首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
内切木聚糖酶的选择性纯化及酶解制备低聚木糖的研究   总被引:5,自引:3,他引:2  
研究了超滤分离除去里氏木霉木聚糖酶中的外切-β-木糖苷酶,以及酶解制备低聚木糖。研究结果表明:用超滤的方法能完全除去外切-β-木糖苷酶,透过液经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)鉴定为单带,酶解产物全部是低聚木糖,当酶解时间从2 h延长到10 h时,低聚木糖的得率从26.83%增加到54.22%;而用粗木聚糖酶酶解制备低聚木糖时,当酶解时间从2 h延长到10 h时,低聚木糖得率从17.97%下降到11.12%。因此,采用该技术可以大幅度增加总糖中低聚木糖所占的比例,显著提高木聚糖原料的有效利用率。  相似文献   

2.
对采用选择性控制木聚糖酶水解条件制备低聚木糖进行了研究,并同时探讨了以两种木聚糖形式——干粉和湿浆为原料造成的酶解结果差异及其原因。结果表明,目前较适宜的低聚木糖制备工艺为:以木聚糖湿浆为底物,底物质量浓度20~40g/L,酶用量1%(体积分数,下同),pH值4、8,温度50℃,酶解时间4h。造成干粉与湿浆酶解制备低聚糖结果差异的原因,可能是由于这两种底物自身结构特性的差异导致了底物可及度,以及酶与底物吸附作用的不同。结果显示当以干粉为底物,酶用量10%,酶解时间12h,低聚木糖得率最高可达40%(质量分数)左右,而以湿浆为底物,达到同样低聚糖得率的酶用量和酶解时间分别仅需1%和4h。  相似文献   

3.
对采用选择性控制木聚糖酶水解条件制备低聚木糖进行了研究,并同时探讨了以两种木聚糖形式--干粉和湿浆为原料造成的酶解结果差异及其原因.结果表明,目前较适宜的低聚木糖制备工艺为以木聚糖湿浆为底物,底物质量浓度20~40g/L,酶用量1%(体积分数,下同),pH值4.8,温度50℃,酶解时间4 h.造成干粉与湿浆酶解制备低聚糖结果差异的原因,可能是由于这两种底物自身结构特性的差异导致了底物可及度,以及酶与底物吸附作用的不同.结果显示当以干粉为底物,酶用量10%,酶解时间12 h,低聚木糖得率最高可达40%(质量分数)左右,而以湿浆为底物,达到同样低聚糖得率的酶用量和酶解时间分别仅需1%和4 h.  相似文献   

4.
木聚糖酶水解制取低聚木糖的研究   总被引:19,自引:0,他引:19  
比较了木聚糖酶和纤维素酶水解木聚糖制备低聚木糖的效果,并在10L酶解罐中研究了搅拌速率和酶解时间等因素对木聚糖酶水解的影响。优化了酶解工艺条件,当木聚糖质量浓度为30g/L,木聚糖酶体积用量为1%,搅拌速率180r/min时,酶解2h低聚糖得率可达35.2%。总糖得率为41.9%。产品酶解液中25.9%固形物是聚合度2-5的低聚木糖。  相似文献   

5.
酶的选择性纯化及酶解制备木低聚糖的研究   总被引:9,自引:4,他引:9  
采用沉淀剂的H处理木聚糖酶及纤维素酶以除去大部分β-木糖苷酶,以及酶解制备木低聚糖的研究结果。研究表明,当酶液中沉淀剂H的孢和度为50%时,处理效果最佳。  相似文献   

6.
分别研究了粗木聚糖酶和纯化的木聚糖酶在超滤膜反应器(UMR)和常规反应器(CSBR)中的酶解特性。粗木聚糖酶或纯木聚糖酶在UMR中酶解木聚糖时,反应进行了525 m in时所得产品中低聚木糖各组分的质量分数(木二糖~木五糖)均在20%左右,木糖质量分数约为9.5%。在UMR中粗木聚糖酶降解木聚糖时的低聚木糖得率、低聚木糖占总糖的比例和低聚木糖生产能力比纯木聚糖酶在CSBR中分别高19.1%、14.8%和13.5%;而木糖的得率却低55.2%。粗木聚糖酶在UMR中酶解木聚糖时,所得低聚木糖产品中木二糖~木五糖组分含量基本相等;纯木聚糖酶在CSBR中酶解木聚糖时,所得低聚木糖产品中木二糖含量较高。同纯木聚糖酶在CSBR中酶解特性相比,粗木聚糖酶在UMR中酶解木聚糖可以制得高质量低聚木糖。  相似文献   

