首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
20PY2掺气喷头是以20PY2摇臂喷头结构为基础,引入气液两相流理论得到的一种喷头.以20PY2掺气喷头为研究对象,研究其低压下的喷灌效果,并对比摇臂喷头的喷灌效果.试验评价指标:平均喷灌强度、蒸发漂移量、喷灌均匀系数及分布均匀系数;变量:工作压力和组合间距.试验结果表明:与摇臂喷头相比,掺气喷头的射程变化不大,但掺气喷头的平均喷灌强度随工作压力递增,随着组合间距递减;低压下,掺气喷头在风速为1 m/s时的蒸发漂移量约为5%,其组合喷灌的最佳工作压力和组合间距分别为300 kPa和1.1R.掺气喷头喷灌强度峰值与谷值的阶梯性较好,同等数量测点的喷灌强度峰值区间和谷值区间平均值趋向于平均喷灌强度,峰值区间和谷值区间喷灌强度在灌溉总强度中的占比分别低于和高于摇臂喷头.因此,喷灌效果优于摇臂喷头.  相似文献   

2.
多功能喷头是以PY20摇臂喷头为基础,从摇臂喷头的中部插入掺气管,实现掺气、掺液的喷灌喷头。采用液气体积流量比和液液质量流量比衡量多功能喷头的抽吸性能,并在不同工作压力下开展了试验测量。在相同喷头流量条件下,对比了摇臂和多功能喷头的水力性能、不同组合间距下正方形布置方式的喷洒均匀系数。结果表明:随着工作压力的增大,液气比和液液比呈曲线下降且渐趋向于某一值,喷头掺气、掺液量增大;不同工作压力下多功能喷头与摇臂喷头相比,掺气时射程变化不大,而掺液时缩短约1 m;掺气和掺液对于改善射流前段和中段的水量分布效果明显,且降低了喷头末端的降雨强度和打击力度;多功能喷头掺气、掺液时,最佳组合喷灌间距为1.2R,优于摇臂喷头的1R,节约了灌溉管网开支成本。  相似文献   

3.
掺气喷头是在以PY30摇臂喷头为结构基础的前提下,从摇臂喷头的中部插入掺气管,形成气液两相射流,所得到的新型喷头.在保证2种喷头工作压力分别在100,200,300 kPa并具有相同流量的前提下,试验研究了掺气与不掺气以及掺气量变化对喷头径向水量分布、射程等因素的影响,并以正方形布置方式为例,计算出不同组合间距下的喷洒均匀性系数.试验结果表明:在喷头工作压力和工作流量相同的情况下,摇臂喷头与掺气喷头的射程近似相等;在掺气管相对喷嘴出口端面移动距离依次为-1.5,0,2.0 mm状态下,掺气管吸入负压逐渐增强,掺入的气体流量增大,此时掺气喷头的径向水量分布与摇臂喷头的径向水量分布相比,喷头的射流轨迹中段降雨量逐渐增强,峰值趋于区间化;在200,300 kPa工作压力下,掺气喷头的最佳组合间距均为R,喷灌均匀性系数分别高于摇臂喷头2.5%和1.9%.  相似文献   

4.
为了探究不同工况对射流式喷头喷灌水量的影响,通过对射流式喷头在不同组合间距和工作压力下的水量分布数据进行分析,拟合出了喷头在不同工作压力及组合间距下的降水强度,采用克里斯琴森均匀系数和分布均匀性系数计算了相应的喷灌均匀度.结果发现喷头组合间距在1.0R~1.4R变化时正方形组合喷灌的CU值随喷头间距的增大呈下降趋势,CU值均大于70%;1.0R和1.2R组合间距下正方形组合喷灌低值区域的占比比三角形组合高,而1.4R的组合间距则与上述相反;当压力由0.1 MPa升至0.3 MPa时三角形组合喷灌区域的灌水峰值随着压力的增大呈先减小后增大的趋势;在正方形组合形式下增大工作压力有利于提高喷洒区域内的均匀性;压力损失并不总是降低喷灌的均匀性,0.2~0.3 MPa压力下,10%的压力损失对喷头喷灌均匀性几乎没影响;射流式喷头1.4 m安装高度、0.25 MPa压力下宜采用1.4R间距的三角形组合.  相似文献   

