首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对Sf9昆虫细胞在不同培养基、培养基中是否添加血清及不同生物反应器中的培养工艺进行了研究,发现Sf9细胞在Sf900Ⅱ无血清培养基中生长比在添加10%小牛血清的Grace培养基中更好,在Sf900Ⅱ无血清培养基14 L搅拌式生物反应器分批培养细胞密度可达1.4×107/mL.过程生化特性分析表明,总氨基酸的消耗及主要代谢副产物特别是乳酸及游离氨的积累是培养后期细胞密度降低及活性下降的重要原因.本研究为Sf9细胞生物反应器培养工艺优化及利用昆虫杆状病毒蛋白表达系统高效表达重组蛋白生产亚单位疫苗奠定了良好基础.  相似文献   

2.
对应用生物反应器系统和微载体培养Vero细胞生产PEDV进行了实验研究,通过分析和比较批培养及换液培养过程中细胞生长、代谢和病毒增殖的相互关系,发现PEDV随着细胞的生长而不断在胞内增殖和积累,72h后Vero细胞需经过一个短暂的停止生长阶段,再继续呈指数生长。反应器换液培养的单位培养基细胞产量比批培养提高了28%,比方瓶培养提高了138%,疫苗生产效率显著提高。当接种密度为1 23×105cells/ml时,换液培养至96h时获得了1 74×106cells/ml的高细胞密度,细胞扩增了14 3倍,且单位细胞的病毒产量并不低于静态培养。  相似文献   

3.
为建立猪繁殖与呼吸综合征(PRRS)疫苗的大规模生产工艺,本研究应用工作体积为l00 L的激流灌注式生物反应器培养Marc-145细胞,接种PRRS病毒R98株(PRRSV-R98),进行病毒培养,结果显示,培养6d细胞数量可增殖5倍~7倍,单次病毒收获量相当于3 000个~5 000个10L转瓶,而且培养的PRRSV-R98各项指标均符合规程要求.本研究在国内首次建立了应用100 L激流灌注式生物反应器制备PRRS活疫苗的生产工艺,为规模化培养工艺的推广与使用提供了技术参数.  相似文献   

4.
蜡状芽孢杆菌是新发现的一种杀虫效率高,杀虫速度快的杀蝗微生物,用4.4×10^6和4.4×10^7孢子/ml接种棉蝗大龄跳蝻及成虫,棉蝗的死亡率分别达到82.6%和80.8%。毒力测定结果LC50为2.7×10^8孢子/ml。林间大试验,杀虫效果达77.9%。  相似文献   

5.
为实现利用生物反应器制备规模化、自动化生产水貂犬瘟热Vero活疫苗,在7 L生物反应器中悬浮培养Vero细胞,并考察培养基、细胞初始接种密度、培养方式、病毒感染复数和感染时间等参数对细胞增殖、病毒滴度以及细胞代谢的影响。结果显示,在含有5 g/L微载体的DMEM培养基中接种Vero细胞(30~40 cells/球),设定p H、温度、溶氧值和转速分别为7.2、37℃、50%和55 r/min,培养方式为批次培养(0~48 h)+灌流培养(48~96 h)组合方式,培养Vero细胞3~4 d或细胞密度达到200 cells/球以上时,按照MOI=0.0001~0.001吸附接毒,调低温度(33℃)继续培养100~120 h,即可获得高滴度病毒液(10~(6.5)~10~(7.2)TCID_(50)/0.1 m L),经无菌检验合格后,配制水貂犬瘟热Vero细胞活疫苗(CDV3-CL株,悬浮培养),疫苗符合《中国兽药典》三部(2015版)的规定。试验建立了7 L生物反应器悬浮培养Vero细胞制备水貂犬瘟热活疫苗的新工艺,为进一步规模化生产奠定了基础。  相似文献   

6.
旨在筛选伪狂犬病病毒(PRV)敏感的BHK-21细胞并分析其生长和病毒增殖特性,优化反应器中BHK-21悬浮细胞的培养和病毒增殖条件,建立生物反应器培养BHK-21悬浮细胞增殖PRV工艺。本研究利用响应面和单因素优化法,以细胞生长动力学特性、TCID50病毒滴度等参数为指标,优化1.2 L生物反应器中BHK-21悬浮细胞的最佳培养和增殖病毒条件,在5 L生物反应器中进一步批培养验证。结果显示,筛选获得PRV高敏感的BHK-21-02贴壁细胞和BHK-21-XF02悬浮细胞各1株,BHK-21-XF02悬浮细胞在含3%血清的SLM-BHK低血清培养基和SFM-BHK无血清培养基中均能实现良好的生长和病毒增殖。利用响应面法优化得到1.2 L反应器最佳培养条件为接种密度1.20×106cells·mL-1、搅拌转速120 r·min-1、DO值40%,5 L反应器批培养72 h细胞密度可达(7.61±0.18)×106 cells·mL-1、细胞活率为(96.93±1.18)%。利用单因素法优化得到1.2 L反应器最佳病毒增殖条件为MOI 0.001、培养温度37℃、细胞密度2.0×106cells·mL-1、搅拌转速80 r·min-1,5 L反应器批培养接毒后48 h病毒滴度达到最大值(7.13±0.11) lgTCID50·mL-1。本研究可为PRV疫苗相关研究和规模化生产提供参考。  相似文献   

