首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了探究云贵高原地区参考作物蒸散量(ET0)的时空分布特征,基于云贵高原42个代表性气象站点近56 a(1961—2016年)逐日气象数据,利用Mann-Kendall检验探究ET0主要的气象驱动因子,并运用多元回归分析量化了各气象因子对ET0的贡献率.结果表明:云贵高原近56 a风速和气温呈逐年上升趋势,增幅分别为0.001 2 (m·s-1)/a和0.018℃/a,太阳辐射和相对湿度呈下降趋势,降幅分别为0.007 3 (MJ·m-2·d-1)/a和0.074 6%/a;近56 a来ET0整体呈波动式上升趋势,增幅为0.287 1 mm/a,空间分布西高东低,差异特征显著,西部地区24个站点年均ET0为1 100~1 200 mm,东部18个站点年均ET0为843~950 mm;在春、秋、冬季太阳辐射是云贵高原ET0的主要驱动因子,夏季气温是ET0  相似文献   

2.
若尔盖湿地参考作物蒸散量时空演变特征及成因分析   总被引:1,自引:0,他引:1  
参考作物蒸散量(ET_0)对作物灌溉、水资源评价和气候变化均具有重要意义。利用若尔盖湿地及其周边19个气象站1960—2015年逐日气象资料,根据辐射修正的Penman-Monteith模型计算了湿地ET_0,采用累积距平、Mann-Kendall检验、Pettitt检验、Theil-Sen趋势度、EOF分解等方法分析了蒸散时空演变规律,并采用通径分析研究蒸散变化成因。结果表明:(1)若尔盖湿地年ET_0均值为625.3 mm,并以4.89 mm/10 a的速率显著上升(p0.01),四季ET_0表现为夏季春季秋季冬季。年、秋、冬ET_0分别在1968年(p0.01)、1997年(p0.01)、2003年(p0.1)突变上升,春、夏两季未出现突变。(2)湿地年均ET_0呈南部、东部边缘高、西北—东南一线较低的空间分布特征,且变化速率由东北向西南递减,其中西部班玛以北及南部马尔康、黑水之间地区ET_0呈缓慢下降趋势。(3)ET_0第一特征向量均为正值,说明若尔盖湿地ET_0变化保持高度区域一致性,南、北反向差异和东西、中部反向差异分别为第二和第三空间结构特征。(4)影响若尔盖湿地ET_0的主要气象因子为相对湿度,且能够综合其它因子对ET_0产生作用。近年来若尔盖湿地ET_0的上升主要是因为相对湿度的显著下降,其次是净辐射、平均气温和风速的显著上升。  相似文献   

3.
参考作物蒸发蒸腾量(ET0)是制定作物灌溉制度与灌溉工程规划、设计的重要依据。基于1961-2014年呼伦贝尔市7个典型站点以及其周边隶属于黑龙江省的6个站点的农业气象观测资料,利用国际粮农组织FAO推荐的Penman-Monteith公式计算ET0,采用克里金法进行空间差值,利用MATLAB进行Mann-Kendall检验,采用SPSS对ET0及气候因子进行相关分析。结果表明:(1)呼伦贝尔市作物全生育期及逐月ET0的空间变化趋势呈北低南高之势;ET0随时间推移呈逐月递减趋势,呼伦贝尔市南部地区5月ET0高达158 mm。(2)除东南地区外,全生育期ET0年际间线性趋势与多项式趋势一致,基本呈现上升趋势;除5、6月份生育期内其他月份ET0均有上升趋势。(3)逐月及全生育期ET0突变检验结果均为正值,6月和9月各有两个站点上升趋势显著(UUa)。(4)ET0变化与相对湿度为负相关,与其他气象因子均呈正相关关系,其中气温与水气压是影响ET0最大的两个气象因素。  相似文献   