7.
高温预处理对木聚糖酶水解制备低聚木糖的促进作用   总被引:1,自引:0,他引:1  
采用160~180℃的高温对木聚糖酶解残渣中残余木聚糖进行预处理,并将预处理液酶水解。最优反应条件为180℃预处理30 m in,残余木聚糖的42.54%被有效降解,上清液中低聚木糖(XOS)的含量占上清液总糖的32.13%。上清液经木聚糖酶酶解后,低聚木糖的含量可达到上清液总糖的84.93%。  相似文献   

8.
纸浆漂白用木聚糖酶的选择性合成   总被引:5,自引:2,他引:3  
以里氏木霉(Trichoderma reesei) Rut C-30为产酶菌,研究了碳源、培养温度、初始pH值、碳氮比对木聚糖酶和纤维素酶合成的影响.结果表明,粗木聚糖和亚硫酸盐纸浆混合作为碳源有利于木聚糖酶和纤维素酶的合成;低温有利于木聚糖酶和纤维素酶的合成,但产酶时间较长,高温对木聚糖酶的合成有一定的影响,对纤维素酶的合成能有效地抑制,且产酶时间较短;初始pH值低有利于纤维素酶的合成,初始pH值高则延长了木聚糖酶的合成时间,且强烈抑制纤维素酶的合成;低碳氮比有利于纤维素酶的合成,高碳氮比使得木聚糖酶的合成滞后,能够有效抑制纤维素酶的合成.以粗木聚糖和亚硫酸盐纸浆混合作为碳源,调控培养温度、初始pH值和碳氮比能有效地促进木聚糖酶的合成,抑制纤维素酶的合成,致使木聚糖酶活与纤维素酶活的比值提高,从而有利于选择性合成纸浆漂白用木聚糖酶,调控培养方式为:提高碳氮比(7.2)和初始pH值(6.0),在培养初期(1 d)培养温度为35~36 ℃,中后期培养温度25~26 ℃,调控6 d后,木聚糖酶酶活和纤维素酶酶活分别为186.93和0.156 IU/mL,酶活比为1 198.  相似文献   

9.
木聚糖相对分子质量分布对里氏木霉合成木聚糖酶的影响   总被引:3,自引:2,他引:1  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶茵,研究了相对分子质量(Mw)分布不同的木聚糖对木聚糖酶合成的影响。通过SephadexG一100凝胶过滤色谱分级分离发现木聚糖A中低Mw组分较多,木聚糖B中低Mw组分较少,木聚糖C中低Mw组分最少。分别以这3种木聚糖为碳源合成木聚糖酶,最高木聚糖酶活力分别为153.64、120.84和110.84IU/mL,产酶时间分别为60、72和96h。用这3种碳源合成的木聚糖酶酶解粗木聚糖,酶解2h时,产物中低聚木糖分别占总糖的80.70%、68.56%和66.92%。这表明低Mw组分较多的木聚糖不仅有利于促进木聚糖酶的诱导合成,而且有利于促进内切-1,4-木聚糖酶的合成。  相似文献   

10.
纤维素和木聚糖复合诱导合成木聚糖酶的研究   总被引:4,自引:0,他引:4  
以里氏木霉(Rrichoderma reesei)为产酶菌,分别对纤维素、纤维素和木聚糖诱导产酶的功能进行了研究。研究发现,纤维素具有诱导木聚糖酶合成的功能;纤维素和木聚糖混合对木聚糖酶合成具有促进作用,可大幅度提高木聚酶活力。与纯木聚糖(5g/L)产酶相比,纯木聚糖(4g/L)和纸浆(1g/L)混合产酶木聚糖酶活可以提高45%。研究成果为采用富含木聚糖的植物纤维料作碳源制备木聚糖酶提供了理论依据。  相似文献   

