首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
基于物质平衡的对虾高位池循环水养殖系统设计与试验   总被引:1,自引:1,他引:0  
为建立一种高效、低成本的高位池循环水养殖系统构建技术,采用物质平衡相关原理,结合水净化设施构建技术,精准设计确立水处理系统物理过滤设施体积、生物过滤设施体积、循环量及供氧量等关键参数,并优化系统结构,建立融斜管沉淀设施、流化床生物过滤设施、增氧于一体的设施型高位池循环水养殖系统。应用该系统开展凡纳滨对虾运行试验,结果表明:p H值7.43~8.03,溶解氧5.32~7.82 mg/L,氨氮值0.06~0.54 mg/L,水质调控良好;系统养殖负荷2.26 kg/m3,饲料系数1.17,成活率81.3%,取得高效养殖生长结果;单茬利润3.34万元,亩均年利润2.67万元(按1年3茬计),获得良好经济效益。该研究系统主要参数设定值(预期值)与实测值吻合较好,可为高位池养殖模式可持续发展提供借鉴。  相似文献   

2.
基于物质平衡的循环水养殖系统设计   总被引:3,自引:7,他引:3  
刘晃  陈军  倪琦  徐皓 《农业工程学报》2009,25(2):161-166
针对工厂化循环水养殖系统中快速去除水中的溶解性氨氮和增加溶解氧等系统设计的核心问题,采用物质平衡关系建立氨氮、溶解氧的平衡方程式,推导出系统设计的计算公式,并根据工程实践的经验对部分公式进行了修正,得到了一组较贴近实际情况的设计参数,如:系统补水量、供氧量、循环量、循环次数、生物过滤器有效体积等。同时构建了一个工厂化循环水养殖系统设计的基本流程。以设计一套年产50 t鮰鱼(Ictalurus),养殖密度为50 kg/m3的高密度工厂化循环水养殖系统为例,可以计算得到系统的补水量为30 m3/d,系统补水率为6%,系统供氧为11.0 kg/h,系统循环量740 m3/h,循环次数为36次/d,生物过滤器有效体积为44.2 m3。  相似文献   

3.
为探索斑节对虾循环水养殖可行性及应用发展价值,该研究自主设计蛋白分离组合装置、内循环流化床等关键工艺环节水净化装备,构建了技术先进、结构紧凑的斑节对虾循环水养殖系统.针对其不同阶段生长特性及水环境需求,提出一种水质调控方法,科学投喂.运行试验120 d,溶解氧浓度5.30~7.14 mg/L,pH值7.23~8.44,...  相似文献   

4.
生物絮凝反应器对中试循环水养殖系统中污水的处理效果   总被引:2,自引:0,他引:2  
试验设计了一种生物絮凝反应器,用作中试规模循环水养殖系统(recirculating aquaculture system,RAS)的唯一水处理装置,研究其在不同水力停留时间(hydraulic retention time,HRT,12、6、4.5、3 h)条件下的运行效果。试验结果表明,反应器可耐受最小HRT为4.5 h,当HRT降低至3 h,反应器发生不可逆的洗出现象而使试验不能继续进行。反应器絮体沉降性能一般,随着HRT的减小(12、6和4.5 h HRT),絮体体积指数(SVI-30)逐渐降低,但是始终大于150 m L/g,为丝状菌膨胀,主要的丝状细菌由TM7 genera incertae sedis逐渐演变为Haliscomenobacter和Meganema菌属,相对丰度逐渐降低。12 h HRT反应器污染物去除率最高。反应器亚硝氮(NO_2~--N)、硝氮(NO_3~--N)在4.5 h HRT出水质量浓度最低,分别为(0.02±0.01)、(1.70±0.06)mg/L;氨氮(total ammonium nitrogen,TAN)、总氮(total nitrogen,TN)、悬浮颗粒物(suspended solids,SS)出水质量浓度在12 h HRT时最低,分别为(0.48±0.05)、(4.47±1.00)、(14.20±8.14)mg/L,同时未造成有机污染。4.5 h HRT对RAS养殖区污染物的控制效果最佳,TAN、NO_2~--N、NO_3~--N、SS质量浓度分别被控制在0.76、0.10、2.95、60.00 mg/L以下。反应器在不同HRT条件下均以异养细菌为主,主要通过同化作用去除TAN,好氧反硝化细菌和厌氧反硝化细菌同时是反应器的优势菌属。反应器可获得较长的稳定运行状态和良好的水处理效果,具有用作RAS核心水处理装置的可行性,该研究可为其在RAS的进一步研究和应用提供参考。  相似文献   

