首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
选用560只1日龄肉用乌骨鸡,采用二因子多水平随机化试验设计研究日粮硼对铜中毒肉鸡肝铜及肝功能的影响。分别在玉米-豆粕型基础日粮中(Cu50.9 mg/kg,B10.1 mg/kg)添加549.1、749.1 mg/kg的铜和49.1、109.1 mg/kg的硼。结果表明,硼可在一定程度上抵御高铜对肝细胞的毒害,并减少肉鸡肝铜的蓄积量,说明硼对肉用乌骨鸡铜中毒具保护效应。  相似文献   

2.
选用560只1日龄肉用乌骨鸡,采用二因子多水平随机化试验设计研究日粮硼对铜中毒肉鸡的影响。试验中分别在玉米-豆粕型基础日粮中(Cu 50.9mg/kg,B 10.1mg/kg)添加549.1、749.1mg/kg的铜和49.1、109.1mg/kg的硼。观察各组雏鸡生产性能、临床表现及病理学变化。结果表明,硼对肉用乌骨鸡铜中毒具保护效应。  相似文献   

3.
选用560只1日龄肉用乌骨鸡,采用二因子多水平随机化试验设计来探讨日粮硼对铜中毒肉鸡肝铜及肝功能的影响.试验中分别在玉米-豆粕型基础日粮中(50.9 mg/kg Cu,10.1 mg/kg B)添加549.1,749.1 mg/kg的铜和49.1,109.1 mg/kg的硼.结果表明,硼可在一定程度上抵御高铜对肝细胞的毒害,并减少肉鸡肝铜的蓄积量;说明硼对肉用乌骨鸡铜中毒具保护效应.  相似文献   

4.
不同钼铜水平下肉牛铜需要量的研究   总被引:4,自引:1,他引:3  
选择年龄、体重相近,健康利木赞×鲁西黄牛杂交一代公牛4头,在不同钼铜水平下,研究肉牛血液铜的代谢规律和铜需要量。试验分低钼(基础日粮钼含量0.27mg/kg)和高钼(基础日粮+钼5 mg/kg)两个水平进行。研究结果表明:低钼水平下,日粮干物质中添加铜10、25和50mg/kg,血液铜水平在0.97~1.18mg/kg之间,各水平间无差异,证明日粮中添加10mg/kg铜即可满足肉牛的需要。高钼水平下,血液铜含量随着铜添加量的增加而变化较大,加10mg/kg铜时血液铜水平在0.8mg/kg以下,不能满足牛的需要;添加铜25和50mg/kg时,血液铜水平上升到1.0mg/kg左右,并能满足牛对铜的需要,而添加25和50mg/kg血液铜无差异,证明高钼时添加25mg/kg才能满足肉牛铜的需要量。本研究还证明,肉牛铜营养状况可用以下回归公式预测:低钼:Y=24.33X4.39(R=0.991,n=3);高钼:Y=61.84X2.58(R=0.923,n=3)。式中:Y-日粮铜水平;X-血液铜水平。  相似文献   

5.
本试验选用9只体况良好、体重相近、1岁内小尾寒羊半同胞羯羊作为试验动物,研究了日粮中添加不同铜、钼水平对小尾寒羊血清CPL和血浆SOD活性的影响。试验分两期进行,每期随机分为3组,每组3只。第一期试验不添加钼(基础日粮钼水平:0.31mg/kg),第二期在基础日粮的基础上添加2.5mg/kg钼。每期铜的添加量分别为5、10、15mg/kg。结果表明:在低钼日粮条件下,提高铜水平不影响血清CPL的活性(P>0.05);日粮中添加2.5mg/kg钼时,铜水平的提高可显著增加血清CPL的活性(P<0.05)。当铜水平一定时,提高日粮钼水平可降低血清CPL和血浆SOD的活性(P<0.05);而当钼水平一定时,提高铜水平并不能增加血浆SOD的活性(P>0.05)。日粮钼水平为0.31mg/kg时,添加5mg/kg铜可满足机体需要;日粮钼水平为2.81mg/kg时,添加15mg/kg铜较适宜。羊在缺铜时,与血浆SOD的活性比较,血清CPL更宜作为评价铜营养缺乏的指标;铜满足机体需要后,血清CPL和血浆SOD均对铜和钼的变化不敏感。  相似文献   