4.
为了确定变化环境下横断山区科学高效的灌溉制度,利用MATLAB编程对横断山区1960-2013年31个气象站点逐月气象资料计算处理,得到横断山区逐月参考作物蒸散量。并通过GIS、完全相关性分析、EOF分析及MORLET小波分析等方法揭示横断山区参考作物蒸散量时空分布及其成因。结果表明:就空间特征而言,横断山区1960-2013年年平均参考作物蒸散量为945.20 mm;呈南部高于北部,东部高于西部,盆谷地高于山地分布;海拔低、纬度低、平均温度高、日照相对充足、风速大、相对湿度小及降水少的区域,参考作物蒸散量相应较大,反之较小;横断山区西北部与东北部反向变化趋势明显,保山-大理一线与南部及中部空间变异性显著。就时间特征而言,横断山区1960-2013年平均参考以4.5 mm/10 a递增;1969、1984及2004年为横断山区年平均参考作物蒸散量的转折点;横断山区年平均参考作物蒸散量主周期为27 a,横断山区四季平均参考作物蒸散量除冬季外均保持与横断山区年平均参考作物蒸散量周期一致性。  相似文献   

5.
基于河南省17个气象站1960-2019年逐日气象资料,采用Penman-Monteith模型、M-K检验和Morlet小波分析等方法分析河南省参考作物蒸散量(ET0)时空变化特征及其影响因素.结果表明:1960-2019年河南省ET0平均值为1050.11 mm/a,以-14.81 mm/10a的倾向率呈下降趋势,1...  相似文献   

6.
基于Penman-Monteith公式计算了我国大理河流域3个气象站1963―2012年的ET0,对大理河流域ET0的时空变化进行了分析,并使用Mann-Kendall法对ET0变化趋势的显著性及突变点进行了探讨;最后,通过Peasron相关系数分析了导致流域ET0变化的主要气象因素。结果表明,1963―2012年大理河流域的ET0总体呈波动性递增,但变化趋势并不显著,突变点为1970、1975、1993年。大理河流域的气候在1963—2012年出现暖干化;ET0在年内分布不均,其最大值在6月,达到了173.8 mm;在流域空间上ET0分布基本呈现出自东北向西南递减的趋势;ET0与平均温度、平均日照时间、平均风速呈极显著正相关关系(α=0.01),与平均相对湿度呈极显著负相关关系。  相似文献   

7.
为探究四川省参考作物腾发量(ET0)的变化,利用1961-2010年四川省12个气象站点的逐日气象观测资料,使用联合国粮农组织(FAO)1998年推荐的Penman-Monteith公式计算各站点ET0,并在此基础上采用GIS的克里金插值、Mann-Kendall趋势检验及相关分析方法分析ET0的的时空变化规律及其原因。结果表明:1961-2010年四川省各站的年ET0总体呈波动性递减趋势,其中ET0在1992年以前显著下降,之后逐渐上升;ET0年内分布不均,呈单峰曲线变化趋势,最大值在6月,达到了3.2 mm?d-1;ET0空间分布基本呈现自东北、西南向中部递减趋势,自西部青藏高原到中部成都平原ET0逐渐减小,再过渡到东部丘陵区ET0又逐渐增大,随地理纬度的增大呈递减趋势,随海拔高度的增大呈递增趋势,时空分布存在较大的区域差异;ET0和气象因子的相关分析结果表明,ET0和日照时数、风速呈显著正相关(α=0.05),是四川省ET0变化的主要影响因素。  相似文献   

8.
京津冀地区参考作物蒸散量变化特征与成因分析   总被引:3,自引:3,他引:0  
【目的】分析京津冀地区参考作物蒸散量(ET0)的变化特征及其影响因子。【方法】基于京津冀地区24个气象站1961―2016年的逐日气象资料,采用Penman-Monteith公式计算了各站及区域ET0,采用气候倾向率、Mann-Kendall突变检测、Morlet小波分析、敏感性系数等方法对京津冀地区ET0的时空变化及其影响因素进行了分析。【结果】1961―2016年,京津冀地区全年和四季ET0均呈下降趋势,在空间上表现出随海拔增加而减小的基本特征;全年和秋季ET0分别在1975年和2009年发生了由减少到显著减少的突变;全年、春季、夏季、秋季、冬季ET0的典型周期分别为7、11、16、19、19 a;ET0在年、春季、秋季、冬季均对相对湿度最敏感,在夏季则对最高气温最敏感。【结论】在全年、春季、秋季、冬季,风速的显著下降是ET0减少的主要原因,而在夏季,ET0减少的主要原因是日照时间的显著减少;ET0的在时间上变化不显著,是气候因子综合贡献率与ET0相对变化率差别较大的重要原因。  相似文献   

