共查询到16条相似文献,搜索用时 62 毫秒
1.
考虑非线性高阶多点边值问题x(n)(t)=f(t,x(t),x'(t),…,x(n-1)(t))+e(t),t∈(0,1),x(i)(0)=0,i=0,1,…,n-2,x(n-2)(1)=∑m-2j=1βjx(n-2)(ηj{)解的存在性,这里f:[0,1]×n→是连续函数,e(t)∈L1[0,1],βj(j=1,2,…,m-2)为符号不全相同的实数,0〈η1〈η2〈…〈ηm-2〈1.利用Mawhin连续性定理对于上述共振条件下的非线性n阶多点边值问题建立了解的存在性结果. 相似文献
3.
利用锥上不动点指数理论。给出了下列m-点边值问题u^(n)+f(t,u)=0,0〈t〈1满足边界条件u^(i)(0)=0,i=0,1,…,n-2,u^(n-2)(1)=∑i=1^m-2aiu^(n-2)(ξi)的多个正解的存在性,其中ai≥0,i=0,1,…,m-3,am-2〉0,0〈ξ1〈ξ2〈…〈ξm-2〈1,∑i-1^m-2aiξi〈1,ai,i=1,2,…,m-2,为给定的常数. 相似文献
4.
刘兴元 《湖南农业大学学报(自然科学版)》2007,33(1):122-126
研究高阶微分方程x^(n)(t)=,(t,x(t),x’(t),…,x^(n-1)(t)),0〈t〈1满足边值条件x(1)=∑i=1^ma jx(ξi),x^(i)(0)=0(i=0,1,…,n-2)或x^(n-2)(1)=∑i=1^naix^(n-2)(ξi),x^(i)(0)=0(i-0,1,…,n-2解的存在性,其中,αi,∈R(i=1,…,m,n≥2是整数,且0〈ξ1〈…〈ξm〈1,f连续,并分别获得了这些问题存在解的充分条件.与传统结果相比,本文定理中的非线性项可以依赖于所有的低阶导数. 相似文献
5.
用山路引理得到了一类带有Dirichlet边值条件的p-Laplacian方程的非平凡解的存在性及多解性. 相似文献
6.
用山路引理得到了一类带有Dirichlet边值条件的p-Laplacian方程的非平凡解的存在性及多解性. 相似文献
7.
利用Leggett-Williams不动点定理,并赋予f一定的增长条件,证明了二阶微分方程多点边值问题u″ f(t,u)=0 0≤t≤1u(0)=0 u(1)-∑m-2i=1kiu′(ξi)=0至少存在3个正解,其中f:[0,1]×[0,∞)→[0,∞)是连续的,0<ξ1<ξ2<…<ξm-2<1。同时给出了该边值问题相应的Green函数。 相似文献
8.
研究具有非齐次三点边界条件的三阶三点边值问题u^m+a(t)f(u(t))=0,t∈(0,1),u(0)=u'(0)=0,u'(1)-αu'(η)=λ正解的存在性,其中0〈α〈1,0〈η〈1,f:[0,+∞)→[0,+∞)连续,a:[0,1]→[0,+∞)连续,λ〉0为参数.主要利用Schauder不动点定理给出了上述三阶三点边值问题存在正解的充分条件. 相似文献
9.
研究一类奇异三阶m点边值问题多个正解的存在性.在适当的条件下,用Guo-Krasnosel'skii不动点定理证明了至少存在一个或多个正解. 相似文献
10.
应用Leray Schauder原理,研究四阶两点边值问题{u(4)(t)=f(t,u(t),u"(t)),t∈(0,1) u'(0)=u'(1)=u"'(0)=u"'(1)=0 解的存在性,在两参数非共振条件以及非线性项f满足至多线性增长性条件下给出了此类问题有解存在的最优充分条件,最后举例说明了所获结果. 相似文献
11.
利用Leray-Schauder度理论和Wirtinger-type不等式,给出了非线性n阶常微分方程u^(n)=f(t,u,u′,…,u^(n-1))-e(t),0〈t〈1,满足n点边界条件u^(n-3)(0)=0,u^(i)(ηi)=0,i=0,1,2,…,n-3,u^(n-3)(1)=0的解的存在性和惟一性定理。 相似文献
12.
王雪枝 《河北北方学院学报(自然科学版)》2011,27(5):16-20
研究了边值问题(Φp(u′))′(t)+q(t)f(t,u(t),u′(t))=0,0〈t〈1,u′(0)=sum αiu′(εi) from i=1 to n,u(1)=sum βiu(εi) from i=1 to n,在C1[0,1]上存在正解.方法是将边值问题转化为积分方程,通过建立算子,运用不动点定理. 相似文献
13.
研究非线性四阶微分方程两点积分边值问题解的存在性.利用一些分析技巧及锥上不动点定理,给出该问题存在一个及两个正解的充分条件. 相似文献
14.
研究一类非共振奇异四阶边值问题,给出正解存在的充分条件,并利用锥不动点定理证明其正解的存在性. 相似文献
15.
一类二阶奇异边值问题的正解 总被引:1,自引:0,他引:1
熊明 《西南大学学报(自然科学版)》2007,29(8):43-48
讨论了如下二阶奇异边值问题正解的存在性
{-(p(t)u′(t))′+q(t)u(t)=f(t,u(t)) t∈(0,1) u(0)=u(1)=0其中f可能在t=0,1都有奇性. 相似文献
16.
为研究脉冲微分方程边值问题解的存在性,通过上下解技术,得到关于变系数脉冲微分方程边值问题解的存在性结论,即设脉冲方程极限解x*和x*,若存在序列xn和yn满足x0≤…≤xk≤…≤yn≤…≤y0,同时函数f和脉冲条件满足有界性,则这两个序列满足lni→m∞xn相似文献