5.
分隔式循环水池塘养殖系统设计与试验   总被引:3,自引:1,他引:2  
为了解决池塘养殖设施化程度低、净化能力不足和排污效果差等问题,设计了分隔式循环水池塘养殖系统。该系统由20%水面的吃食性鱼类养殖区和80%水面的滤杂食性鱼类养殖区构成,配置过水堰、螺旋桨式和水车式推流装置、集污和吸污装置等养殖系统设施和装备。性能测试结果表明:螺旋桨式推流装置提水动力效率为340 m~3/(k W·h),流量为204 m~3/h,空载噪音为60 d B;水车式推流装置提水动力效率为360 m~3/(k W·h),流量为180 m~3/h,空载噪音为67 d B;过水堰过水的总流量约为331 m~3/h,利用水循环装备实现水体流动可实现水体日交换量7 900 m~3,达到养殖池塘水体的50%左右。利用推流装置搅动水体,可实现水体大范围的对流,交替暴晒水体,增加水体中的溶解氧,试验池塘中下层溶解氧水平比对照塘高出59.5%,试验池塘叶绿素a浓度比对照塘低,说明一定程度上限制了浮游植物过渡繁殖。该养殖系统可为池塘健康养殖系统模式构建提供参考。  相似文献   

6.
循环水养殖系统生物膜的挂膜成熟是一个比较耗时的过程,通常需要30~40d。为解决这一技术瓶颈,该文在一个大型海水循环水养殖厂的生物滤池内进行了生物膜快速挂膜的中试试验。该养殖厂循环水养殖系统有并联的生物滤池4个,单个为跑道式2级串联结构,总容量为800m3,采用毛刷状聚乙烯丝为生物载体。试验设计为预先培养水质净化菌的种子液,制备经200目筛绢过筛后质量比为4:1的黏土和沸石粉超细颗粒混合物悬液,然后按103cfu/mL和5g/L的浓度在两级滤池中分别加入4种不同水质净化菌的种子液和"黏土-沸石粉"混合物悬液,静水充气培养8d后,生物载体上能够形成较为牢固的生物膜。打开循环水系统运行2d后,连续5d检测生物滤池进、出水口的氨氮、硝酸盐、亚硝酸盐和COD(化学需氧量)含量,其5d平均消除率分别为:52.04%、17.24%、26.82%和62.94%。结果表明,与传统生物膜自然培养方法相比,该文所采用的挂膜方法将海水循环水养殖系统生物膜的挂膜成熟提前了20d以上,起到了增速效果,在生产上也是可行的。  相似文献   

7.
基于土壤养分平衡的畜禽养殖承载力研究   总被引:2,自引:0,他引:2  
为了合理控制畜禽养殖规模、有效降低畜禽养殖污染,采集江门市新会区水田、菜地、园地和林地共35个土壤样品,监测N、P养分以及Cu、Zn、As等重金属含量。基于土壤养分平衡模型,对适宜的畜禽养殖量进行了研究。结果显示,新会区土壤肥力水平较高,在35个监测点中,有29个点位土壤的全氮含量超过1.2g·kg~(-1),占比82.9%;11个镇街中,除了大泽,其余10个镇街的部分土壤存在N肥或P肥过剩,部分农用地土壤还同时出现N肥和P肥过剩;部分果园土壤出现As超标,沙堆、古井、罗坑三个镇果园土壤As超标倍数分别为1.76、0.66、0.21,古井林地、双水、司前的水田As超标倍数分别为0.31、0.15、0.082;全区现状畜禽养殖总量为125.7万头猪当量,而基于土壤养分平衡的畜禽养殖总量为27.10万头猪当量。因此,在新会区畜禽养殖污染防治工作中,除了需要大幅削减各镇的养殖规模、提高有机肥施用比例外,同时需关注畜禽粪便施用可能导致的农用地As污染风险。  相似文献   