9.
利用山西省及周边地区共计35个气象站点1957—2014年的逐日气象数据,使用Penman-Monteith公式计算参考作物蒸散量(ET_0),采用一元线性回归和反距离加权插值法分析ET_0的时空变化特征,并采用逐步回归分析对ET_0的影响因素进行研究。结果表明,1年ET_0随时间的变化特征呈现混合模式,以下降趋势为主。2多年平均ET_0空间分布差异显著,区域内存在2个高值区、2个次高值区和2个低值区。秋季ET_0的空间分布特征与年ET_0的空间分布最为接近,而冬季,春季和夏季ET_0的空间分布特征与年ET_0的空间分布相差较大。3各站点年ET_0受同时期气象要素的影响程度由大到小的排序为:风速、温度、相对湿度、日照时间或降水量。全省不同站点多年平均年ET_0受气象要素的影响程度由大到小的排序为:风速、温度、相对湿度、日照时间、降水量。全省不同站点多年平均年ET_0受地理要素的影响程度由大到小的排序为:海拔、纬度。  相似文献   

10.
为提升参考作物蒸散量(ET0)的估算精度,以四川省为研究区域,发现全省ET0的数据变化具有明显的时间和空间自相关性,继而在气象特征基础上引入时空特征构建以XGBoost, LightGBM,GBDT、随机森林和极限树为基模型的Stacking模型.将顾及时空特征的Stacking模型与其各个基模型以及经验模型彭曼公式(FAO 56 Penman-Monteith)的决定系数、平均绝对值误差和均方误差等多项指标进行了全面的精度对比验证.试验结果表明:在顾及空间特征的情况下,Stacking模型在测试集上决定系数精度提升了3%,平均绝对值误差和均方误差分别降低了51%和76%;在顾及时序特征的情况下,Stacking模型在测试集上的决定系数精度提升了4%,均方误差和平均绝对值误差分别降低了92%和72%.这表明时空特征的引入可有效提升模型估算ET0性能.在同时顾及时空特征的情况下,Stacking模型相较于彭曼公式,决定系数提升了39%,均方误差、平均绝对值误差分别降低了95%和77%,并且,在2006—2010年逐年精度验...  相似文献   

11.
为深入了解中国西南5省ET0演变规律,利用1954—2013年广西、重庆、云南、贵州、四川5个省市119个站点逐日地面气象资料,采用FAO-56推荐的Penman-Monteith公式计算各站点逐日ET0,并使用Mann-Kendall检验、Morlet小波分析和GIS反距离加权插值定量分析ET0时空变化特征。结果表明,1954—2013年西南5省ET0多年平均值为855 mm,波动范围为819~901 mm,年均ET0总体呈下降趋势(倾向率为-1.5 mm/10 a),在春、夏、秋、冬季也均呈下降趋势(倾向率分别为-0.4、-0.7、-0.3、-0.1 mm/10a),分别占全年的26.7%、46.7%、20%、6.6%;西南5省ET0多年平均值分别以26 a、12 a、5 a为第1、第2、第3周期进行“增大-减小”交替变化;1954—2013年,西南5省年均ET0空间分布总体表现为南部大于北部,云贵高原西部和广西地区明显大于四川盆地和云贵高原东部,四川盆地相对最小,川西高原南部和云贵高原东部地区相对最大;西南5省ET0在春、夏、秋、冬季空间分布较高值区分别为云贵高原西部、四川盆地和云贵高原东部、广西地区、云贵高原西部,较低值区分别为四川盆地、云贵高原西部、四川盆地和川西高原东北部、四川盆地和广西地区。  相似文献   

