首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugar beet (Beta vulgaris L.) growers in Nebraska, U.S.A. have been convinced by equipment manufacturers in the past 10 years that chisel tillage is needed on their soils to remove compaction zones. No data were available to assess the reality of their conviction that chiseling was an essential part of their tillage systems. The experiments discussed here were designed to test the impact and need for chiseling to depths up to 30 cm in systems where moldboard plowing to a depth of 20 cm is the most common primary tillage. Various degrees of soil compactness were created artificially in soil of the same type (Typic Haplustoll) in 3 different fields. Combinations of moldboard plowing and chiseling were then imposed on them. The relationships of water infiltration rates and resistance to penetration as measured by a penetrometer to the tillage treatments and to ultimate sucrose yield were determined. In all but the severest compaction treatment, either chiseling or moldboard plowing had equivalent impacts on yield restoration. In the most severely compacted soil chiseling was totally ineffective in 1 year and equal to plowing in another year. Combination plowing and chiselinng did not have an additive effect beyond plowing or chiseling along under any compaction condition. Even though the implements were equally effective in restoring yield potential, neither of them, alone nor in combination restored yields to levels achieved on non-compacted soil. Penetrometer resistance measurements indicated that compacted soil below 30 cm was the problem. The data indicated that it may be possible for a given soil type, to relate penetrometer resistance to the need for tillage to remove compaction. On these experiments each increase in resistance of 700 kPa over a range of 4000–8000 kPa resulted in a 10% reduction in sucrose yield.  相似文献   

2.
Excessive soil compaction has negative effects for agriculture and the environment. Measurement of soil strength is a common indirect measure of soil compactness. In the context of precision farming, on-the-go soil mechanical resistance measurements using single- and multiple-tip horizontal sensors have been developed. It has been reported that there was a significant relationship between soil mechanical resistance values measured with both vertically operated cone penetrometer and horizontally operated sensors only for relatively deep layers. It was hypothesized that the differences in horizontally measured soil resistance in different soil layers could be explained by different failure modes. The objective of this research was to develop a horizontal soil mechanical resistance sensor and to observe the failure mode in front of it while penetrating soil at three different depths. A single-tip horizontal penetrometer was equipped with a 30° prismatic tip and had a base area of 324 mm2. The prismatic tip was mounted horizontally to an S-shaped load cell housed inside a shank. A data-logging system was also developed to record measurements with 10 Hz sampling rate. The sensor was tested in a field with silty clay loam soil at three depths of 20, 25 and 30 cm. Cone index (CI) values were obtained with 1 cm depth increments and 1 m horizontal intervals along each transect for comparison using a standard cone penetrometer. The results showed that average horizontal soil mechanical resistance index (HRI) values for both depths of 20 and 25 cm were similar due to the brittle failure mode in both cases. However, when the tip was operated below the critical depth of the sensor, the value of HRI at 30 cm depth increased three times when compared with 20 or 25 cm depth values. This was due to change in failure mode from brittle to compressive mode below the critical depth. There was a significant relationship (R2 = 0.75) between HRI and CI for the 30-cm depth, whereas for shallower depths the relation was not significant. It can be concluded that the correlation between measurements obtained with the vertically and horizontally operated penetrometers would be significant as long as both produced the same soil failure mode.  相似文献   

3.
The objective of the present study was to measure the specific draught (force per cross-sectional area of worked soil) and energy use for soil fragmentation for different tillage implements and soil conditions. Draught was calculated from measurements of fuel consumption and speed during tillage with a mouldboard plough and a chisel plough set to working depths of 13, 17 and 21 cm, and a disc harrow. Tillage was carried out at three different water contents (“Wet”, “Moist” and “Dry”) on two sites. The average working depth was calculated from weighing the loose soil within a 0.25-m2 frame. Specific area of the soil was determined by sieving. Soil strength was measured in situ using a shear vane and a penetrometer. Average working depth was much less than the set working depth for the chisel plough. Specific draught was generally the lowest for the mouldboard plough and the highest for the chisel plough, and increased with decreasing soil water content. The specific draught was strongly correlated to soil cohesion, but not to penetration resistance. The proportion of coarse aggregates after tillage was the highest for the mouldboard plough and the lowest for the moist soil. The energy use for soil fragmentation was in most cases the lowest for the disc harrow, while there were small differences between the chisel and the mouldboard ploughs. The results show that the mouldboard plough is energy efficient for loosening soil, while the disc harrow is energy efficient for soil fragmentation during primary tillage. Tillage at an intermediate water content, close to the plastic limit, gave the largest proportion of small aggregates and consequently the lowest energy use for soil fragmentation.  相似文献   