5.
微喷头水力性能及喷灌组合均匀性试验研究   总被引:1,自引:0,他引:1  
为了解不同因素对微喷头水力性能及喷灌组合均匀性的影响,分别研究了喷嘴直径1.2和1.4 mm的微喷头在工作压力为250,300和350 k Pa下流量、射程、水量分布和喷灌组合均匀性系数变化规律.结果表明:喷嘴直径为1.2 mm的喷头,流量系数为0.005 9;喷嘴直径为1.4mm的喷头,流量系数为0.005 2;工作压力分别为250,300和350 k Pa下,1.4 mm喷嘴直径相比1.2 mm喷嘴直径流量分别增加5.0%,2.4%和3.0%,射程分别增加11%,8%和14%.距喷头距离近处,喷灌强度随着工作压力增大而增大;分别得到喷嘴直径为1.2和1.4 mm的微喷头喷灌强度、距喷头距离和工作压力之间的关系多项式;对于工作范围较小的微喷头,喷嘴直径对于射程影响较大;在相同工作压力下,组合喷灌均匀系数随喷头间距增加而减小,通过计算组合均匀系数发现喷嘴直径1.4 mm的微喷头在300 k Pa下,组合间距为1.0R时,喷灌均匀度最高.  相似文献   

6.
刘洋  严海军  马开  刘继昂 《节水灌溉》2012,(3):33-35,39
为了比较Nelson公司生产的R2000WF喷头和相近摇臂式喷头的组合喷灌性能,分别对两种喷头采用正方形布置12m×12m和矩形布置12m×16m条件下的组合喷灌均匀性开展了田间试验研究。结果表明:在工作压力0.20~0.30MPa时,R2000WF喷头和摇臂式喷头的喷灌均匀系数Cu分别为0.78~0.85、0.68~0.83;由单喷头水力性能曲线组合模拟求得的Cu值也表明,在相同工作压力、组合形式及间距条件下,与摇臂式喷头相比,R2000WF喷头具有更高的喷灌均匀性,更适合于低压条件下工作。  相似文献   

7.
旋转折射式喷头水量分布与喷灌均匀性试验   总被引:4,自引:0,他引:4  
为了研究喷头工作压力、喷嘴直径和安装间距对喷灌喷洒水深和喷灌均匀度的影响规律,选用喷嘴直径为2.98、3.37、3.77 mm的R3000型旋转式喷盘的折射式喷头进行了研究。测量了3种喷头在0.1、0.2、0.3 MPa工作压力下的径向水量分布,喷灌强度随着喷头工作压力或喷嘴直径的增加而增大。叠加计算了安装间距为2、3、4、5、6 m几种情况下的组合均匀性系数,并通过组合试验与计算结果进行对比,得出组合均匀性系数试验值与模拟计算值的误差在0.5%~11.0%之间,影响因素的主次顺序为喷头安装间距、工作压力、喷嘴直径。结果表明:喷嘴流量系数平均值在0.9以上,说明喷头的性能良好。3种喷嘴的最佳喷灌均匀性系数分别为75.9%、78.2%和85.1%。提出了自制R3000型旋转折射式喷头最佳组合间距为4 m的计算均匀性系数经验公式,为其在工程中的应用提供了理论数据。  相似文献   

8.
为了解决园林绿地喷灌中喷头参数选择不当导致灌溉不均匀的问题,对比研究了Rain Bird-3500、Hunter-PGP、Toro-mini-8、K Rain-PRO四种典型园林地埋式旋转喷头的水力性能和经济性参数,确定了四种喷头的适宜运行工作参数。结果表明,四种地埋式喷头的流量、运转速度、组合平均喷灌强度和喷灌均匀系数的变化趋势基本一致;喷头的流量随着工作压力的增大而增大;随着喷头组合间距的增大,平均喷灌强度、喷灌均匀系数和喷头投资总体有下降的趋势;当喷头间距一定时,工作压力越大,喷灌均匀系数逐渐增加。综合喷灌质量、节能性和经济性三方面考虑,建议Rain Bird-3500和K Rain-PRO工作压力以0.20 MPa,组合间距为14 m×14 m为宜;Hunter-PGP的工作压力以0.25 MPa,组合间距采用14 m×14 m为宜;建议Toro-mini-8的工作压力以0.15 MPa,组合间距以12 m×12 m为宜。  相似文献   