12.
广西多站点参考作物蒸散量时空变化分析   总被引:1,自引:0,他引:1  
基于广西20个气象观测站点1957—2001年的逐月气象资料,采用Penman-Monteith公式计算各站点逐月、逐年参考作物蒸散量(ET0),采用变差系数和年际极值比分析ET0的年际变化特征,应用累积滤波器法、Ken-dall秩次相关法、R/S分析法分析ET0的变化趋势。研究结果表明,桂中ET0年际变化最剧烈,桂南ET0年际变化最小。岩溶发育地区的ET0的年际变化比非岩溶发育略显剧烈,但相差不大。20个站点中,5%站点的ET0呈显著上升趋势,95%站点的ET0呈下降趋势(下降趋势显著的站点占63.1%)。与1957—2001年相比,ET0呈上升趋势的站点由5%增加到未来的35%,且非岩溶地区ET0呈上升趋势的站点数大于岩溶地区。  相似文献   

13.
江苏省参考作物蒸散量的时空变化及影响因素分析   总被引:1,自引:0,他引:1  
【目的】参考作物蒸散量是水分循环和能量循环的重要组成部分,研究其变化特征及影响因素可以为该地区合理利用水资源,高效水分管理及农业生产布局提供参考。【方法】利用1961-2018年江苏省60个站点的风速、温度、相对湿度和日照时数等逐日数据计算了逐日蒸散量(ET0),并采用气候倾向率、敏感性分析、通径分析、贡献率分析等方法对江苏省ET0的时空变化及影响因素进行分析。【结果】①江苏省1961-2018年平均ET0为976.8 mm,区域整体ET0的变化幅度为-0.44 mm/10 a,共有28个站点ET0呈增加趋势(47%),主要分布在无锡以及苏州等苏南区域,共有11个站点ET0增加趋势显著(p<0.05),其中无锡、太仓、靖江地区ET0气候倾向率较大,分别为18.6、19.0、30.0 mm/10 a。共有32个站点ET0呈减小趋势(53%),主要分布在连云港、徐州、宿迁等苏北地区,共有16个站点ET0减小趋势显著(p<0.05),其中新沂、泗洪、灌南地区ET0减小趋势较大,分别为-19.2、-23.1、-23.2 mm/10a;②丰县(1 007.4 mm)、徐州(1 041.1 mm)以及西连岛(1 130.3 mm)区域为ET0的高值中心;③ET0对平均温度、日照时间、风速为正敏感,对相对湿度为负敏感,且ET0对相对湿度最敏感。平均温度、日照时间、风速、相对湿度与ET0决策系数分别为0.09、0.33、-0.02、0.29。敏感系数空间分布上,ST与SWS纬向分布特征都较明显;④贡献率分析表明,主要影响因素为风速的有22个站点,均分布在苏北地区,其中沛县、泗阳、新沂站风速对ET0变化贡献较大,分别为-13.44%、-12.52%、-12.49%,主要影响因素为相对湿度的有38个站点,主要分布在苏南地区,其中丹阳、靖江、昆山站相对湿度对ET0变化贡献较大,分别为18.47%、18.57%、20.87%,全区平均温度和日照时间不对ET0变化产生主要影响。【结论】苏北地区ET0变化的主要影响因素是风速,且风速贡献率为负,苏南地区ET0变化的主要影响因素是相对湿度,相对湿度贡献率为正。  相似文献   

14.
根据玛纳斯河流域中游平原灌区(玛河灌区)24个标准气象站逐日气象资料,采用Penman-Monteith公式计算了各站逐日ET0,利用经验贝叶斯Kriging插值法、距平分析及偏相关分析等方法分析了玛河灌区ET0时空变化特征及其影响因素。结果表明:玛河灌区年ET0均值为972 mm,呈现东北高、西南低的分布规律;近56年ET0呈增加趋势(0.51 mm/a),通过第一主震荡周期预测2014年后玛河灌区ET0值将会是偏高期;偏相关分析表明风速是影响该灌区ET0的主要原因。  相似文献   