4.
Abstract. Topsoil (0–15 cm) bulk density, aggregate stability, soil dispersibility, water retention and infiltration were measured between 1989 and 1996 on an Alfisol under rehabilitation in southwestern Nigeria. The planted leguminous species were Pueraria phaseoloides, Senna siamea, Leucaena leucocephala, Acacia leptocarpa and A. auriculiformis. Also, plots with natural fallow and maize/cassava intercropping were included. Level (minimum) and mound tillage with hoes was adopted for the cultivated areas under study after 4 and 6 year fallow periods. Under fallow, the soil bulk density decreased from1.56 to 1.11 t m73.The continuously cropped treatment (level tillage) had significantly higher bulk density than the fallowed subplots after 6 years. Mean soil penetrometer resistance ranged from 75 to 157 kPa for fallowed plots and from 192 to 295 kPa for the continuously cropped (level tillage) subplot. Surface soilwater contentswere similar for all the treatments during the soil strength measurements. Although soil aggregates were generally of low stability and not well formed, they were improved by fallowing.
Soil structural improvement by planted fallows was similar to that by natural fallow, but the trees were more promising for long-term fallow (>6 years) than the herbaceous P. phaseoloides. However, the improvement in soil structure after 4 or 6 year fallow could not be maintained in subsequent cropping. Furthermore, the significant improvement in soil bulk density caused by A. auriculiformis and natural fallow was more rapidly lost on the cultivated subplots compared with other fallow treatments. Thus, soil structure recovery under a fallow does not imply a sustained improvement when stress is applied to this soil. Post-fallow soil management options such as residue incorporation and tillage to ameliorate compaction or soil strength will be necessary to enhance the improvements by fallow species.  相似文献   

5.
6.
Abstract

Soil penetrometer resistance (SPR) and bulk density (p) measurements can be used for assessing soil strength or density. Results from this research add to the understanding of residual soil compaction of sandy soils by answering three questions: What are the long term effects of no‐tillage on SPR and p in a double‐cropping rotation? Where in the soil profile are maximum SPR and p values found? How much of the variations in SPR are accounted for by the regression of p? Compaction was evaluated at the end of an 8‐yr oat (Avena sativa L.)/Bragg soybean [Glycine max (L.) Merr.] double‐cropping tillage experiment. The soil was Arredondo fine sand (Grossarenic Paleudults). The four treatments (replicated four times) included no‐tillage (NT), conventional tillage (CT), no‐tillage plus in‐row subsoiling (NTPS), and conventional tillage plus in‐row subsoiling (CTPS). Forty days after planting soybeans the soil was irrigated to field capacity. Readings were taken to a depth of 60 cm at five positions in the row and at 15 and 30 cm from the row on both traffic and no traffic sides of four rows. Samples for p and soil water content (6) were collected at three positions and 12 depths. The SPR data were analyzed as a split‐split‐split plot design and the p and 8 data as split‐split‐plot design. The most significant overall long‐ term effect of no‐tillage compared to conventional tillage occurred at the 15‐cm depth for SPR and in the 5‐ to 10‐cm depth for p. The increases were 19% for SPR and 11% for p. Maximum SPR (3.1 MPa) and p (1.6 Mg/m3) occurred in the 25‐ to 35‐cm depth. Wheel traffic increased SPR more than 35% in the upper 25 cm of soil, whereas p was increased less than 3%. This indicates SPR was 10 times more sensitive as an indicator of soil compaction than was p. Penetrometer resistance was predicted from an equation, in which p accounted for 24%, depth 30%, and depth‐squared 25% of the variation in SPR. The R2 for the model was 0.82 (P < 0.01).  相似文献   

7.
Abstract

Soil samples were obtained at 0–3, 3–6, 6–9 and 0–9 inch depths from experimental plots receiving five tillage treatments. Each of two samplers composited approximately six one‐inch cores from each plot. Soil samples were analyzed for acidity, P and K using routine analysis procedures in the University of Illinois Soil Testing Laboratory.

Few significant differences were attributed to sampler and it was concluded that samplers using similar sampling techniques were obtaining soil samples from the same population.