7.
参照小型生物反应器悬浮培养MDCK细胞的pH值、溶氧、温度等最优工艺参数,结合6 000 L罐体搅拌桨叶、挡板、气体分布器等情况,在5 L、25 L、125 L、600 L、3 000 L、6 000 L罐体上进行反应器逐级放大培养试验,建立MDCK悬浮细胞生物反应器放大培养工艺。结果显示:取摇瓶悬浮培养的MDCK细胞用生物反应器连续放大培养,细胞大小均一,细胞倍增时间为22~24 h,细胞增殖最大密度可达9.61×106个/mL。MDCK细胞能适应生物反应器连续放大规模化培养,用小型生物反应器优化获得的培养体系参数经拟合修正后,适用于大型6 000 L生物反应器培养MDCK细胞。  相似文献   

8.
通过生物反应器制备猪传染性胃肠炎病毒(TGEV),研究了感染复数(MOI)、微载体浓度、病毒感染时间(TOI)和病毒维持液对病毒效价的影响,结果表明,分别以1:500稀释种毒(8.0 LgTCID50/mL)后接种、接种72 h的ST细胞、5 mg/mL微载体浓度和维持液低糖DMEM+0.2%水解乳蛋白(LH)的参数培养方式效果最为理想。  相似文献   

9.
生物反应器作为一种高效能的生产方式,现在越来越受到国内兽苗企业的重视。其在生产中表现出的高效率、高产能、高质量,相比传统的转瓶生产工艺是一次质的飞跃。但另一方面,生物反应器作为高技术设备的  相似文献   

10.
为了优化生物反应器全悬浮培养技术制备猪流行性腹泻病毒(ZJ/15株)的工艺,试验首先通过摇瓶培养对病毒接种时的细胞密度、胰酶浓度、接毒剂量和收毒时间等培养条件进行优化;之后按照摇瓶培养确认的工艺进行生物反应器全悬浮培养工艺验证,同时对pH值、溶氧值(DO)、转速等培养参数进行优化,以病毒含量(TCID50)为指标,最终筛选出在15L生物反应器中培养猪流行性腹泻病毒(ZJ/15株)的最优条件,并进一步在50L生物反应器中进行工艺验证,将病毒液灭活后稀释至1×107.0 TCID50/mL免疫怀孕75~90d的健康易感初怀母猪,在分娩当日,采集母猪和仔猪血清,并对分娩的3日龄仔猪攻毒进行免疫原性试验。结果表明:猪流行性腹泻病毒(ZJ/15株)在摇瓶上的最适培养条件为当细胞密度达到6×106 个/mL以上时,用含胰酶(终浓度为20μg/mL)的无血清培养基将细胞密度稀释至2×106 个/mL,按感染复数(MOI)=0.1接毒,130 r/min摇床振荡培养36h可收获病毒液,病毒含量...  相似文献   

11.
本文介绍了膜生物反应器的基本原理、分类及应用现状,阐述了几种典型的MBR耦合工艺的研究进展,并对其进一步研究指明方向。  相似文献   

12.
利用生物反应器对牛含环形泰勒焦虫的血清细胞进行了培养条件的探索。结果证明,采用2.5L培养罐,6片叶轮搅拌,转速120r/min,装量1200ml,罐顶一通气孔用沙布棉花封口与外界进行气体交换为最优培养条件。在此状态下,我们对原工艺要求的20%新生牛血清用量减少至7%,水解乳蛋白也由国产产品替代了部分进口的DIFCO公司产品,细胞接种密度4.5×10^5cell/ml经36小时培养后平均达2.4×  相似文献   

