首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight separate, but related experiments, were carried out in which groups of six calves were vaccinated with one of eight commercial vaccines. In each experiment the vaccinated calves were subsequently exposed to three calves infected with virulent bovine herpesvirus-1 (BHV-1). In each experiment, all infected donor calves developed a typical severe infectious bovine rhinotracheitis (IBR) infection and excreted virus in their nasal secretions of up to 10(8.00) TCID50/0.1 ml. One live BHV-1 gE-negative vaccine (A) and three modified live vaccines (B, C, D), administered intranasally, all protected against clinical disease. The calves vaccinated with one vaccine (C) also did not excrete virus in the nasal secretions, whereas the calves protected by vaccines A, B and D excreted virus in their nasal secretions but at low titres (10(0.66)-10(1.24) TCID50/0.1 ml). A fourth modified live vaccine (E), given intramuscularly, failed to prevent mild clinical disease in the calves which also excreted virus in the nasal secretions at titre of 10(1.00) TCID50/0.1 ml. An analogous result was given by the calves vaccinated with either of the two inactivated vaccines (F and G) or with a BHV-1 subunit vaccine (H). All calves developed mild clinical signs and excreted virus at titres of 10(2.20)-10(3.12) TCID50/0.1 ml. Calves vaccinated with C vaccine were subsequently given dexamethasone, following which virus was recovered from their nasal secretions. The virus isolates did not cause disease when calves were infected and appeared to be closely related to the vaccine strain.  相似文献   

2.
In order to compare the effect of the route of immunization on the efficacy of a modified live Aujeszky's disease (AD) vaccine, which had deletions in both thymidine kinase (TK-) and glycoprotein gIII genes (gpIII-), 20 six-week-old pigs were vaccinated by either the intramuscular (IM) (n = 10) or subcutaneous (SC) (n = 10) route. All the animals, including five non-vaccinated control animals, were challenged with virulent AD virus 22 days after vaccination. Four of five non-vaccinated animals died within 12 days after challenge. Although none of vaccinated animals died, three of animals in the SC group exhibited clinical signs, and average daily gains in the SC group were depressed. The animals in the IM group were not found to shed challenge virus, but those in the SC group shed the virus up to 9 days. Virus neutralizing antibody titers in the vaccinated animals were low or non-detectable by 21 days after vaccination. A glycoprotein gII (gpII) screening ELISA detected gpII antibody in all animals in the IM group. While, only 30% of animals in the SC group were positive by the same test. The results of this study indicate that TK-, gpIII modified live AD virus vaccine is effective against challenge with virulent AD virus; however, vaccination by the SC route reduced vaccine efficacy in comparison with IM route.  相似文献   

3.
A subunit vaccine in the form of immunostimulating complex (iscom) was prepared to contain the envelope glycoproteins of bovine herpesvirus type 1 (BHV-1). This iscom preparation was tested in a vaccination experiment on 4-month-old calves seronegative to BHV-1. In this experiment, four groups with three animals per group were used. Two groups were vaccinated with the iscom preparation twice, four weeks apart, one group with 50 micrograms and the other with 100 micrograms per calf. The third group received a commercial inactivated whole-virus vaccine applying the same vaccination program. The fourth group served as control. Two weeks after the second vaccination, all the animals were challenge-infected intranasally with a virulent BHV-1 strain and four days later with a virulent Pasteurella multocida--this in order to mimic hard field conditions. When exposed to challenge infection, all the animals vaccinated with the iscom were fully protected, i.e., no virus could be recovered from their nasal secretions and no clinical symptoms were recorded. In contrast, the animals vaccinated with the commercial vaccine, responded to challenge with moderate fever and loss of appetite, and virus was isolated from the nasal secretions. The animals in the control group developed severe clinical symptoms. In the sera of iscom-vaccinated animals, the virus neutralization titers reached levels of 1/3500 or higher.  相似文献   

