首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration.  相似文献   

2.
The long-term response of total soil organic carbon pools (‘total SOC’, i.e. soil and dead wood) to different harvesting scenarios in even-aged northern hardwood forest stands was evaluated using two soil carbon models, CENTURY and YASSO, that were calibrated with forest plot empirical data in the Green Mountains of Vermont. Overall, 13 different harvesting scenarios that included four levels of aboveground biomass removal (20%, 40%, 60% and 90%) and four different rotation lengths (60 year, 90 year, 120 year, and No Rotation (NR)) were simulated for a 360 year period. Simulations indicate that following an initial post-harvest increase, total SOC decreases for several decades until carbon inputs into the soil pool from the re-growth are greater than losses due to decomposition. At this point total SOC begins to gradually increase until the next harvest. One consequence of this recovery pattern is that between harvests, the size of the SOC pool in a stand may change from −7 to 18% of the pre-harvest pool, depending on the soil pool considered. Over 360 years, the average annual decrease in total SOC depends on the amount of biomass removed, the rotation length, and the soil pool considered. After 360 years a stand undergoing the 90yr-40% scenario will have 15% less total SOC than a non-harvested stand. Long-term declines in total SOC greater than 10% were observed in the 60yr-60%, 60yr-90%, and 90yr-90% scenarios. Long-term declines less than 5% were observed in scenarios with 120 year rotations that remove 60% or less of the aboveground biomass. The long-term decreases simulated here for common management scenarios in this region would require intensive sampling procedures to be detectable.  相似文献   

3.
Safe and economical disposal of paper mill sludge is a key consideration for forest products industry. A study was conducted to examine the effects of amendments of sludge and nutrients on soil surface CO2 flux (Rs) in northern hardwood forests and to quantify the relat among R5, soil temperature, and moisture in these stands. The experiment was a randomized complete block design that included sludge-amended, fertilized, and control treatments in sugar maple (Acer saccharum Marsh) dominated hardwood forests in the Upper Peninsula of Michigan, USA. Results showed that Rs was positively correlated to soil temperature (R2=0.80, p<0.001), but was poorly correlated to soil moisture. Soil moisture positively affected the Rs only in the sludge-amended treatment. The Rs was significantly greater in the sludge-amended treatment than in the fertilized (p=0.033) and the control (p=0.048) treatments. The maximum Rs in the sludge-amended treatment was 8.8 μmol CO2·m−2·s−1, 91% and 126% greater than those in the fertilized (4.6 μmol CO2·m−2·s−1) and control (3.9 μmol CO2·m−2·s−1) treatments, respectively. The Rs did not differ significantly between the fertilized and control treatments. The difference in Rs between sludge-amended and the other treatments decreased with time following treatment. Foundation item: The research was funded by a NCASI grant to S.T. Gower. Wang CK was supported by Innovated Talent Program of Northeast Forestry University (2004–07) Biography: WANG Chuan-kuan (1963-), male, Professor in the Ecology Program, College of Forestry, Northeast Forestry University, Harbin 150040, China. Responsible editor: Chai Ruihai  相似文献   

4.
安全经济地处理造纸废渣是林产品工业的一个主要考虑因素。本研究测定了造纸废渣和养分的改良对北部硬阔叶林土壤表面 CO2通量的影响,并量化该林分中 RS、土壤温度和湿度之间的关系。实验在美国 Michigan 州 Upper Peninsul地区糖槭(Acer saccharum Marsh)为主的硬阔叶林内采用完全随机区组设计进行三个处理:废渣改良施用、施肥和对照。RS 与土壤温度成正相关(R2 =0.80,p<0.001),而与土壤湿度相关很弱。土壤湿度仅在废渣改良施用处理中与 RS成正相关。废渣改良施用处理的 RS显著高于施肥(p = 0.033)和对照处理(p=0.048)的 RS。废渣改良施用处理中的最大 RS 为 8.8 μmol CO2·m-2·s-1,分别比施肥(4.6 μmol CO2·m-2·s-1)和对照处理3.9 (μmol CO2·m-2·s-1)中的最大 RS 高 91%和 126%。施肥和对照处理的 RS之间无显著性差异。废渣改良施用和其他处理的 RS之间的差异随处理时间而较少。表 4 图 3 参 33。  相似文献   