13.
为了大规模生产猪传染性胃肠炎病毒抗原,试验采用生物反应器及微载体进行ST细胞的培养,待微载体上的ST细胞长满至单层后接种猪传染性胃肠炎病毒(TGEV).共使用生物反应器培养3批TGEV抗原,每批培养过程中分别调节初始细胞密度至2.14×106个/mL、1.83×106个/mL和2.02×106个/mL,微载体浓度为3g/L、6 g/L和9 g/L.结果表明应用生物反应器及微载体培养得到抗原的病毒含量均达到108.0 TCID50/mL,明显高于转瓶培养的病毒含量.  相似文献   

14.
动物细胞规模化培养及生物反应器研究进展   总被引:1,自引:0,他引:1  
哺乳动物细胞培养已经发展到能够自由扩大培养并且用于工业化生产。许多生物活性物质、疫苗、载体、药用蛋白,等都可以通过动物细胞大规模培养获得。生物反应器是细胞大规模培养的关键,其能够有效的增加细胞单位体积的培养密度,从而为病毒性疫苗大规模生产奠定坚实的基础。通过细胞培养生产生物制品既能提高生物制品的质量,又能促进细胞培养技术、蛋白质表达纯化技术、病  相似文献   

15.
为建立规模化培养猪瘟活疫苗的生产工艺,本研究利用工作体积为10L的激流灌注式生物反应器培养猪睾丸细胞(swine testis,ST),接种猪瘟病毒(classical swine fever virus,CSFV)进行培养研究。研究结果显示,培养4 d细胞数可增长5~7倍,接种病毒后15 d可收获毒液6次,收获量至少与200个10 L转瓶单次收获量相当,产品各项检测均合格。本工艺极大地缩短了培养时间,为规模化培养工艺的推广与使用提供了技术参数。  相似文献   

16.
为克服犬瘟热疫苗现有生产工艺的缺陷,试验采用10 g/L Cytodex-1型微载体,按每个微载体15~20个细胞的细胞接种量接种至微载体培养Vero细胞,细胞培养液为10%NBS的DMEM培养液。结果显示,当细胞密度达到8×106CFU/mL时接种犬瘟热病毒,最佳培养时间30 h,接毒剂量按照MOI为0.1接种犬瘟热病毒液;当细胞病变达到50%时,病毒感染细胞时间为30 h,收获毒液。按照上述摸索生产工艺参数,收获的犬瘟热病毒液的病毒液滴度每病毒含量≥108.5TCID50/0.1 mL。将收获的病毒液冻存及下游相关的灭活处理,作为制备犬瘟热疫苗的抗原。研究表明,试验大幅度提升犬瘟热病毒培养量,效价批间差异性均一,实现了产业化反应器悬浮培养代替细胞工厂的技术路线。  相似文献   

17.
为了用激流式生物反应器纸片微载体培养BHK-21(C-13)细胞制备兽用狂犬冻干活疫苗,采用纸片微载体培养BHK-21(C-13)细胞,接种狂犬病病毒Flury株(LEP),测定病毒液滴度.将收获的病毒液制备兽用狂犬冻干活疫苗,按照狂犬病活疫苗规程进行检验.结果显示,3批收获的病毒液滴度平均达1050LD50/0.03 mL;3批实验疫苗检验结果均符合质量标准.实验证明激流式生物反应器纸片微载体培养BHK-21(C-13)细胞制备兽用狂犬冻干活疫苗提高了细胞密度、病毒滴度,增加了病毒液收获体积,减小了批间差,保证了产品均一性,适合工业化大生产.  相似文献   

18.
利用生物反应器对牛含环形泰勒焦虫的血源细胞进行了培养条件的探索。结果证明,采用25L培养罐、6片叶轮搅伴、转速120r/min、装量1200ml、罐顶留一通气孔用沙布棉花封口与外界进行气体交换为最优培养条件。在此状态下,我们对原工艺要求的20%新生牛血清用量减少至7%,水解乳蛋白也由国产产品替代了部分进口的DIFCO公司产品,细胞接种密度45×105cel/ml经36小时培养后平均达24×106cel/ml,收获细胞数与原工艺基本相同,但成本费用大幅下降。  相似文献   

19.
细胞反应器悬浮培养和微载体培养技术在我国得到了广泛的推广和应用,特别是在动物疫苗生产领域取得了长足的发展.本文对细胞反应器悬浮培养和微载体培养技术在动物疫苗生产中的应用进行了分析.  相似文献   

20.
介绍了反应器悬浮培养技术在国内外疫苗生产中的研发和应用现状。目前该技术已经在国内口蹄疫疫苗生产中获得成功应用,利用MDCK、Vero等细胞培养生产禽流感疫苗的技术也正在积极研发中。积极推广和应用这一技术将是我国兽用生物制品生产工艺升级换代的必然趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号