4.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

5.
Four bovine herpesvirus-1 (BHV-1) commercial vaccines, three of which (vaccines B, D, E) were modified live vaccines (MLV) and one (vaccine A) identified as a live strain of BHV-1 gE negative, were used for vaccination of calves, using three calves for each vaccine. Three months after vaccination calves were subjected to dexamethasone (DMS) treatment following which virus was recovered from calves inoculated with vaccine B and from those given vaccine D. No virus reactivation was obtained in calves, which received vaccines A or E. The DNA extracted from the two reactivated viruses was subjected to restriction endonuclease analysis. The restriction pattern of the isolate obtained from calves vaccinated with vaccine D differs significantly from that of the original vaccine, whereas the reactivated virus from calves given vaccine B conserved the general pattern of the original vaccine strain. For each reactivated virus in this experiment (B and D) as well as for the isolate obtained from calves vaccinated with a further MLV (vaccine C) in a previous trial, three calves were inoculated. No clinical signs of disease were detected in any of the inoculated calves during the observation period. When the nine calves were exposed 40 days later to challenge infection with virulent BHV-1, they remained healthy and no virus was isolated from their nasal swabbings. These results indicate that some BHV-1 vaccines considered in the project can establish latency in the vaccinated calves, however, the latency does not appear to interfere with the original properties of the vaccines in terms of safety and efficacy.  相似文献   

6.
Outbreaks of infectious bovine rhinotracheitis (IBR) have recently been observed in vaccinated feedlot calves in Alberta a few months post-arrival. To investigate the cause of these outbreaks, lung and tracheal tissues were collected from calves that died of IBR during a post-arrival outbreak of disease. Bovine herpesvirus-1 (BHV-1), the causative agent of IBR, was isolated from 6 out of 15 tissues. Of these 6 isolates, 5 failed to react with a monoclonal antibody specific for one of the epitopes on glycoprotein D, one of the most important antigens of BHV-1. The ability of one of these mutant BHV-1 isolates to cause disease in calves vaccinated with a modified-live IBR vaccine was assessed in an experimental challenge study. After one vaccination, the majority of the calves developed humoral and cellular immune responses. Secondary vaccination resulted in a substantially enhanced level of immunity in all animals. Three months after the second vaccination, calves were either challenged with one of the mutant isolates or with a conventional challenge strain of BHV-1. Regardless of the type of virus used for challenge, vaccinated calves experienced significantly (P < 0.05) less weight loss and temperature rises, had lower nasal scores, and shed less virus than non-vaccinated animals. The only statistically significant (P < 0.05) difference between the 2 challenge viruses was the amount of virus shed, which was higher in non-vaccinated calves challenged with the mutant virus than in those challenged with the conventional virus. These data show that calves vaccinated with a modified-live IBR vaccine are protected from challenge with either the mutant or the conventional virus.  相似文献   

7.
Since 1997 infections of cattle with bovine herpesvirus type 1 (BHV-1) are regulated by the German government with obligatory measures. Eradication of the virus is based on two different concepts: German federal states with a low BHV-1-seroprevalence comply with a selection concept, that provides deletion of BHV-1-positive cattle and only exceptional vaccination. States with a high BHV-1-prevalence attempt to eradicate the virus using the marker concept. The marker concept is based on the vaccination with glycoprotein E (gE)-deleted marker vaccines and the accompanying serological differentiation between vaccinated and infected animals. This review deals with both, conventional and marked BHV-1 vaccines, that are commercially available in Germany. Efficacy and safety of different inactivated vaccines and modified live vaccines have been evaluated in detail in several international experimental studies and field trials. Results of these studies are briefly reviewed and discussed in this article.  相似文献   

8.
Parenteral vaccination of fattening pigs with either modified live or inactivated Aujeszky's disease virus did not prevent infection with field strain virus or the development of clinical disease. The duration and severity of the clinical syndrome was, however, reduced and vaccinated pigs did not suffer the severe weight loss and high mortality experienced by non-vaccinated pigs in the acute phase of disease. The range of tissues in which challenge virus replication took place was more restricted in vaccinated animals and the concentration of virus in infected tissues was reduced. Vaccination shortened the duration of field virus excretion and carriage in the tonsil. Replication of modified live vaccine virus was restricted to the site of inoculation in the neck and associated lymph nodes for two days after vaccination and it was not excreted by vaccinated pigs. Attempts to infect pigs by feeding them tissues taken from non-vaccinated or vaccinated pigs soon after challenge infection were unsuccessful.  相似文献   