9.
【目的】探究安装高度及工作压力对育苗喷头水力性能的影响,得到育苗喷头适宜工作条件,优化育苗喷头喷洒水力性能。【方法】选取育苗喷头的安装高度为0.5、0.6、0.7 m,分别测试其在200、250、300、350 kPa工作压力下单喷头的水量分布。基于水量平衡原理,建立移动喷洒水量分布计算模型,将单喷头定喷水量分布转换为喷头移动水量分布,计算出不同组合间距下的均匀性系数,并对组合间距-工作压力-均匀度进行多项式拟合,得到不同安装高度下的拟合公式。【结果】在0.5~0.7 m范围内,增大喷头的安装高度能提高单喷头水量分布的均匀度、降低峰值喷灌强度;单喷头平均喷灌强度随压力的增大而增大;工作压力相同时,组合均匀性系数随着组合间距的增大多呈现先减小后增大再减小的趋势;安装高度相同时,喷头组合均匀性系数随压力的改变所呈现的变化规律不明显;试验条件下,喷头的最优工况为:安装高度0.5m、工作压力300kPa,组合间距0.5m,组合均匀度98.08%。安装高度升高时,单喷头喷洒辐射面积增大,喷头喷灌强度峰值降低,水量分布更均匀,工作压力升高时,各测点喷灌强度增大,喷洒范围更广。【结论】在试验条件下,...  相似文献   

10.
低压均匀喷洒摇臂式喷头主副喷嘴设计及试验   总被引:1,自引:0,他引:1  
为了解决现有喷灌系统能耗较高的问题,选取10型号摇臂式喷头为研究对象,设计7组方案的喷头主副喷嘴结构,使其实现低压均匀喷洒。分别对7组方案进行水力性能试验及分析,结果表明:7组方案对它们射程的影响并不明显。方案7在主喷嘴上增加凹槽,径向水量分布较为平缓,性能优越。分别对7组方案在组合间距为1 R、1.1 R、1.2 R、1.3 R和1.4 R下进行仿真计算,得到方案7组合均匀性最好,均匀性系数值均高于0.8,且在1.4 R时均匀性系数最大,值为0.83。与其他方案相比,方案7可以增大喷头的组合间距。研究结果降低了摇臂式喷头的工作压力,低压下提高了喷洒均匀性,实现降低系统能耗的效果。  相似文献   

11.
出口可调式变量喷头喷灌均匀性   总被引:2,自引:0,他引:2  
陈超  李红  袁寿其  王超 《排灌机械》2011,29(6):536-541
以喷洒域形状和水量分布均匀性为指标研究变量喷头的喷灌均匀性,分析了影响PY2系列喷头射程和水量分布的关键因素,得知改变单一参数的变量喷头喷灌均匀性较差.为提高变量喷头的灌溉均匀性,设计了出口可调式的变喷洒域喷头,使用流量调节机构改变喷头工作压力,使用出口调节机构改变喷头出口面积,通过出口面积和喷头工作压力的同步调节实现均匀喷洒.测试了出口可调式变量喷头的水力性能,对比了圆形喷嘴变量喷头和出口可调式变量喷头水量分布,出口可调式变量喷头不同射程处喷灌强度相近,喷洒性能优于圆形喷嘴变量喷头.计算了变量喷头的方形喷洒域系数和不同间距下的组合灌溉均匀性,结果显示BPY20变量喷头的方形喷洒域系数为97.8%,最佳组合间距为1.66,组合灌溉均匀性为75.4%;BPY30变量喷头的方形喷洒域系数为91.5%,最佳组合间距为1.69,组合灌溉均匀性为77.2%.  相似文献   

12.
选取折射式微喷头,在200kPa工作压力下,测试0.5、1.0、1.5、2.0和2.5m安装高度下的单喷头水量分布。利用surfer软件绘出单喷头水量分布等值线图,对图中喷头中心至喷灌强度为0.15mm/h等值线的距离,多次测量取平均值,以确定射程。采用叠加法,计算出不同喷头间距下的组合均匀性系数。结果表明:随着喷头安装高度的升高,射程增加,单喷头喷灌强度峰值降低。不同喷头安装高度下,最高组合均匀性系数对应的最佳喷头间距不同,但均不超过0.9倍射程。0.5m喷头安装高度的射程最小、喷灌强度峰值最大、最高组合均匀性系数最低,为最不利安装高度。  相似文献   

