首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustering of human H1 and core histone genes   总被引:9,自引:0,他引:9  
An H1 histone gene was isolated from a 15-kilobase human DNA genomic sequence. The presence of H2A, H2B, H3, and H4 genes in this same 15-kilobase fragment indicates that mammalian core and H1 histone genes are clustered.  相似文献   

2.
The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.  相似文献   

3.
The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.  相似文献   

4.
通过基因组粘粒文库的高通量接合转移、异源表达和生物活性测定,结合DNA序列测定,从刺孢吸水链霉菌AA97026中筛选具有广谱抗菌活性的小分子化合物及其生物合成基因簇,获得1个对革兰氏阳性细菌和红酵母均有抑制活性的阳性克隆1H5,其部分DNA序列与链丝菌素生物合成基因相似。含1H5的异源链霉菌宿主的发酵液均能检测到链丝菌素的不同组份,表明1H5含有完整的链丝菌素生物合成基因簇。  相似文献   

5.
DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand.  相似文献   

6.
The nucleosome is the fundamental unit of assembly of the chromosome and reversible modifications of the histones have been suggested to be important in many aspects of nucleosome function. The structure-function relations of the amino-terminal domain of yeast histone H4 were examined by the creation of directed point mutations. The four lysines subject to reversible acetylation were essential for histone function as the substitution of arginine or asparagine at these four positions was lethal. No single lysine residue was completely essential since arginine substitutions at each position were viable, although several of these mutants were slower in completing DNA replication. The simultaneous substitution of glutamine for the four lysine residues was viable but conferred several phenotypes including mating sterility, slow progression through the G2/M period of the division cycle, and temperature-sensitive growth, as well as a prolonged period of DNA replication. These results provide genetic proof for the roles of the H4 amino-terminal domain lysines in gene expression, replication, and nuclear division.  相似文献   

7.
T-cell growth factor (TCGF) or interleukin-2 (IL-2), an immunoregulatory lymphokine, is produced by lectin- or antigen-activated mature T lymphocytes and in a constitutive manner by certain T-cell lymphoma cell lines. By means of a molecular clone of human TCGF and DNA extracted from a panel of somatic cell hybrids (rodent cells X normal human lymphocytes), the TCGF structural gene was identified on human chromosome 4. In situ hybridization of the TCGF clone to human chromosomes resulted in significant labeling of the midportion of the long arm of chromosome 4, indicating that the TCGF gene was located at band q26-28. Genomic DNA from a panel of hybrids prepared with HUT-102 B2 cells was examined with the same molecular clone. In this clone of cells, which produces human T-cell leukemia virus, the TCGF gene was also located on chromosome 4 and was apparently not rearranged. The homologous TCGF locus in the domestic cat was assigned to chromosome B1 by using a somatic cell hybrid panel that segregates cat chromosomes. Linkage studies as well as high-resolution G-trypsin banding indicate that this feline chromosome is partially homologous to human chromosome 4.  相似文献   

8.
9.
10.
Role of histone H3 lysine 27 methylation in Polycomb-group silencing   总被引:2,自引:0,他引:2  
Polycomb group (PcG) proteins play important roles in maintaining the silent state of HOX genes. Recent studies have implicated histone methylation in long-term gene silencing. However, a connection between PcG-mediated gene silencing and histone methylation has not been established. Here we report the purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex. We demonstrate that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27). Using chromatin immunoprecipitation assays, we show that H3-K27 methylation colocalizes with, and is dependent on, E(Z) binding at an Ultrabithorax (Ubx) Polycomb response element (PRE), and that this methylation correlates with Ubx repression. Methylation on H3-K27 facilitates binding of Polycomb (PC), a component of the PRC1 complex, to histone H3 amino-terminal tail. Thus, these studies establish a link between histone methylation and PcG-mediated gene silencing.  相似文献   

11.
12.
13.
14.
In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as "reverse genetics," in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of its usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should now be applicable to any genetic locus for which a closely linked DNA marker is available.  相似文献   

15.
Eukaryotic DNA is organized into structurally distinct domains that regulate gene expression and chromosome behavior. Epigenetically heritable domains of heterochromatin control the structure and expression of large chromosome domains and are required for proper chromosome segregation. Recent studies have identified many of the enzymes and structural proteins that work together to assemble heterochromatin. The assembly process appears to occur in a stepwise manner involving sequential rounds of histone modification by silencing complexes that spread along the chromatin fiber by self-oligomerization, as well as by association with specifically modified histone amino-terminal tails. Finally, an unexpected role for noncoding RNAs and RNA interference in the formation of epigenetic chromatin domains has been uncovered.  相似文献   

16.
17.
18.
Isolation and mapping of a mouse complementary DNA sequence (mouse Y-finger) encoding a multiple, potential zinc-binding, finger protein homologous to the candidate human testis-determining factor gene is reported. Four similar sequences were identified in Hind III-digested mouse genomic DNA. Two (7.2 and 2.0 kb) were mapped to the Y chromosome. Only the 2.0-kb fragment, however, was correlated with testis determination. Polymerase chain reaction analysis suggests both Y loci are transcribed in adult testes. A 3.6-kb fragment was mapped to the X chromosome between the T16H and T6R1 translocation breakpoints, and a fourth (6.0 kb) was mapped to chromosome 10. Hence, mYfin sequences have been duplicated several times in the mouse, although they are not duplicated in humans.  相似文献   

19.
Acetylation of histone H3 lysine 56 (H3-K56) occurs in S phase, and cells lacking H3-K56 acetylation are sensitive to DNA-damaging agents. However, the histone acetyltransferase (HAT) that catalyzes global H3-K56 acetylation has not been found. Here we show that regulation of Ty1 transposition gene product 109 (Rtt109) is an H3-K56 HAT. Cells lacking Rtt109 or expressing rtt109 mutants with alterations at a conserved aspartate residue lose H3-K56 acetylation and exhibit increased sensitivity toward genotoxic agents, as well as elevated levels of spontaneous chromosome breaks. Thus, Rtt109, which shares no sequence homology with any other known HATs, is a unique HAT that acetylates H3-K56.  相似文献   

20.
董强 《安徽农业科学》2009,37(20):9380-9383
组蛋白翻译后修饰包括乙酰化、磷酸化、甲基化、泛素化和糖基化等。其中,组蛋白泛素化可能与基因的转录调控、异染色质的基因沉默、DNA修复等有关。笔者介绍了组蛋白H2B的泛素化机制及其意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号