5.
To investigate the interactive effects of CO2 concentration ([CO2]) and nitrogen supply on the growth and biomass of boreal trees, white birch seedlings (Betula papyrifera) were grown under ambient (360 μmol mol−1) and elevated [CO2] (720 μmol mol−1) with five nitrogen supply regimes (10, 80, 150, 220, and 290 μmol mol−1) in greenhouses. After 90 days of treatment, seedling height, root-collar diameter, biomass of different organs, leaf N concentration, and specific leaf area (SLA) were measured. Significant interactive effects of [CO2] and N supply were found on height, root-collar diameter, leaf biomass, stem biomass and total biomass, stem mass ratio (SMR), and root mass ratio (RMR), but not on root mass, leaf mass ratio (LMR), leaf to root ratio (LRR), or leaf N concentration. The CO2 elevation generally increased all the growth and biomass parameters and the increases were generally greater at higher levels of N supply or higher leaf N concentration. However, the CO2 elevation significantly reduced SLA (13.4%) and mass-based leaf N concentration but did not affect area-based leaf N concentration. Increases in N supply generally increased the growth and biomass parameters, but the relationships were generally curvilinear. Based on a second order polynomial model, the optimal leaf N concentration was 1.33 g m−2 for height growth under ambient [CO2] and 1.52 g m−2 under doubled [CO2]; 1.48 g m−2 for diameter under ambient [CO2] and 1.64 g m−2 under doubled [CO2]; 1.29 g m−2 for stem biomass under ambient [CO2] and 1.43 g m−2 under doubled [CO2]. The general trend is that the optimal leaf N was higher at doubled than ambient [CO2]. However, [CO2] did not affect the optimal leaf N for leaf and total biomass. The CO2 elevation significantly increased RMR and SMR but decreased LMR and LRR. LMR increased and RMR decreased with the increasing N supply. SMR increased with increase N supply up to 80 μmol mol−1 and then leveled off (under elevated [CO2]) or stated to decline (under ambient [CO2]) with further increases in N supply. The results suggest that the CO2 elevation increased biomass accumulation, particularly stem biomass and at higher N supply. The results also suggest that while modest N fertilization will increase seedling growth and biomass accumulation, excessive application of N may not stimulate further growth or even result in growth decline.  相似文献   

6.
Changes in soil respiration associated with forest harvest could increase net loss of CO2 to the atmosphere relative to pre-harvest values. By excavating quantitative soil pits across a gradient of physical disturbance in a harvested northern hardwood forest, this study examines C release from mineral soil. Mineral soil samples were analyzed for pH, percent organic matter (%OM), C and N concentration, δ13C, and total C per unit area. Results show a relationship between degree of disturbance and C concentration in soil 10-30 cm beneath the O-horizon. Highly disturbed sites show C depletion, with horizons from disturbed sites containing 25% less total C than the least disturbed sites. δ13C signatures of soil profiles at these sites show vertical mixing of plant-derived material into deeper mineral horizons. Mixing, as a result of physical disturbance, could have led to the observed C depletion by physical or chemical destabilization, or through the promotion of microbial respiration in deep mineral soil. Regardless of the mechanism, these results suggest elevated CO2 emissions from soil following harvest, and, thus, have implications for the validity of wood biomass as a carbon neutral energy source.  相似文献   

7.
Tropical forests, like boreal forests, are considered key ecosystems with regard to climate change. The temperature sensitivity of soil CO2 production in tropical forests is unclear, especially in eastern Asia, because of a lack of data. The year-round variation in temperature is very small in tropical forests such that it is difficult to evaluate the temperature sensitivity of soil CO2 production using field observations, unlike the conditions that occur in temperate and boreal forests. This study examined the temperature sensitivity of soil CO2 production in the tropical hill evergreen forest that covers northern Thailand, Laos, and Myanmar; this forest has small temperature seasonality. Using an undisturbed soil sample (0.2 m diameter, 0.4 m long), CO2 production rates were measured at three different temperatures. The CO2 production (SR, mg CO2 m−2 s−1) increased exponentially with temperature (T, °C); the fitted curve was SR = 0.023 e0.077T, with Q10 = 2.2. Although still limited, our result supports the possibility that even a small increase in the temperature of this region might accelerate carbon release because of the exponential sensitivity and high average temperature.  相似文献   

8.
Soil CO2 levels reflect CO2 production and transport in soil and provide valuable information about soil CO2 dynamics. However, extracting information from soil CO2 profiles is often difficult because of the complexity of these profiles. In this study, we constructed a simple numerical model that simulated soil CO2 dynamics and performed sensitivity analyses for CO2 production rates, soil water content and temperature, and gas diffusivity at the soil surface to clarify the relationships among these parameters. Increased soil surface CO2 flux did not always coincide with higher soil CO2 concentrations; increased CO2 production at shallow depths had little effect on soil CO2 concentrations, while the opposite may be true for high levels of soil water content. Higher soil CO2 concentration did not always coincide with greater soil surface CO2 flux; under high soil water conditions, soil surface CO2 flux sometimes decreased despite increased soil CO2 concentration. Increases in soil water content did not always enhance both soil surface CO2 flux and soil CO2 concentration. Under high soil water conditions, increases in soil water content could lower soil surface CO2 flux and increase soil CO2 concentration. Increases in soil temperature resulted in greater soil surface CO2 flux and higher soil CO2 concentration in our simulation (extremely high temperatures were not assumed in this study). Gas diffusivity in very shallow layers did affect, albeit weakly, soil CO2 concentration. The findings of this study may help direct future observations and aid in the interpretation of their results.  相似文献   