8.
为探索低换水量的对虾养殖生产方式,该研究构建了一种简易式工厂化对虾养殖系统,试验组利用自行研发的蛋白分离器和新型集污盘去除系统总悬浮颗粒物和老化微藻,对照组不设置蛋白分离器和集污盘,进行对虾养殖和水质调控试验,结果表明:试验组平均总氨氮浓度、平均亚硝氮浓度、平均TSS(Total Suspended Solids)浓度、平均副溶血弧菌数量分别为(0.4±0.16)、(0.53±0.23)、(68.33±39.72)mg/L和(140±113.83)cfu/mL,显著低于对照组(0.96±0.62)、(1.17±0.59)、(147.14±94.18)mg/L和(661.34±473.96)cfu/mL(P<0.05);试验组成活率及单位产量分别为82.62%±5.64%和(3.44±0.85)kg/m3,显著高于对照组18.29%±4.63%和(1.09±0.23)kg/m3(P<0.05)。该研究构建的简易式循环水工厂化系统,设置蛋白分离器流量10 m3/h且不间断运行,养殖前45 d不换水、后55 d利用...  相似文献   

9.
该文对基于复合垂直流人工湿地(IVCW)的循环水养殖系统的净化效率、养殖效果和系统优化设计进行了研究.结果表明,在420 mm/d的水力负荷下,湿地可有效地去除循环水中的总悬浮物(去除率85%)、CODCr(去除率50%)、BOD5(去除率44%)、总氨氮(去除率53%)、亚硝酸盐(去除率83%)和硝酸盐(去除率54%),能够满足养殖用水的要求,整个试验期间系统实现了零污水排放.经过5个月的养殖,成功地将斑点叉尾鲴(Ictalurus punctatus)鱼苗(1.8 cm,0.08g)培育成鱼种(15.9 cm,33.9 g),成活率达到92.6%.在养殖容量、病害控制、成活率以及鱼体生长速度等方面均优于常规池塘养殖模式.建立了一个预测湿地与养殖池塘面积配比的数学模型,为实际应用和优化设计提供依据.  相似文献   

10.
从物质流、能量流和信息流分析的角度对种养一体化系统进行了探讨,为定量化研究种养一体化系统的生产及对指导能量、物质投入,调整系统产业结构,合理利用废弃物资源,提高系统生产力提供参考。  相似文献   

11.
超高密度全封闭循环水养殖系统设计及运行效果分析   总被引:11,自引:7,他引:4  
为进一步研究循环水养殖系统在高密度养殖生产过程中的水质变化情况、鱼类生长情况及应用推广价值,该文构建了一套超高密度全封闭循环水养殖系统,设计3条水处理环路,集成了鱼池双排水、竖流沉淀、转鼓式微滤机、移动床生物过滤、多腔喷淋式纯氧混合装置、二氧化碳脱气等高效水处理技术和装备。提出一种基于投饲量的循环水养殖系统设计计算方法,重点考虑氨氮、溶解氧和总悬浮颗粒物3个水质指标。使用该系统养殖吉富罗非鱼6个月,试验研究结果显示:鱼类生长情况良好,最高养殖密度104.2kg/m3。饵料系数1.4,成活率92.2%。水质检测结果显示:氨氮浓度维持在平均(1.09±0.55)mg/L;溶解氧维持在4~9mg/L范围内;pH值6.45~7.41。经济性分析研究结果表明,系统养殖运行成本约为25元/kg,略高于市场价格。但是,从环境成本考虑,系统的节水效果显著,日耗水仅为0.3~0.5m3。通过适当的精简并挑选合适的养殖品种,完全可以实现规模化的生产。  相似文献   