No significant differences in soil acidity at different depths were observed. The different tillage methods did significantly affect soil P at the 0–3 inch depth, but had no significant effect on soil P at deeper depths. Different tillage methods also significantly affected soil K values at different depths.  相似文献   

8.
秸秆还田是农作物秸秆综合利用最为直接的形式,深埋还田能打破犁底层、培肥地力,并提高土壤抗旱保墒能力。在秸秆深埋还田时,由于作物根茬未粉碎,深开沟的同时会出现大块土垡。秸秆深埋后还需对根茬和土垡进行二次粉碎,增加了作业成本。为满足秸秆深埋还田开沟灭茬碎土的需求,设计研制了一种集开深沟、碎土、灭茬等多道工序的用于秸秆深埋还田的开沟灭茬机。以导向铲入土深度、灭茬刀转速、灭茬深度为试验因素,机器的作业阻力和灭茬碎土率为试验指标,进行了三因素三水平正交试验。结果表明导向铲入土深度和灭茬深度对作业阻力有极显著影响,灭茬刀转速对灭茬碎土率有极显著影响。在开沟深度为35 cm时,导向铲入土深度、灭茬刀转速和灭茬深度分别为100 mm、340 r/min和60 mm时,开沟灭茬机的作业性能最好,作业阻力为21.6 k N、灭茬碎土率为96.3%、开沟深度稳定性为92.4%。试验表明该机具有很好的开沟、灭茬、碎土效果,该研究为秸秆深埋还田机具的研制和配备提供参考。  相似文献   

9.
Penetrometer measurements at different soil water contents With use of a large number of field measurements an empirical relation between soil water content and penetrometer resistance was derived. For this purpose the soils were subdivided with respect to their texture and bulk density. The derived relations enable a comparison of penetrometer values derived at different soil water content.  相似文献   

10.
The effects of five tillage treatments: no tillage (NT), disc harrowing (DH), mouldboard ploughing followed by disc harrowing (MPH), disc ploughing followed by disc harrowing (DPH), and disc ploughing followed by two passes of disc harrowing (DPHH) on crop residue cover, soil properties and some yield parameters of cowpea were investigated for a derived savannah ectone soil. The residue left on the soil surface for NT, DH, and MPH is not significantly different. The NT left 32.1 and 44.3% more residue on the soil surface than the DPH and DPHH treatments, respectively. The NT treatment had least average value of soil bulk density of 1.01 g/cm3. The mean soil bulk densities for the DH, MPH, DPH and DPHH vary between 1.20 and 1.35 g/cm3. The soil moisture content decreased with increasing soil depth. At the soil depth of 10–30 cm, the cone penetration resistance at NT was 1.18 MPa compared with 0.92 MPa for the DH treatment, although these were not significant (p≤0.05). The tillage treatments had a significant effect on grain yield, mass of leaves and stems, root length density, and number of pods per plant of cowpea except on the germination count. DH and NT treatments gave different grain yield and number of pods per plant but these values were not statistically different and represent the highest grain yield and number of pods per plant among the other treatments were considered. The root zone exploration revealed highest root density at shallow depths with the DH and MPH treatments.  相似文献   

11.
The precompression stress value defines the transition from the reloading curve to the virgin compression line in the stress–strain curve, which can be used to quantify the highest load or the most intense predrying previously applied to the soil. Thus, in soils with well-defined structured soil horizons, each layer can be characterized by such mechanical strength. Penetration resistance measurements, on the other hand, can be used to determine total soil strength profiles in the field. The effect of long-term tillage systems on physical and mechanical properties was determined in undisturbed and remolded samples collected at 5 and 15 cm depth, 6 months after applying no-till (NT), chisel plow (CP), and conventional tillage (CT) treatments, along with the application of mineral fertilizer and poultry litter. The compressibility tests were performed under confined conditions, with normal loads varying from 10 to 400 kPa after a defined predrying to −6 or −30 kPa. Penetration resistance was determined in the field, after seeding, in three positions: seeding row (SR), untrafficked interrow (UI), and recently trafficked interrow (TI). No-till system showed greater soil resistance to deformation than tilled treatments, as determined by the higher precompression stress and lower coefficient of compressibility. When original soil structure was destroyed (remolded samples), smaller differences were found. The application of extra organic matter (poultry litter) resulted in a reduction of precompression stress in undisturbed samples. Penetration resistance profiles showed greater differences among tillage treatments in the upper layer of the untrafficked interrow, where NT system showed the higher values. Smaller differences were found in the seeding row (with lower values) and in recently trafficked interrow (with higher values), showing that even traffic with a light tractor after soil tillage reduced drastically the effect of previous tillage by loosening up the soil. On the other hand, the tool used to cut the soil and to open the furrow for seeding, incorporated in the direct seeding machine, was sufficient to realleviate surface soil compaction.  相似文献   