13.
为探究流道出口形状、工作压力、喷嘴直径对折射式喷头水力性能的影响,设计了矩形、Y形、垭口形3种流道出口的喷盘,通过正交试验测试单喷头移动水量分布,采用线性插值计算射程,利用直接叠加法计算不同喷头间距下组合均匀性系数,并运用综合加权评分法评价了喷头水力性能。结果表明:喷嘴直径、工作压力和流道出口形状对射程均影响显著,而其对单喷头移动水量分布的影响主要表现在水量区域位置和喷灌强度峰值不同。影响射程、喷灌强度峰值和组合均匀性系数的主次顺序为喷嘴直径、流道出口形状、喷头组合间距、工作压力。喷头水力性能最优的因素组合为:喷嘴直径为2.98mm,喷盘流道出口形状为Y形,喷头组合间距为2.5m,工作压力为100kPa。  相似文献   

14.
【目的】研究工作压力,喷头组合间距、组合斱式和旋转速度对射流式喷头及多喷头组合喷灌均匀性系数(CU)和分布均匀系数(DU)的影响。【斱法】采用不同工作条件下单喷头和多喷头组合喷灌水量分布的动态仿真代码,对射流式喷头开展了水力性能试验;研究了射流式喷头在不同工作压力及安装高度条件下对喷灌强度、水量分布的影响;建立了水量峰值强度与工作压力的回归关系式;模拟了单喷头在正斱形和三角形组合喷灌下的空间水量分布。【结果】喷头在1.5 m安装高度、100~300 kPa压力条件下,水量峰值集中在5 mm/h附近,标准偏差(STD)为0.23。喷头在100 kPa工作压力,安装高度为1.1、1.3 m的水量峰值强度分别可高达8.9、10.5mm/h。不同工作压力下的单喷头喷灌的DU和CU标准偏差分别为15.5%、9.3%,且DU对压力的变化相对更为敏感。【结论】在实际喷灌工程中正斱形组合喷灌的间距应小于8m,三角形组合喷头之间的间距应布置在8m附近,此时的喷灌均匀度最高,单个喷灌设备覆盖范围最广,成本最低。  相似文献   

15.
轻小型喷灌机组相邻喷头工作压力差对喷灌均匀性的影响   总被引:1,自引:0,他引:1  
轻小型喷灌机组实际应用时由于地势变化、水力损失等因素影响相邻喷头间会存在一定的工作压力差,影响组合喷灌均匀性。故选取灌水均匀系数Cu和分布均匀系数Du作为评价指标,研究喷头工作压力与相邻喷头工作压力差对喷灌均匀性的影响规律。以摇臂式喷头10PY为例,通过试验分析当喷头工作压力取3个水平(0.22、0.25、0.28 MPa)、相邻喷头喷灌工作压力差取5个水平(0、0.01、0.02、0.03、0.04 MPa)时的喷灌均匀性及水量分布。结果表明,相邻喷头间工作压力差对喷灌均匀系数和分布均匀系数的影响会因喷头工作压力等级而异,低压条件这种影响对相邻喷头间工作压力差越敏感; 0.25 MPa下组合喷灌均匀性最稳定;相邻喷头间工作压力差的存在会使灌溉水深高值区向下游移动;分布均匀系数Du更能反映相邻工作压力差对灌溉水量低值区的影响,不同工况下分布均匀系数Du最大偏差为8.2%。上述结论能为轻小型喷灌机的优化配置与运行提供一定的参考。  相似文献   

16.
针对喷头在低压条件下工作时水力性能较差的问题,提出采用异形喷嘴降低水滴打击强度并改善喷洒均匀性的方法.选取PY115型摇臂式喷头为研究对象,设计了3套改进喷嘴的方案,在出口喷嘴上增加了1、2、3个凹槽,凹槽的尺寸均为宽0.5 mm,高0.3 mm,位置分别在出口喷嘴下方和左右两侧.在工作压力为200 kPa下进行了试验测量,同时在正方形组合间距为13~18 m时,采用Matlab语言编制程序对其进行了仿真计算.试验和计算结果表明:在低压条件工作时,随着凹槽数量的增多,流量增大,射程缩短8.1% ~9.4%,末端水滴直径降低系数为2.9% ~ 6.8%,平均喷灌强度增大并均符合规范要求.增加凹槽有利于提高组合均匀系数,出口喷嘴增加3个凹槽时效果最佳,组合均匀系数最高超过90%,证明了所设计异形喷嘴方案的可行性.  相似文献   