9.
Soil respiration and soil carbon dioxide (CO2) concentration were investigated in a tropical monsoon forest in northern Thailand, from 1998 to 2000. Soil respiration was relatively high during the rainy season and low during the dry season, although interannual fluctuations were large. Soil moisture was widely different between the dry and wet seasons, while soil temperature changed little throughout the year. As a result, the rate of soil respiration is determined predominantly by soil moisture, not by soil temperature. The roughly estimated annual soil respiration rate was 2560gCm–2year–1. The soil CO2 concentration also increased in the rainy season and decreased in the dry season, and showed clearer seasonality than soil respiration did.  相似文献   

10.
Wildland fire is a natural force that has shaped most vegetation types of the world. However, its inappropriate management during the last century has led to more frequent and catastrophic fires. Wildland fires are also recognized as one of the sources of CO2 and other greenhouse gases (GHG) that influence global climate change. As one of the techniques used to reduce the risk of destructive wildfires, prescribed burning has the potential of mitigating carbon emissions, and effectively contributes to the efforts proposed as part of the Clean Development Mechanism within the Kyoto protocol. In order to apply this concept to a real case, a simulation study was conducted in pine afforestation in the Andean region of Patagonia, Argentina, with the objective of evaluating the potential of prescribed burning for reducing GHG emissions. The scenario was established for a ten year period, in which simulated prescribed burning was compared to the traditional management scheme, which included the probability of annual average of wildfire occurrence based on available wildfire statistics. The two contrasting scenarios were: (1) managed afforestation, affected by the annual average rate of wildfires occurred in the same type of afforestation in the region, without prescribed burning, and (2) same as (1) but with the application of simulated prescribed burning. In order to estimate carbon stocks, and CO2 removals and emissions, we followed the guidelines given for GHG inventories on the Agriculture, Forestry and Other Land Uses (AFOLU) sector of the International Panel on Climate Change (IPCC), while the terminology used was the established by IPCC (2003). Data of afforested area, thinnings, and biomass growth were taken from previous surveys in the study area. Downed dead wood and litter (forest fuel load, FFL) was estimated adjusting equations fitted to those fuels, based on field data. Results show that comparing the two scenarios, prescribed burning reduced CO2 emissions by 44% compared to the situation without prescribed burning. The prescribed burning scenario represented about 12% of the total emissions (prescribed burning plus wildfires). Furthermore, avoided wildfires by simulated prescribed burning allowed an additional 78% GHG emissions mitigation due to extra biomass growth. Simulated prescribed burning in commercial afforestation of Patagonia appears to be an effective management practice not only to prevent wildfires, but also an efficient tool to mitigate GHG emissions. However, more studies in different scenarios would be needed to generalize these benefits to other ecosystems.  相似文献   

11.
Free air CO2 enrichment (FACE) experiments are considered the most reliable approach for quantifying our expectations of forest ecosystem responses to changing atmospheric CO2 concentrations [CO2]. Because very few Australian tree species have been studied in this way, or are likely to be studied in the near future because of the high installation and maintenance costs of FACE, there are no clear answers to questions such as: (1) which species will be the winners in Australia's natural forests and what are the implications for biodiversity and carbon (C) sequestration; and (2) which will be the most appropriate species or genotypes to ensure the sustainability of Australia's plantation forests.  相似文献   