15.
根据1961—2013年我国新疆地区55个气象站常规气象资料,基于Penman-Monteith公式计算了参考作物蒸散量(ET0),并计算其对最高温度、最低温度、风速、日照时数和相对湿度的敏感系数,最后分析了敏感系数的时空变化特征。结果表明,年最高、最低温度呈显著增长趋势,风速、参考作物蒸散量及日照时间呈显著减少趋势。最高温度对ET0敏感性最高,相对湿度次之,而日照时数的敏感性最低。由于气象因子空间分布不均匀,所以新疆敏感系数存在空间分布差异。最高温度、风速和相对湿度的敏感系数在新疆中部及北部较高。最低温度在新疆的西部、东部较高,中部天山山区较低。日照时数在南疆地区较高,北疆地区较低。53年来,最高温度和风速的敏感系数呈减少趋势,其中南疆地区减少趋势明显。最低温度的敏感系数全疆呈增加趋势,在天山山区增加趋势明显,日照时数的敏感系数在南疆地区增加趋势明显,相对湿度的敏感系数在全疆地区呈增加趋势。  相似文献   

16.
基于1979-2014年三江源地区ET_(0)计算值结合NCEP再分析数据建立统计降尺度模型SDSM,通过模型验证发现该方法在三江源地区ET_(0)预测具有较好的适用性;然后通过率定的模型将2015-2100年CanESM5模式中ssp1-2.6,ssp2-4.5和ssp5-8.5情景模式下的预测数据降尺度处理为站点数据,最终分析计算出了三江源地区13个气象站点近36年来作为基准期的ET_(0)变化特征,以及ET_(0)值在未来不同情景下相对于基准期的变化。结果表明:(1)基准期空间分布上呈现南部和东北部高,西北和中部地区低的分布格局,其中年平均ET_(0)为855 mm,以0.043 mm/a的增长率增加;(2)2015-2100年夏季和冬季的季节平均ET_(0)在空间分布上与基准期一致,但春季、秋季都以五道梁为低值区中心,存在低值区范围缩小、扩散的分布变化;年平均ET_(0)在3种情景模式下均呈现显著增长趋势,ssp5-8.5增幅最多,其次是ssp2-4.5,ssp1-2.6增幅最少;(3)ssp1-2.6和ssp2-4.5情景模式下的ET_(0)增量秋季大于春季,与ET_(0)值春季高于秋季的季节分布特征存在差异。总体来看,2015-2100年年平均ET_(0)空间分布特征和基准期保持一致,ET_(0)值均有明显上升趋势,但区域增量存在地区差异,玛多、班玛可能成为未来ET_(0)高值区。ET_(0)的不断上升可能导致区域水资源短缺进一步加剧,干旱发生频率增加,需要加强区域生态需水指标构建、作物气候生产潜力以及干旱分布研究等工作,以便提前做好应对措施。  相似文献   

17.
准确评估粮食主产区气象因子变化特征及对参考作物蒸散量(reference crop evapotranspiration,ET0)的影响,对农田水文循环、区域农业水资源优化配置与高效利用等具有重要意义。利用中国粮食主产区258个气象站点1961―2013年的逐日气象资料,采用Penman-Monteith公式计算ET0,通过M-K趋势检验法、偏相关分析、多元线性回归计算贡献率等方法,分析了1961—2013年中国粮食主产区主要气象因子时空演变及其对ET0变化的贡献特征。结果表明,1961—2013年中国粮食主产区相对湿度、温度、降水在空间上由南至北呈降低趋势,而日照时间和风速则由南至北呈增高趋势;1961—2013年中国粮食主产区全区、温带湿润半湿润地区(I区)、温带干旱半干旱地区(II区)、亚热带湿润地区(III区)及暖温带半湿润地区(IV区)多年平均气温均呈增大趋势,平均风速、相对湿度、降水与日照时间均呈减小趋势;1961—2013年中国粮食主产区年内ET0均呈锯齿状下降,且ET0在四季呈现出夏季春季秋季冬季的特征;多年平均风速、气温、日照时间与ET0在全区及各分区总体均显著正相关(P0.05),而相对湿度与ET0在全区及各分区均极显著负相关(P0.01);1961—2013年中国粮食主产区全区及I~IV区气温、风速、相对湿度对ET0变化均具有较大贡献,其中相对湿度为I区、III区及IV区的主要气象驱动因子,其次为平均气温和风速;而II区ET0变化的主要驱动因子为风速,其平均贡献率WII(风速)为0.37;综上所述,中国粮食主产区主要气象因子变化特征与ET0的响应,均呈现出区域性、季节性差异。  相似文献   