17.
为研究喷头压力对水量分布模型的影响,以低压喷头为例,对其进行水力性能试验.通过计算矩形组合下不同压力的喷灌组合均匀系数Cu和组合分布均匀系数Du,探索喷头压力对水量分布模型的影响.结果表明:对于低压喷头,喷灌强度随压力增大先逐渐增大,达到一定值后基本保持不变.在距喷头不同距离时,不同压力下的喷灌强度变化情况不同.在低压范围内,压力对喷灌组合均匀系数和组合分布均匀系数的影响较明显.在100~200 kPa范围下,CuDu均随着压力的增大而增大.在200~300 kPa范围下,CuDu均变化不大.最终提出二者的函数关系式,为多因素下水量分布模型的建立提供理论依据.  相似文献   

18.
【目的】研究喷头不同组合方式对喷灌均匀度的影响,得到最佳的组合方式。【方法】根据FYRB471 型喷头在不同工作压力下间距1 m采样所得的无风喷洒降水强度,针对喷头分别呈正三角形、正方形、正六边形等组合方式,拟合出了喷头在不同工作压力及组合间距下的降水强度,采用克里斯琴森均匀系数计算了相应的喷灌均匀度。【结果】当工作压力一定时,不同组合方式下的喷灌均匀度都随喷头间距的增大而减小;当喷头间距一定时,组合均匀度与工作压力正相关。当间距小于5.5 m时,不同工作压力下3 种组合方式的均匀度相差不大;当间距大于5.5 m时,随着工作压力或者组合间距的增大,正三角形组合方式所提供的喷灌均匀度最优,正方形组合方式次之,正六边形组合方式最低。正三角形组合方式喷头间距变大时,喷灌均匀度降低;工作压力过大或间距过小时会增加成本,因此农业生产可兼顾考虑效率和成本选择喷头的组合方式以及工作压力,制定合理的喷灌方案。【结论】当组合间距介于5.5 m和8.5 m之间,工作压力介于200 kPa 与320 kPa 时,应考虑采用正三角形组合方式,此时的喷灌均匀度最高,达80%以上;当组合间距小于等于5.5 m时,不同工作压力下的均匀度基本相同,应考虑采用正六边形组合方式,单个喷灌设备覆盖范围最广,成本最低。  相似文献   

19.
变量喷洒全射流喷头水力性能试验   总被引:2,自引:0,他引:2  
以变量喷洒全射流喷头为研究对象,对正方形和三角形喷洒域分别进行了水力性能试验,测量并分析了喷头的射程和喷灌强度等性能参数.结果表明:三角形比正方形喷洒域最大射程有所降低;三角形和正方形喷洒域水量分布相对均匀;变量喷洒喷头与传统全射流喷头相比,雨滴粒径相差较小;三角形与正方形喷洒域喷头平均喷灌强度相差较小,三角形喷洒域喷头的最大喷灌强度相对平均喷灌强度差值较大.变量喷洒全射流喷头比全射流喷头,组合间距增大、重叠率降低,且单位面积所用喷头数量减少.在组合间距系数为1.25,室外风速小于1.2 m/s情况下,正方形组合喷洒具有良好的喷洒均匀性.  相似文献   

20.
考虑水滴运动蒸发的喷灌水量分布模拟   总被引:3,自引:0,他引:3  
提出了有风条件下喷头水滴运动与喷灌水量分布模拟方法,并利用Visual Basic 6.0开发了喷灌水量分布模拟软件.该软件在已知单喷头的径向水量分布数据时,可以模拟出不同风速、风向、空气温湿度等环境条件下单喷头或多喷头组合的喷灌水量分布,计算出喷灌系统的组合喷灌强度、喷灌均匀系数和蒸发损失率.以9708A型喷头为例,分别对工作压力为0.20、0.25和0.30 MPa下单喷头径向水量分布以及喷灌系统组合间距为14 m x 14 m和14 m×12 m时的喷灌水量分布进行了模拟,并与实测值进行了对比,结果表明:模拟的单喷头径向水量分布与实测值总体一致,由模拟水量分布推算的喷头流量与实测值的相对误差为0.83% ~8.01%;喷灌均匀系数模拟值与实测值的相对误差为0.69%~6.36%,蒸发损失率模拟值为0.51% ~ 1.75%,小于实测的水量损失率.模拟了不同组合间距下的喷灌水量分布,得到的喷灌均匀系数模拟值与其他软件比较,相对误差在0.11% ~2.44%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号