12.
《Soil Use and Management》2018,34(2):286-296
Different tillage regimes can change soil micro‐environmental characteristics, which may influence the distribution and abundance of soil arthropods. In this study, soil arthropods and soil properties under a winter wheat–summer maize cropping system were investigated in different tillage regimes over four seasons at two depths. The tillage treatments included conventional tillage (CT ), tillage once a year (T1), tillage every two years (T2) and no‐tillage (NT ). The results showed that the primary taxa of soil arthropod were Acarina (65.8%), Collembola (28.5%), Diplura (1.4%) and Coleoptera (1%) over the whole sampling period. The total arthropod density was influenced by tillage treatments and season of sampling. Values for CT plots were significantly greater than those for the NT plots in autumn and spring. In contrast, the Shannon–Wiener diversity index (H’) and the evenness index (J) were relatively higher in CT treatment. The Acarina/Collembola (A/C) ratio was significantly smaller in NT treatment for some sampling seasons as mites were more sensitive to tillage practices. The QBS ‐ar index did not show a clear pattern among treatments in this study. Soil arthropods notably showed seasonal variation in depth stratification. Relative to CT , the total soil arthropods in the NT plots tended to concentrate in the upper layer due to soil compaction in the lower layer. The climate conditions and soil physical properties were the main factors affecting the soil arthropod distribution and composition, as the soil chemical and microbial properties did not differ significantly among all tillage treatments.  相似文献   

13.
[目的] 研究南方红壤区不同水土保持措施下土壤抗蚀性的变化特征,为该地区的土壤抗蚀性研究和水土流失治理提供理论依据。 [方法] 以江西水土保持生态科技园内柑橘园试验区的裸地对照、柑橘净耕、柑橘+全园植草、柑橘+水平梯田处理为研究对象,通过野外采样和室内试验相结合的方法,研究不同处理、不同深度下土壤抗蚀性。 [结果] 0-20 cm土层,柑橘+全园植草的土壤抗蚀性最强,柑橘+水平梯田和柑橘净耕次之且二者无显著差异,裸地对照最差;20-40 cm土层,柑橘+全园植草和柑橘+水平梯田的土壤抗蚀性最强且二者无显著差异,柑橘净耕次之,裸地对照最差;相同处理下0-20 cm土层的土壤抗蚀性显著大于20-40 cm土层。 [结论] 水土保持措施能显著提高土壤抗蚀性,柑橘+全园植草的处理下土壤抗蚀性最强。建议在该区域采用林草复合的措施提高植被覆盖度,以加强土壤抗蚀性。  相似文献   

14.
不同施肥措施对白土腐殖质组成的影响   总被引:3,自引:0,他引:3  
吴萍萍  王家嘉  李录久 《土壤》2016,48(1):76-81
以白土稻区4年大田定位试验为基础,设置2种翻耕深度(10 cm、20 cm,分别标记为T10、T20)和4种施肥措施(单施化肥、化肥+畜禽粪肥、化肥+秸秆还田、化肥+绿肥,分别标记为F、F+M、F+S、F+G),通过腐殖质组成修改法分别提取表层土壤水溶性物质、胡敏酸、富里酸和胡敏素,研究不同施肥措施对白土腐殖质各组分碳含量的影响。结果表明:单施化肥措施下,翻耕20 cm处理(T20+F)土壤总有机碳和腐殖质各组分碳含量均低于翻耕10 cm处理(T10+F),但差异未达显著水平。在翻耕20 cm的基础上增施有机肥能显著提高土壤总有机碳和腐殖质各组分碳含量,增施畜禽粪(T20+F+M)、秸秆还田(T20+F+S)和增施绿肥(T20+F+G)3处理的土壤总有机碳、胡敏酸、富里酸和水溶性物质碳含量较T20+F处理分别提高14.57%~30.64%、10.36%~30.57%、0.74%~12.31%和14.25%~26.80%。增施有机肥显著提高胡敏素碳含量,T20+F+M、T20+F+S和T20+F+G处理较T20+F处理提高18.87%~35.78%。4年不同翻耕与施肥措施对白土腐殖质性质未产生显著影响。增施有机肥能一定程度上提高土壤PQ值、胡富比、E4/E6值和色调系数。相关性分析表明,胡敏素、胡敏酸、富里酸碳含量与总有机碳含量间均存在显著或极显著正相关,与水溶性物质碳含量间无明显相关性。  相似文献   