18.
【目的】充分认识关中地区参考作物蒸发蒸腾量(ET0)时空变化特征及其主要影响因子。【方法】使用1980—2019年关中地区43个气象观测站逐日气象资料,结合Penman-Monteith(P-M)模型、反距离权重、逐步回归分析和通径分析等方法,研究1980—2019年关中地区ET0时空变化特征及其主要影响因子。【结果】最高气温(Tmax)、最低气温(Tmin)、平均气温(T)呈升温趋势,上升幅度处于1.68~2.85℃之间;相对湿度(RH)呈下降趋势;日照时数(SSD)整体变化较小;平均风速(WS)则呈减小趋势;气象因子空间分布因海拔、地形不同而表现出差异性;关中地区多年平均ET0为959 mm,整体呈增加趋势,增加速率为1.43 mm/a;ET0空间分布差异较大,多年平均ET0处于852~1 099 mm之间,由东北向西南递减,关中地区ET0季节性差异明显;影响关中地区ET0的气象因子排序...  相似文献   

19.
准确评估西南地区参考作物蒸散量ET0对作物耗水量分析,作物生产潜力评价及区域水资源管理等具有重要意义。本文应用西南地区近56 a逐日气象数据,利用FAO-56 Penman-Monteith模型计算ET0,通过MannKendall检测、变化趋势分析及基于敏感系数的贡献率分析,对近56 a西南地区ET0及相关气象因子的年内变化特征与变化趋势进行分析。结果表明:近56 a西南地区春、夏、秋、冬四季ET0值分别为314.71、345.78、219.13、169.51 mm,气候倾向率分别为0.850、-2.841、0.571、1.125 mm/(10 a),其中春、秋季ET0呈不显著变化趋势,夏季ET0呈极显著下降趋势(P0.01),冬季呈极显著上升趋势(P0.01);相对湿度、日照时数和风速在四季均呈下降趋势,温度呈上升趋势,其中相对湿度呈极显著下降趋势(P0.01),最低温度呈极显著上升趋势(P0.01);春季相对湿度对ET0贡献率最大,为5.23%,夏季日照时数对ET0贡献率最大,为-7.49%,秋季最高温度对ET0贡献率最大,为3.94%;冬季最低温度对ET0贡献率最大,为6.69%,其次是平均温度,为6.57%。因此,近56 a西南地区春、秋、冬季ET0上升的主要原因分别是相对湿度降低、最高温度上升、最低温度和平均温度升高,夏季ET0下降的主要原因是日照时数减少。  相似文献   

20.
利用重庆地区34个气象站1961-2009年逐日气象资料,采用Penman-Monteith公式计算了参考作物蒸散量(ET0),并通过GIS空间插值、气候倾向率、Mann-Kendall突变检验等方法,分析了重庆地区ET0的时空变化特征及其气候影响因子。结果表明:在空间分布上,重庆地区参考作物蒸散具有明显的区域差异,总体表现为:自西向东北方向增加,向东南方向减少。年内ET0主要受日照与气温的影响,其变化曲线呈单峰型。49年以来,重庆地区年均与春、夏、冬3季ET0均呈显著下降趋势,秋季的变化特征不明显,日照与风速的显著减小是造成重庆地区ET0呈下降趋势的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号