11.
里氏木霉选择性合成木聚糖酶的研究(Ⅰ)   总被引:6,自引:1,他引:5  
在一定条件下,里氏木霉可选择性地合成木聚糖酶,选择性合成程度与碳源种类、碳源浓度及碳氮比大小有关。以低纤维素污染的木聚糖为碳源,适当降低碳源的浓度,提高碳氮比可以提高木聚糖酶选择性合成的程度。以玉米芯粗木聚糖为碳源,采用添加碳源和氮源的方法控制发酵过程中的碳源浓度在5g/L下,碳氮比在112以上时,产生的木聚糖酶和纤维素酶酶活分别为355U/mL、0.2U/mL,两种酶活的比值为117  相似文献   

12.
以木聚糖为底物、木聚糖酶为催化剂,在木聚糖质量浓度为30.0g/L,操作压力16kPa,进料速度400mL/min,时间12h,pH值5.0,温度为48摄氏度的条件下研究了超滤膜反应器中木聚糖的酶水解反应。结果表明,木聚糖的酶水解总糖得率为60.10%,未水解木聚糖聚合度为10左右,碱溶对聚合度没有影响,未水解木聚糖重新水解,总糖得率为7.50%。  相似文献   

13.
研究了生产低聚木糖(XOS)所得的废渣对里氏木霉纤维素酶合成的诱导作用和纤维素酶水解特性.废渣对里氏木霉合成纤维素酶的诱导作用较差,而纤维素酶水解性能优异.里氏木霉以含纤维素15 g/L的废渣为碳源合成纤维素酶,滤纸酶活为0.48 FPIU/mL,酶产率为6.67 FPIU/(L·h),酶得率为每克纤维素32.00 FPIU,而在相同条件下以玉米芯为碳源时滤纸酶活为3.20 FPIU/mL、酶产率19.00 FPIU/(L·h)和酶得率每克纤维素213.33 FPIU.质量浓度为20 g/L的废渣在酶用量为每克纤维素10 FPIU条件下水解24 h,水解得率达92.8 %;底物废渣质量浓度为100 g/L时,48 h纤维素酶水解得率达到80.6 %.  相似文献   

14.
木聚糖酶解反应与膜分离技术研究   总被引:2,自引:1,他引:2  
过程耦合是应用技术领域研究的热点之一 ,膜及膜分离技术的开发促进了过程耦合技术的发展。如膜超滤、膜萃取、膜蒸馏、渗透蒸发。在超滤膜反应器中木聚糖酶解制备低聚木糖的条件 :酶体积用量1 0 % ,木聚糖质量浓度 3 0 .0 g/L ,稀释率 1h-1,pH值 5 .0 ,反应温度 48℃ ,酶解时间 1 3 5min。在该条件下 ,低聚木糖得率、木糖得率、低聚木糖生产能力及低聚木糖与总糖之比分别为 2 8.5 % ,4.1 % ,3 .80g/ (L·h)和0 .87,并比较了分批加料、浓缩酶、常规反应器中酶解反应效果 ,浓缩木聚糖酶酶解结果表明 :木糖得率很低(0 .2 % ) ,低聚木糖得率为 3 5 .9%。  相似文献   

15.
预处理对纤维素酶降解影响的研究   总被引:36,自引:0,他引:36  
以酸、碱及蒸汽爆碎预处理的蔗渣、杨树作底物,进行纤维素酶解(50℃、24h)试验,其中以碱预处理的蔗渣得糖率为最高。通过测定不同原料不同预处理方法得到的水解液的总糖、糖组分及紫外吸收;分析不同预处理所引起的植物纤维组成变化、同时对预处理前后的蔗渣和杨树进行了X-衍射分析测定,从结晶度的变化综合分析了预处理对纤维素酶降解的影响,并对植物纤维生物量的全利用进行了初步探讨。  相似文献   

16.
分批添料纤维素酶水解研究   总被引:18,自引:0,他引:18  
提出了在反应过程中分批添加底物的纤维素酶解方法,并对分批添料的作用机理进行了讨论。研究表明,分批添料可以同时提高酶解得率、底物浓度和酶解糖液浓度,当底物浓度为15%(w/v)时,分批添料酶解得率为70%,糖液中还原糖浓度为48.1g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号