15.
不同耕作深度对红壤坡耕地耕层土壤特性的影响   总被引:2,自引:0,他引:2  
红壤坡耕地不同耕作深度对耕层质量和作物产量具有重要影响。以江西红壤坡耕地示范区耕层为研究对象,从土壤属性角度,对红壤坡耕地不同耕作深度处理下垂直深度土壤水分、容重、孔隙度、土壤紧实度、土壤抗剪强度、土壤有机质、有效磷和速效钾等进行分析。结果表明:(1)不同耕作深度对土壤孔隙度、饱和含水量和田间持水量的影响为免耕翻耕20 cm翻耕10 cm常规耕作翻耕30 cm,对容重的影响为翻耕30 cm常规耕作翻耕10 cm免耕翻耕20 cm;与常规耕作比较,翻耕30 cm使土壤饱和含水量、田间持水量和土壤孔隙度分别提高了18.17%,12.67%,5.94%,土壤容重降低6.90%。(2)不同耕作深度下土壤紧实度表现为翻耕30 cm翻耕10 cm翻耕20 cm免耕常规耕作,土壤抗剪强度表现为翻耕30 cm常规耕作翻耕10 cm免耕翻耕20 cm;与常规耕作对照,翻耕30 cm使土壤紧实度和抗剪强度分别降低27.07%和24.82%。(3)土壤有机质含量以翻耕20 cm处理下最高(13.48 g/kg),免耕处理含量最低(9.39 g/kg),土壤速效养分主要集中分布在0-20 cm土层,但20-40 cm土层中翻耕处理较免耕处理有不同程度的增加,以翻耕20 cm和常规耕作表现显著。(4)主成分分析结果表明,翻耕30 cm处理对红壤坡耕地土壤的综合改善效果最好。研究结果可为红壤坡耕地耕层土壤改善和合理耕层构建提供技术参考。  相似文献   

16.
Soil compaction was assessed in terms of soil strength as measured with a penetrometer. Penetrometer resistance was measured on virgin soil and on the same soil after one and after five passes of a 7,610 kg tractor. Also, comparative studies were made of strength profiles of soils in arable fields and in adjacent areas of virgin soil. The strength of virgin soil was increased by wheel traffic and agricultural operations in all cases. The increase in soil strength was significant down to 0.3 m, which is considerably greater than the normal depth of tillage in the area (0.05 m). Reduction in the coefficient of variation of penetrometer strengths after the passage of wheels was taken as evidence for associated losses of soil structure. Virgin soils provide important reference sites for assessing the impact of agriculture in an area.  相似文献   

17.
Two field experiments investigated the effect of tilled and untilled soil below the seed and the effect of a press wheel on the emergence of wheat (Triticum aestivum L.) seedlings on a hardsetting soil at Tatura, Victoria, Australia. Soil physical properties of the seedbed including penetrometer resistance, temperature and water content were recorded. The fate of seeds and seedlings and the length of roots were determined. In the experiments, germination was high (over 90%) and was not affected by the depth of tillage, the press wheel or by temporary waterlogging, but several physical conditions of the soil restricted emergence. In the first experiment, the rate and final emergence (at Day 10) was increased by tillage below the seed (e.g. at 46–90 mm depth) in spite of the penetrometer resistance of soil at 0–20 mm depth being 50% greater than that in the treatment untilled below the seed. The roots of the seedlings in the treatments untilled below the seed were temporarily waterlogged (at Days 0–1) and grew in soil that was drier (at Days 3–9) and harder than in treatments tilled below the seed. In the second experiment, the press wheel increased the rate of emergence by decreasing the sowing depth by 10 mm. Tillage below the seed increased the rate of emergence by decreasing the penetrometer resistance of the soil to less than 2.0 MPa.  相似文献   