9.
OBJECTIVE: To determine whether a combination viral vaccine containing modified-live bovine herpesvirus-1 (BHV-1) would protect calves from infection with a recent field isolate of BHV-1. DESIGN: Randomized controlled trial. ANIMALS: Sixty 4- to 6-month-old beef calves. PROCEDURE: Calves were inoculated with a placebo 42 and 20 days prior to challenge (group 1; n = 10) or with the combination vaccine 42 and 20 days prior to challenge (group 2; 10), 146 and 126 days prior to challenge (group 3; 10), 117 and 96 days prior to challenge (group 4; 10), 86 and 65 days prior to challenge (group 5; 10), or 126 days prior to challenge (group 6; 10). All calves were challenged with BHV-1 via aerosol. Clinical signs, immune responses, and nasal shedding of virus were monitored for 14 days after challenge. RESULTS: Vaccination elicited increases in BHV-1-specific IgG antibody titers. Challenge with BHV-1 resulted in mild respiratory tract disease in all groups, but vaccinated calves had less severe signs of clinical disease. Extent and duration of nasal BHV-1 shedding following challenge was significantly lower in vaccinated calves than in control calves. In calves that received 2 doses of the vaccine, the degree of protection varied with the interval between the last vaccination and challenge, as evidenced by increases in risk of clinical signs and extent and duration of viral shedding. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that this combination vaccine provided protection from infection with virulent BHV-1 and significantly reduced nasal shedding of the virus for at least 126 days after vaccination.  相似文献   

10.
Several characteristics of BHV-1 have contributed to the successful development of both conventional and marker vaccines. BHV-1 is a stable virus, which grows to high titers in vitro, has a limited host range and causes acute viremic infections. Furthermore, the protective antigens, as well as the antigens that are suitable as marker, are present in the predominant virus isolates and induce significant and long-lasting immune responses, both in na?ve and in previously vaccinated animals. In many parts of the world including North-America control of BHV-1 is achieved by vaccination with conventional attenuated or inactivated vaccines. With parts of Europe being BHV-1 free, the ability to differentiate infected from vaccinated animals has become critical as a trading tool. Live and killed gE-deleted marker vaccines are now widely used in Europe, in combination with gE-based diagnostic tests to monitor cattle. However, several issues remain to be resolved. BHV-1 causes latency, which creates a need for stringent management practices in case eradication is to be achieved. Since intramuscular delivery with a syringe and needle leads to considerable tissue damage, needle-free delivery methods should be adopted for beef cattle. Furthermore, conventional inactivated and attenuated vaccines are less efficacious in neonates, so alternative vaccine types such as CpG adjuvanted protein vaccines or DNA vaccines are required for effective vaccination of this age group.  相似文献   

11.
A group of four conventional, colostrum-fed calves was vaccinated with live parainfluenza type 3 (PI-3) virus vaccine at 1 and 5 weeks of age. A group of four control calves was treated with cell culture medium at the same time. Two weeks after the second vaccination, both groups of calves were challenged with PI-3 virus by a combined respiratory route. Blood and nasal mucus samples were collected at intervals, and alveolar macrophages were recovered before and after challenge by bronchoalveolar lavage. The results demonstrated that clearance of virus, as indicated by presence of virus antigen was more rapid in previously vaccinated calves. Several alveolar macrophage functions were markedly reduced in all calves 5 to 7 days following virus challenge, although microbicidal activity was unaffected, compared to the controls. The production of neutrophil chemotactic factors by alveolar macrophages occurred more rapidly after virus challenge in the previously vaccinated calves and this correlated with a more rapid neutrophil influx into the lungs in these animals.  相似文献   