12.
This study examined the effect of tree species identity and diversity on soil respiration in a 3-year-old tropical tree biodiversity plantation in Central Panamá. We hypothesized that tree pairs in mixed-species plots would have higher soil respiration rates than those in monoculture plots as a result of increased primary productivity and complementarity leading to greater root and microbial biomass and soil respiration. In addition to soil respiration, we measured potential controls including root, tree, and microbial biomass, soil moisture, surface temperature, bulk density. Over the course of the wet season, soil respiration decreased from the June highs (7.2 ± 3.5 μmol CO2/(m2 s−1) to a low of 2.3 ± 1.9 μmol CO2/(m2 s−1) in the last 2 weeks of October. The lowest rates of soil respiration were at the peak of the dry season (1.0 ± 0.7 μmol CO2/(m2 s−1)). Contrary to our hypothesis, soil respiration was 19–31% higher in monoculture than in pairs and plots with higher diversity in the dry and rainy seasons. Although tree biomass was significantly higher in pairs and plots with higher diversity, there were no significant differences in either root or microbial biomass between monoculture and two-species pairs. Path analyses allow the comparison of different pathways relating soil respiration to either biotic or abiotic controls factors. The path linking crown volume to soil temperature then respiration has the highest correlation, with a value of 0.560, suggesting that canopy controls on soil climate may drive soil respiration.  相似文献   

13.
Moso bamboo plantations (Phyllostachys pubescens) are one of the most important forest types in southern China, but there is little information on the effects of their establishment and silvicultural practices on soil CO2 efflux. The objectives of this study were to evaluate the effect of land use change from a natural broadleaf evergreen forest to Moso bamboo plantations and their management practices on soil CO2 efflux in a subtropical region of China using static closed chamber method. Regardless of the land uses or management practices, the effluxes over a 12-month period had a seasonal pattern, with the maximum effluxes observed in summer and the minimum in winter. Whereas there was no significant difference in the total annual soil CO2 efflux between the natural broadleaf evergreen forest (BL) and the conventionally managed bamboo forests (CM), soil CO2 efflux in the intensively managed bamboo forest (IM) was significantly higher. Soil temperature was the most important environmental factor affecting soil CO2 efflux rates for all three land uses. Soil moisture also had a significant positive correlation with soil CO2 efflux rates. Soil temperature and moisture had greater influence on soil CO2 efflux rate in the IM than the CM and BL forests. Soil dissolved organic C had a positive correlation with soil CO2 efflux rate in the CM, but had no significant correlation with that in the IM or the BL forests. Our study for the first time demonstrated that conversion of the natural subtropical broadleaf evergreen forest to Moso bamboo does not increase soil CO2 efflux. However, when bamboo forests are under intensive management with regular tillage, fertiliser application and weeding, significantly more soil CO2 emission occurs. Therefore, best management practices should be developed to reduce soil CO2 efflux in Moso bamboo plantations in the subtropical regions of China.  相似文献   

14.
[目的]为科学评价皆伐、火烧对中亚热带常绿阔叶林不同深度土壤有机碳吸存的影响,[方法]以福建省中亚热带36年生米槠人促更新林为研究对象,采用非散射红外CO2浓度探测仪和Licor-8100土壤碳通量系统,并结合Fick扩散法计算并分析0~80 cm不同深度土层CO2通量的日动态特征。[结果]表明:(1)火烧地(RB)和皆伐地(RR)不同土层CO2浓度均出现明显下降,其中,对照(CK)地土壤CO2浓度值(0~80 cm)分别是RB和RR的1.9、1.3倍;(2)各试验地土壤CO2通量(0~80 cm)表现为RB(1.99 μmol·m2·s-1)>RR(0.99 μmol·m2·s-1)>CK(0.96 μmol·m2·s-1),除2040 cm土层外,RB土壤各层CO2通量均显著高于RR和CK(P<0.05);(3)试验地不同土层CO2通量(0~80 cm)日变化幅度表现为RB>RR>CK,其中,RB土壤各层的变化幅度均显著大于RR和CK(P<0.05),而RR与CK间的差异表现在0~5、10~20、20~40 cm土层(P<0.05);(4)拟合分析表明,各试验地不同深度土壤CO2通量与土壤温度呈显著相关,且 RB的决定系数(R2)显著高于RR和CK;不同试验地各土层温度、含水量的双因素模型拟合效果均优于单因素模型;Q10值显示,皆伐、火烧后初期土壤各层的温度敏感性得到明显提高。  相似文献   

15.
The two main components of soil respiration, i.e., root/rhizosphere and microbial respiration, respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter, respectively. To model the carbon cycle and predict the carbon source/sink of forest ecosystems, we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations. Root/rhizosphere and soil microbial respiration have been shown to increase, decrease and remain unchanged under elevated CO2 concentrations. A significantly positive relationship between root biomass and root/rhizosphere respiration has been found. Fine roots respond more strongly to elevated CO2 concentrations than coarse roots. Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations. Microbial biomass and activity are related or unrelated to rates of microbial respiration. Because substrate availability drives microbial metabolism in soils, it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production. Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration. __________ Translated from Journal of Plant Ecology, 2007, 31(3): 386–393 [译自: 植物生态学报]  相似文献   