18.
A NEW HAND-HELD RECORDING PENETROMETER FOR SOIL STUDIES   总被引:3,自引:0,他引:3  
This paper describes and evaluates a new solid-state recording hand-held cone penetrometer developed for in-situ soil studies. Force is measured by a strain-gauged transducer, and depth by an accurate optical system. Data for up to 20 penetrations per plot are stored and processed within the instrument in the field. The new penetrometer has been evaluated in field and soil tank experiments in comparison with three widely contrasting existing penetrometers ranging from a simple hand-held penetrometer to a trailer-mounted power-driven instrument. The results indicated that the simple hand-held penetrometer gave appreciably different cone resistance profiles from the other instruments. In particular, spurious ‘treatment effects’ obtained from the tillage experiment were shown to be due to inadequate instrument performance. The new solid-state recording hand-held penetrometer gave results comparable with those obtained from the more complex trailer-mounted instrument and another hand-held recording penetrometer.  相似文献   

19.
This study describes an integrated approach (1) to monitor the quantity and quality of water extractable organic matter (WEOM) and size, structure and function of microbial communities in space (depth) and time, and (2) to explore the relationships among the measured properties. The study site was an arable field in Southern Germany under integrated farming management including reduced tillage. Samples of this Eutric Cambisol soil were taken in July 2001, October 2001, April 2002 and July 2002 and separated into three depths according to the soil profile (0–10 cm, 10–28 cm and 28–40 cm). For each sample, the quantity and quality (humification index, HIX) of water extractable organic matter (WEOM) were measured concomitantly with soil enzyme activities (alkaline phosphatase, β-glucosidase, protease) and microbial community size (Cmic). Furthermore, microbial community structure was characterised based on the fingerprints of nucleic acids (DNA) as well as phospholipid fatty acids (PLFA). We observed strong influences of sampling date and depth on the measured parameters, with depth accounting for more of the observed variability than date. Increasing depth resulted in decreases in all parameters, while seasonal effects differed among variants. Principal component (PC) analysis revealed that both DNA and PLFA fingerprints differentiated among microbial communities from different depths, and to a smaller extent, sampling dates. The majority of the 10 PLFAs contributing most to PC 1 were specific for anaerobes. Enzyme activities were strongly related to Cmic, which was depending on water extractable organic carbon and nitrogen (WEOC and WEON) but not to HIX. HIX and WEOM interact with the microbial community, illustrated by (1) the correlation with the number of PLFA peaks (community richness), and (2) the correlations with community PC analysis scores.  相似文献   

20.
Southeastern USA production is limited in Acrisols (Paleudults and Kandiudults) because they have high strengths and low water holding capacities. Production systems with crop rotations or deep tillage before planting were compared with less intensive management. Production systems included double-crop wheat (Triticum aestivum L.) and soybean (Glycine max L. Merr.) that were drilled in 0.19 m-row widths and grown in 15 m wide, 150 m long plots with soils of varying hardpan depths. Treatments included surface tillage (disked or none), deep tillage (paratilled or none), deep tillage with winter fallow and maize (Zea mays L.) in rotation, and disked/deep tillage with an in-row subsoiler where soybean was planted in conventional 0.76 m-wide rows. Cone indices were measured near the ends of each plot (120 m apart) to assess soil strength differences among soil types and among treatments. Cone indices were 1.50 MPa higher for non-deep tilled treatments than for deep tilled treatments and 0.44 MPa higher in wheel-track mid rows than in non-wheel-track mid rows. Cone indices were also 0.28 MPa higher for soils with shallower Bt horizons. Cone indices were not significantly different for subsoiled treatments and paratilled treatments. Rainfall was erratic throughout the 5-year experiment with dry periods lasting more than 2 weeks at a time and with annual totals ranging from 520 to 1110 mm. Wheat yields were 0.67 Mg ha−1 greater for deep-tilled soils (subsoiled and paratilled) than for non-deep-tilled soils. Soybean yields were 0.36 Mg ha−1 greater for paratilled than for subsoiled or non-deep-tilled treatments partly as a result of the more complete disruption of the paratill and partly because paratilled treatments were managed with narrow rows. Yields did not vary significantly among the soil types despite the fact that they had different cone indices. Tillage was a more dominant factor than soil type. For wheat, lower cone indices from tillage led to higher yields. For soybean, management of uniform loosening from deep tillage and narrow rows led to higher yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号