12.
Small ruminants play an important role in the epidemiology of Foot-and-Mouth Disease (FMD). Small ruminants are vaccinated with one-half or one-third of cattle dose of oil-based or aqueous vaccines respectively. The extinction antigen payload in vaccine for protection in small ruminants is poorly studied. FMD seronegative Nellore sheep (n=30) and Osmanabadi goats (n=30) were vaccinated with different payloads of O(1) Manisa vaccine (0.45-5 μg). Vaccinated and sero-negative unvaccinated sheep (n=6) and goats (n=6) were challenged intradermally into the coronary band with O(1) Manisa virus. The sheep and goats were monitored for signs of FMD and samples were collected for measuring viraemia and virus associated with nasal swabs and probang samples. Clotted blood was collected for serology. Vaccines containing antigen payload up to 0.94 μg protected sheep and goats against challenge. Sheep and goats vaccinated with 0.45 μg antigen payload were poorly protected against challenge. An antigen payload of 0.94 μg was sufficient to offer complete protection and also absence of carrier status. Sheep and goats with no vaccination or with poor sero conversion to vaccination showed sub-clinical infection and became carriers. The results of the study suggest that vaccination offers protection from clinical disease even at a low payload of 0.94 μg and hence one-half of cattle dose of the oil-based vaccine formulations is sufficient to induce protective immune response in sheep and goats. Since no live virus could be isolated after 5 days post challenge from the nasal swab or probang samples even though viral RNA was detected, the risk of these animals transmitting disease was probably very low.  相似文献   

13.
An attenuated Mycoplasma hyopneumoniae vaccine that requires intrathoracic administration is commercially available for use against mycoplasmal pneumonia in China. Given the limitations of such a route of administration, this study was undertaken to assess the capacity of an ISCOM-matrix adjuvant to enhance immunogenicity following intramuscular use. Immune responses in pigs following vaccination and subsequent intra-tracheal bacterial inoculation were examined using lymphocyte proliferation, serology and mucosal IgA in both nasal and saliva swabs.Vaccination induced clear lymphocyte proliferation, but only slight serum antibody responses although these were significantly increased following experimental infection. Mucosal IgA was not detected in either nasal or salivary secretions. Following bacterial challenge, animals vaccinated with the adjuvant-containing live vaccine exhibited less severe pulmonary lesions (median score 3.67) than unvaccinated pigs (median score 13.58). The degree of ciliary loss on the respiratory tract surface was reduced in vaccinated pigs compared with experimentally infected controls. The findings indicated that the adjuvant vaccine administered IM provided protection against experimentally induced mycoplasmal pneumonia and could have commercial potential.  相似文献   

14.
Recurrent infection in calves vaccinated with infectious bovine rhinotracheitis-(IBR) modified live virus was induced by dexamethasone (DM) treatment given 49 days after challenge exposure with virulent IBR virus. Nonchallenge-exposed IM and intranasally vaccinated calves did not excrete the virus after DM treatment; however, IM and intranasally vaccinated and subsequently challenge-exposed calves excreted the challenge-exposure virus into the nasal secretions 5 to 11 days and 6 to 10 days after the DM treatment, respectively. The calves were killed 15 to 18 days (experiment 1) and 14 days (experiment 2) and DM treatment was started and then were examined by histopathologic and fluorescent antibody techniques. All DM-treated calves that were inoculated with the vaccinal virus and challenge exposed with the virulent virus developed nonsuppurative trigeminal ganglionitis and encephalitis. On the contrary, the DM-treated nonchallenge-exposed vaccinated calves did not have lesions in the peripheral nervous system and CNS. Infectious bovine rhinotracheitis virus antigens were not observed in tissues of any of the calves examined (experiments 1 and 2) by fluorescent antibody techniques. These observations indicated that the modified live IBR virus neither produced lesions nor induced latent infection and that modified live IBR virus vaccination did not protect the calves against the establishment of a latent infection after their exposure to large doses of the virulent IBR virus.  相似文献   