16.
SO2和NO2为我国大气污染主要污染物,城市森林对SO2和NO2具有一定的抵抗能力和吸收净化能力,利用城市森林对大气污染进行修复具有良好的应用前景.文章概述了我国SO2和NO2气体污染的状况,总结了污染物进入植物体的过程及其损伤机理,并从植物抗性和吸附净化能力两方面总结了城市景观树种与SO2和NO2气体污染的关系研究,并基于研究结论提出今后研究可能发展方向,如SO2、NO2与悬浮颗粒物等复合污染对城市树种生长的影响、树种抗性和吸附能力综合研究等.  相似文献   

17.
Soil samples were taken from depth of 0–12 cm in the virgin broad-leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L−1 and 200 μL·L−1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could product N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L−1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p<0.05), and between N2O emission and water content (r2=0.2968, p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L−1 (r2=0.3573, p<0.05). Temperature was an important factor controlling CH4 oxidation. However, when 20 μL·L−1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content. Foundation item: This paper was supported by Chinese Academy of Sciences. Biography: ZHANG Xiu-jun (1960-), female, Ph. Doctor, lecture in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110015, P.R. China. Responsible editor: Song Funan  相似文献   

18.
Soil CO2 production seasonality at a number of depths was investigated in a temperate forest in Japan and in a tropical montane forest in Thailand. The CO2 production rates were evaluated by examining differences in the estimated soil CO2 flux at adjacent depths. The temperate forest had clear temperature seasonality and only slight rainfall seasonality, whereas the tropical montane forest showed clear rainfall seasonality and only slight temperature seasonality. In the temperate forest, the pattern of seasonal variation in soil respiration was similar at all depths, except the deepest (0.65 m–), and respiration was greater in summer and less in winter. The contribution of the shallowest depth (around 0.1 m) was more than 50% of total soil-surface CO2 flux all year round, and the annual mean contribution was about 75%. CO2 production mostly appeared to increase with temperature in shallower layers. In contrast, in the tropical forest, soil CO2 production seasonality appeared to differ with depth. The CO2 production rate in the shallowest layer was high during the rainy season and low during the dry season. Soil CO2 production at greater depths (0.4 and 0.5 m–) showed the opposite seasonality to that in the shallower layer (around 0.1 m). As a result, the contribution from the shallow depth was greatest in the tropical forest during the rainy season (more than 90%), whereas it decreased during the dry season (about 50%). CO2 production appeared to be controlled by soil water at all depths, and the different ranges of water saturation seemed to cause the difference in seasonality at each depth. Our results suggest the importance of considering the vertical distribution of soil processes, particularly in areas where soil water is a dominant controller of soil respiration.  相似文献   

19.
Turbulent exchange of CO2 was measured continuously via the open-path eddy covariance technique over a broadleaf-Korean pine forest in Changbai Mountain, northeast China. The results show that with near-neutral atmospheric stratification, CO2 and vertical wind components measured over the forest canopy in the inertial sub-range followed the expected −2/3 power law. The dominant vertical eddy scale was about 100 m. The frequency ranges of eddy contributions to CO2 fluxes were mostly within 0.01–2.0 Hz. Large eddies with low frequency over the canopy contributed more to CO2 fluxes than small eddies. The open-path eddy covariance system could satisfy the estimation of turbulent fluxes over the canopy, but the CO2 fluxes between forest and atmosphere were generally underestimated at night because of the increment non-turbulent processes, suggesting that the CO2 fluxes estimated under weak turbulence need to be revised correspondingly. __________ Translated from Chinese Journal of Applied Ecology, 2007, 18(5): 951–956 [译自: 应用生态学报]  相似文献   

20.
Measurement of soil CO2 concentrations is important for investigating the dynamics and diffusion of CO2 in soil. In this study, we developed a small CO2 analyzer for measuring in situ-soil CO2 concentrations. The CO2 analyzer consists of a module containing an infrared CO2 gas sensor, a temperature sensor, and a relative humidity sensor. These sensors are installed in a protective box with an air vent, which is suitable for burying in the soil. The output response time of the CO2 analyzer was 349 s, as evaluated from the phase lag after input of known CO2 concentrations. This response time is short enough to measure soil CO2 concentrations, because variations in concentration are slower than the response time of the analyzer. In a field test, we used the CO2 analyzer to measure soil CO2 concentrations at five depths (0–50 cm) over 2.5 months. While the CO2 concentration generally increased with depth, the amplitude of the variation in CO2 concentration decreased with depth. The phase lag of the variations in soil CO2 concentration also increased with depth, as did soil temperature. The tests confirm that the CO2 analyzer is applicable to continuous monitoring of soil CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号