp and in EnP total litterfall (VuBp: T-N 97.5%, Norg 96.8%, EnP: T-N 95.6%, Norg 97.9%) as well as the needless (VuBp: T-N 31.9%, Norg 46.4%; EnP: T-N 53.5%; Norg 53.6%) were the most abundant with nitrogen with the supremacy of organic forms. Besides needles fall, the highest nitrogen return in VuBp was contributed by broadleaves, seeds and branches fall, while in EnP with branches and bark fall. The lowest nitrogen return was contributed by inflorescences and flower buds fall. Similar to organic nitrogen, organic phosphorus was dominant in VuBp (91%) and in EnP (77%) ecosystems. In VuBp total phosphorus contributed by broadleaves was comparable to deposited with needles. In the fallen needless phosphorus contribution was significantly higher in EnP than in VuBp. Nearly 40% of total phosphorus return was contributed by branches, seeds and other litterfall material in VuBp. Litterfall mass in VuBp showed positive correlation with air humidity, total nitrogen content in the rooting zone, and negative with underground water level and air temperature indicating lower resistance towards climatic stress. At both forest ecosystems total litterfall mass, total nitrogen and organic nitrogen were positively correlated with air humidity, while neither total litterfall, nor total nitrogen (T-N) and total phosphorus (T-P) at both forest ecosystems were correlated directly with precipitation volume. This is probably because air humidity is partially related to precipitation (rSp = 0.31), however it could be also an effect of sea sprays contribution. Homogeneous Pinus sylvestris stand indicates higher resistance towards unfavorable climatic conditions than Betula pubescens, and this is why it should be preferably used in afforestation campaigns in seashore.  相似文献   

18.
The influence of forest fragmentation on population and community dynamics of woody plants has been well established worldwide, but rarely at the level of an individual plant. We evaluated the influence of fragmentation on juvenile stem morphology of Acer saccharum Marsh. (sugar maple), while also examining light levels and considering possible confounding effects attributed to elevation gradients in temperate forests of northeastern Ohio, USA. At two sites, plant stem dimensions, canopy openness, and relative ground level elevation were measured using randomly positioned plots in forest edge and interior habitats that were within 25 and 60–100 m from a forest edge, respectively. Ratios of stem length to stem basal diameter were greater in forest interiors than near forest edges. These differences in stem morphology between habitats were likely a result of stem elongation in relation to a shade avoidance response in forest interiors that were consistently darker than forest edge areas across study sites. By contrast, such morphological differences were likely not related to variation in relative ground level elevation since a subtle elevation gradient was detected at only one site. We encourage experimentation to identify mechanisms that affect plant stem morphology of young individuals and its influence, in turn, on plant population dynamics in fragmented forests.  相似文献   

19.
Liana-dominated forest patches constitute 15–20% of old-growth forests in the Eastern Amazon but are generally excluded from management for timber production. Here we ask if liana-dominated patches may be brought into production by clearing lianas and conducting enrichment planting (EP) of native timber species. We present growth results from 8 years of such EP trials. Rapid growth and low mortality of all species in this study suggest that EP in cleared liana patches can contribute to timber stocks in second and third harvests of managed forests. The most vigorous individuals of Parkiagigantocarpa and Schizolobium amazonicum in each enrichment site grew more than 1 cm diameter per year (rates were initially >2 cm yr−1), and attained dominant canopy positions and diameters equal to those of small canopy trees in the surrounding forest within 8 years of planting (mean dbh ∼18 cm and ∼20 cm, respectively, at year 8). Limited data on Ceiba pentandra plantings indicate a similar trajectory for this species (dbh ∼40 cm in 8 years). The most vigorous Swietenia macrophylla grew at least 1 cm per year in enrichment plots (mean dbh ∼10 cm in 8 years), but take longer to attain dominant positions. Tabebuia serratifolia may take much longer to reach the canopy than other species tested (rates <1 m yr−1). We attribute the excellent performance to light availability; planting in intact soil with minimal compaction and abundant organic material; and low competition rates maintained by periodic thinning of competing vegetation.  相似文献   

20.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号