12.
为改善工厂化循环水养殖系统水质净化效果,提高养殖密度和成活率,构建了间歇式双循环工厂化养殖系统。通过间歇运行生物膜反应器增加水力停留时间,充分降解含氮污染物;连续运行弧形筛及时去除固体颗粒物。考察了该系统的启动过程及石斑鱼高密度养殖效果。启动初期,将硝化型生物絮团与海绵填料混合培养,生物膜22 d即可挂膜成功。以30.03 kg/m~3为初始养殖密度开展石斑鱼养殖试验,经66 d养殖,石斑鱼平均质量从(273.00±12.22)增至(552.52±107.04) g,最终养殖密度达到60.78 kg/m~3,成活率为100%。养殖过程中,生物膜逐渐适应养殖环境,氨氮、亚硝酸盐氮去除率从13.33%、14.84%增至93.73%、93.50%。此外,在弧形筛进水槽增加曝气形成曝气式弧形筛,可进一步除去细小颗粒物,有效控制养殖水体浊度。  相似文献   

13.
工厂化循环水养殖中臭氧/紫外线反应系统的水处理性能   总被引:2,自引:1,他引:1  
为增强臭氧在水产应用的安全性,满足工厂化循环水养殖对有机物去除和水体消毒的需要,该文开发O3/UV反应系统。通过试验方法研究该系统臭氧投加溶解区适宜的臭氧投加流量和处理量的关系、紫外辐射剂量配比等工艺参数,及对水质净化效果和水体消毒灭菌效果的影响等。试验结果表明:1)在满足所需水中溶解臭氧浓度的条件下,采用较低臭氧进气流量和较高进水流量有利于提高系统的臭氧溶解率和利用率。该系统在水流量为5 m3/h,臭氧投加量为(8.78±0.60)g/h时可得到水中臭氧溶解质量浓度为1.53 mg/L的臭氧水,臭氧溶解率为82.7%,臭氧利用率为97.7%。2)增加紫外灯的功率和数量均可提高对臭氧的去除率,但增加紫外灯的数量对其性能提升效果更明显。该系统在紫外剂量为1 996 MJ/cm2,对残留臭氧的去除率为83.82%。3)该系统对紫外消光度、总有机碳、水色等指标的去除率相比单独使用臭氧分别提升109.95%、89.77%和51.44%,杀菌率可达97%以上,实现工厂化循环水养殖低臭氧残留条件下的有机物有效去除和消毒杀菌。  相似文献   

14.
为促进中国淡水珍珠养殖业由传统粗放模式向高效生态智能化改造升级,该研究针对珍珠蚌工厂化循环水养殖模式下的水质监控需求,开发了基于无线传感网络的分布式水质监控系统。系统采用感知层、传输层和应用层相结合的体系架构,由水质监测节点、气象监测节点、设备控制节点和监控中心组成。现场采用多参数传感器、ZigBee无线模块、可编程逻辑控制器(Programmable Logic Controller,PLC)和MCGS触控屏组合的方式,实现对多地点监测数据的实时采集、图形化显示和报警功能,对循环水处理设备的启停控制及藻类供饵自动控制功能;上位机采用MCGS网络版和SQL Server数据库构建监控数据中心。系统采用无线组网分布式架构,组网灵活且操作简单,简化了设备的安装和维护工作。经实际使用测试,系统工作稳定性和检测准确性均在98%以上,能够满足淡水珍珠蚌循环水养殖的监控需求,可以为珍珠蚌传统养殖模式的转变和产业生产方式的转型升级提供有利保障。  相似文献   

15.
室内工厂化水产养殖自动投饲系统设计与试验   总被引:6,自引:7,他引:6  
为了提高室内工厂化水产养殖自动投饲系统定时、定量精度,并减少养殖过程中的饲料浪费,降低劳动强度,运用轨道传动、滑轨供电、超声波定位、无线通讯和计算机软件等技术开发了新型轨道式自动投饲系统。计算分析得,当选用HW100×100型钢制作轨道,以直径为0.06m的T型锻钢轨道轮、减速比为20:1的2级传动齿轮组和24V直流电机驱动系统行走时,电机功率需0.2kW以上,转速为2000r/min,输出扭矩要求0.58N.m以上。应用Solidworks软件设计了轨道式自动投饲系统样机,并进行了投饲量精度和定位误差性能测试试验,结果表明:该系统可以顺利完成自动启停与运行控制,其行走速度达到19m/min,定位误差在58~118mm范围内,料仓储料量20kg,投饲能力3kg/min,投饲量误差在0.5%~2.2%范围内。研究结果可为轨道式自动投饲系统设计与后续研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号