15.
The use of gl deleted live vaccines against Aujeszky's disease (AD) facilitates to differentiate vaccinated from field-virus infected animals. In this study different modes of vaccination were tried to find out how sheep can be protected from a lethal infection with ADV. It could clearly be demonstrated that Aujeszky disease virus (ADV) is spread by horizontal transmission from infected pigs to sheep. The nasal discharges of infected pigs contained a maximum of 10(8.75)TCID50/g mucus at days 3 and 4 p.i. and those of the contact-pigs 10(8.5)TCID50/g mucus at days 6 and 7 after contact. Non-vaccinated contact sheep were infected horizontally by the pigs. The highest titres ranged from 10(6.25) to 10(7.5)TCID50/g mucus. These animals were sacrificed at day 5 p.i. exhibiting acute symptoms of AD. The nasal discharge of vaccinated sheep contained much lower amounts of ADV (maximum: 10(4.25)TCID50/g mucus). All surviving animals had developed antibodies. Following challenge with the ADV-strain NIA3, no febrile response or virus-shedding was observed in sheep vaccinated 2x s.c. or 2x i.m. with a gl deleted live vaccine, whereas sheep, vaccinated only 1x i.m. (4 out of 4 animals) or 1x i.m. (3 out of 4 animals) or 1x i.n. and 1x i.m. (1 out of 4 animals) had to be sacrificed after showing acute symptoms of AD. In conclusion it can be stated that a double parental vaccination with a gl deleted live vaccine protects sheep against a field-virus AD infection.  相似文献   

16.
It has been recommended that modern equine influenza vaccines should contain an A/equi-1 strain and A/equi-2 strains of the American and European-like subtype. We describe here the efficacy of a modern updated inactivated equine influenza-herpesvirus combination vaccine against challenge with a recent American-like isolate of equine influenza (A/equine-2/Kentucky/95 (H3N8). The vaccine contains inactivated Influenza strains A-equine-1/Prague'56, A-equine-2/Newmarket-1/'93 (American lineage) and A-equine-2/ Newmarket-2/93 (Eurasian lineage) and inactivated EHV-1 strain RacH and EHV-4 strain V2252. It is adjuvanted with alhydrogel and an immunostim. Horses were vaccinated at the start of the study and 4 weeks later. Four, six and eight weeks after the first vaccination high anti-influenza antibody titres were found in vaccinated horses, whereas at the start of the study all horses were seronegative. After the challenge, carried out at 8 weeks after the first vaccination, nasal swabs were taken, rectal temperatures were measured and clinical signs were monitored for 14 days. In contrast to unvaccinated control horses, vaccinated animals shed hardly any virus after challenge, and the appearance of clinical signs of influenza such as nasal discharge, coughing and fever were reduced in the vaccinated animals. Based on these observations, it was concluded that the vaccine protected against clinical signs of influenza and, more importantly, against virus excretion induced by an American-like challenge virus strain. In a second experiment the duration of the immunity induced by this vaccine was assessed serologically. Horses were vaccinated at the start of the study and 6 and 32 weeks later. Anti-influenza antibody titres were determined in bloodsamples taken at the first vaccination, and 2, 6, 8, 14, 19, 28, 32, 37, 41, 45 and 58 weeks after the first vaccination. Vaccinated horses had high anti-influenza antibody titres, above the level for clinical protection against influenza, against all strains present in the vaccine until 26 weeks after the third vaccination.  相似文献   

17.
Due to the tremendous socio-economic impact of classical swine fever (CSF) outbreaks, emergency vaccination scenarios are continuously under discussion. Unfortunately, all currently available vaccines show restrictions either in terms of marker capacities or immunogenicity. Recent research efforts were therefore directed at the design of new modified live marker vaccines. Among the most promising candidates the chimeric pestiviruses "CP7_E2alf" and "flc11" were identified. Within an international research project, these candidates were comparatively tested in challenge experiments after a single oral vaccination. Challenge infection was carried out with highly virulent CSF virus strain "Koslov", 14 or 21 days post vaccination (dpv), respectively. Safety, efficacy, and marker potential were addressed. All assessments were done in comparison with the conventional "gold standard" C-strain "Riems" vaccine. In addition to the challenge trials, multiple vaccinations with both candidates were performed to further assess their marker vaccine potential. All vaccines were safe and yielded full protection upon challenge 21 days post vaccination. Neither serological nor virological investigations showed major differences among the three vaccines. Whereas CP7_E2alf also provided clinical protection upon challenge at 14 days post vaccination, only 50% of animals vaccinated with flc11, and 83% vaccinated with C-strain "Riems" survived challenge at this time point. No marked differences were seen in protected animals. Despite the fact that all multiple-vaccinated animals stayed sero-negative in the accompanying marker test, the discriminatory assay remains a weak point due to delayed or inexistent detection of some of the vaccinated and subsequently infected animals. Nevertheless, the potential as live marker vaccines could be confirmed for both vaccine candidates. Future efforts will therefore be directed at the licensing of "Cp7_E2alf" as the first live marker vaccine for CSF.  相似文献   