6.
试验旨在研究不同铜源和高剂量铜对晋岚绒山羊血清生殖激素和甲状腺素的影响.选用体况良好、体重相近的6月龄晋岚绒山羊青年母羊40只,随机分为5组,分别喂给添加0、25和100 mg/kg DM的硫酸铜,以及25 mg/kg和100 mg/kg DM蛋氨酸铜的日粮.结果表明:日粮添加25 mg/kg DM铜提高了晋岚绒山羊LH浓度和兀4浓度,血清中T4浓度有上升趋势.因此,推荐在晋岚绒山羊青年母羊的日粮中添加25 mg/kg DM硫酸铜或蛋氨酸铜,可提高绒山羊养殖的经济效益.  相似文献   

7.
不同铜源和水平对生长猪组织铜含量和含铜酶的影响   总被引:4,自引:1,他引:3  
选用54头体重约17 kg杜长大生长猪进行试验,研究日粮中添加不同铜源、不同水平铜对猪血液生化指标及组织铜沉积的影响。试验猪随机分为9个处理,每个处理3个重复,每个重复2头。各处理日粮分别为基础日粮添加以氨基酸铜(Cu-AA)、硫酸铜(CuSO4)和碱式氯化铜(TBCC)为铜源的铜10、150和250 mg/kg的日粮。研究结果表明:添加不同铜源、不同剂量铜,猪日增重和料重比均无显著差异(P>0.05);肝、肾铜含量随铜添加水平的升高而显著升高(P<0.01),在心肌铜含量方面,添加250 mg/kg铜水平显著高于添加10和150 mg/kg铜水平(P<0.01); 高剂量铜可显著提高血清铜兰蛋白活性(P<0.01),添加150 mg/kg铜可显著提高血清超氧化物歧化酶(SOD)活性(P<0.05);硫酸铜源可显著降低肌肉铜含量(P<0.01),氨基酸铜源可显著提高血清铜兰蛋白活性(P<0.01)。  相似文献   

8.
将80只1日龄艾维菌肉仔鸡随机分成4组,每组4个重复,每个重复5只鸡,对照组喂基础日粮,试验组在基础日粮中分别添加硫酸铜10、50 mg/kg和100 mg/kg,试验期21 d.试验结果表明:随日粮铜添加水平的增加,肝脏、胫骨中铜含量有所增加,尤其是铜添加量为100 mg/kg时,肝脏、胫骨中铜含量都显著高于对照组(P<0.05).肝脏、胫骨中铁含量随铜添加水平的升高而逐渐下降.肝脏、胫骨中锌含量也随铜添加水平的变化而变化.  相似文献   

9.
为探讨生长期雄性梅花鹿日粮中铜的最适宜添加范围,将20只2岁雄性梅花鹿随机分成A、B、C、D四组,每组5只。A组饲喂不添加铜的基础日粮,B、C、D三组分别饲喂添加15、40、80mg/kg蛋氨酸螯合铜的日粮。试验结果如下:梅花鹿生长期日粮中添加铜,可以改善梅花鹿胃肠道的消化机能,除干物质外,对其它营养物质消化率影响均达到差异极显著水平(P0.01);日粮加铜可极显著提高血清铜水平(P0.01);日粮加铜40mg/kg和80mg/kg可极显著提高毛铜含量(P0.01);日粮加铜40mg/kg可显著提高铜蓝蛋白的活性(P0.05),日粮加铜40mg/kg和80mg/kg可显著提高SOD的活性(P0.05);梅花鹿生长期加铜,使粪铜排出量急剧上升,各组间均差异极显著(P0.01)。结论:综合各项指标,本地区梅花鹿生长期日粮铜的适宜添加量为15~40mg/kg(日粮总铜含量21.21~45.65mg/kg)。  相似文献   