18.
Twenty-two Hereford heifers were injected IM with prostaglandin F2 alpha a, 11 days apart to synchronize estrous cycles. Twelve of 14 heifers that had signs of estrus were inoculated IV with 1 of 3 modified-live infectious bovine rhinotracheitis virus vaccines, and 2 were assigned to a nonvaccinated control group. Also, 6 of the 8 anestrous heifers were inoculated IV with 1 of the 3 vaccines on the fourth day after the last prostaglandin injection and the other 2 were assigned to the nonvaccinated group. Vaccine virus was isolated from the blood and nasal and vaginal secretions from the vaccinated heifers on postvaccination days 4, 7, and 9. On postvaccination day 9, all heifers were ovariectomized and ovarian tissues were processed for virus isolation and histologic examination. Vaccine virus was isolation and histologic examination. Vaccine virus was isolated from ovarian tissues of some heifers in each of the vaccine groups. Necrotic oophoritis characterized by multifocal areas of ovarian tissue necrosis, hemorrhage, and mononuclear lymphocytic infiltration was observed. The corpora lutea and surrounding ovarian tissues taken from vaccinated heifers in each group had varying amounts of necrotic and inflammatory change, but the changes appeared to be more severe in 1 group than in the other 2. Virus also was isolated from 2 of the controls; these heifers apparently became infected with vaccine virus that had been excreted from the vaccinated animals.  相似文献   

19.
Bovine herpesvirus type 1 (BHV-1) is an important bovine pathogen, exacerbating poor health and the productivity of cattle. The aims of this study were to detect the efficacy of vaccination programmes in lowering the seroprevalence of BHV-1 gE within the dairy herd and to follow the dynamics of the infection in non-vaccinated herds with uninfected heifers. A two-year longitudinal study was carried out on seven herds that were vaccinated, and in five herds with uninfected heifers without applying a control programme. After the start of the vaccination programme, calves born remained free from the virus. However, in one herd, 7 per cent (95 per cent CI 2 to 18) of these animals showed antibodies to BHV-1 two years after the first vaccination. A decline in BHV-1 antibody prevalence was found in vaccinating herds. Among the five herds not under the control programme, one experienced active virus spread, although one herd experienced self-clearance of the virus. In the herds with high BHV-1 prevalence, vaccinating all cattle from three months of age twice a year with a commercial inactivated marker vaccine efficiently protected offspring from becoming infected, and lowered the prevalence of BHV-1 within the herd. A small proportion of herds may experience self-clearance of the virus.  相似文献   

20.
OBJECTIVE: To evaluate the efficacy of an inactivated bovine herpesvirus-1 (BHV-1) vaccine to protect against BHV-1 challenge-induced abortion and stillbirth. DESIGN: Prospective study. ANIMALS: 35 beef heifers. PROCEDURES: Before breeding, heifers were vaccinated with a commercially available BHV-1 inactivated vaccine SC or IM. The estrous cycle was then synchronized, and heifers were artificially inseminated 30 to 60 days after vaccination. Heifers (n = 21) were challenge inoculated IV at approximately 180 days of gestation with virulent BHV-1. Fourteen control heifers were not vaccinated. Clinical signs of BHV-1 infection were monitored for 10 days following challenge; serologic status and occurrence of abortion or stillbirth were evaluated until time of calving. RESULTS: 18 of 21 (85.7%) heifers that received vaccine were protected from abortion following challenge, whereas all 14 control heifers aborted. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that an inactivated BHV-1 vaccine can protect against abortion resulting from a substantial challenge infection, with efficacy similar to that of modified-live BHV-1 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号