10.
生长肥育猪日粮铜添加水平与组织铜残留量动态关系初探   总被引:5,自引:0,他引:5  
采用54头杂交猪(杜×大×约)研究大剂量日粮铜添加水平对组织铜含量的影响,建立日粮铜添加水平与组织铜残留量之间的动态模型,探讨保证猪肉及其副产品食用安全性的最适铜添加量。试验采用单因子设计,分别设0、100、200、300、400mg/kg的铜添加水平,试验从20kg开始,100kg结束。结果表明:添加100~400mg/kg的铜不同程度地增加了组织器官中铜的残留量,肝脏和肾脏中铜含量随饲粮添加水平的增加呈二次曲线变化规律。肝脏铜残留量(y,单位为mg/kg)与日粮铜添加水平(x,单位为mg/kg)之间的回归方程为:80kg体重时,y=5.4697-0.0814x+0.0009x2(R2=0.930,P=0.07);100kg体重时,y=11.3963-0.2920x+0.0022x2(R2=0.814,P=0.036)。肾脏铜残留量(y,单位为mg/kg)与日粮铜添加水平(x,单位为mg/kg)之间的回归方程为:y=8.7583-0.0043x+0.0002x2(R2=0.975,P=0.025)。在80kg屠宰时,为了保证肝脏中的铜含量不超过10mg/kg,饲粮铜添加水平不应高于129mg/kg。在100kg屠宰时,为了保证肝脏或肾脏中的铜含量不超过10mg/kg,饲粮铜添加水平不应高于128或90mg/kg。  相似文献   

11.
分别用PAN、二甲酚橙、紫脲酸铵作为指示剂,研究了EDTA配位滴定法测定羟基蛋氨酸铜螯合物中铜含量的方法,标准偏差均小于0.2%,相对标准偏差小于0.6%。结果表明,EDTA配位滴定法测定羟基蛋氨酸铜中铜含量,操作过程简单、方便,分析结果重现性好、准确度高,且三种指示剂均可用于铜的测定,其中紫脲酸铵最好,终点变色敏锐。本法可用于不同工艺所合成的羟基蛋氨酸铜中铜含量的测定。  相似文献   

12.
The Cu status of mature, crossbred ewes fed two sources (CuSO4 vs. Cu proteinate) and three levels (10, 20, or 30 mg/kg) of dietary Cu was determined in a 73-d feeding trial. Ewes (n = 30) were fed a basal diet containing rice meal feed, cottonseed hulls, cottonseed meal, meat and bone meal, cracked corn, and vitamin-mineral supplements at 2.5% of BW to meet NRC requirements for protein, energy, macrominerals, and microminerals, excluding Cu. The basal diet contained 5 mg/kg Cu, 113 mg/kg Fe, .1 mg/kg Mo, and .17% S. Copper sulfate or Cu proteinate was added to the basal diet to supply 10, 20, or 30 mg/kg of dietary copper in a 2x3 factorial arrangement of treatments. Ewes were housed in 3.7- x 9.1-m pens in an open-sided barn. Blood samples were collected on d 28 and 73. Ewes were slaughtered on d 74, and liver and other tissues were collected to determine Cu concentrations. An interaction (P = .08) occurred between source and level for liver Cu. The interaction existed due to an increase in liver Cu concentrations when ewes were fed increasing dietary Cu from CuSO4 but not when fed Cu proteinate diets. There was no source x level interaction (P>.10) for the blood constituents measured. On d 73, plasma ceruloplasmin activity was greater (P<.05) in ewes fed Cu proteinate than in those fed CuSO4 (33.1 vs. 26.8 microM x min(-1) x L(-1)). Increasing the concentration of dietary Cu did not affect (P>.10) plasma ceruloplasmin. Packed cell volume (PCV), red blood cell count (RBC), white blood cell count, whole blood hemoglobin (wHb), plasma hemoglobin, and plasma Cu were similar between sources of Cu. Ewes fed 20 mg/kg Cu had lower (P<.05) PCV, RBC, and wHb than those fed 10 or 30 mg/kg Cu diets. Feeding up to 30 mg/kg Cu from these sources did not cause an observable Cu toxicity during the 73-d period.  相似文献   

13.
Bovine copper deficiency: use of copper oxide needles   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
16.
Copper deficiency is common in pasture-fed cattle in New Zealand(1). In general, the diagnosis of copper deficiency in a herd of cattle is based on a combination of history, examination of animals, examination of the environment, chemical analysis of blood, liver or pasture, and treatment response trials. The laboratory diagnosis of copper deficiency is currently based on liver and either plasma or serum concentrations of copper. Ellison(2) reviewed the copper reference range for cattle used by the animal health laboratories in New Zealand and concluded that there is strong agreement in the literature that serum copper concentrations greater than 7.9 𝛍mol/l and liver copper concentrations greater than 95 𝛍mol/kg are adequate for young cattle. Furthermore, it has been reported that if copper concentrations in the liver are greater than 150–200 𝛍mol/kg wet weight, there is a negligible increase in serum copper as liver concentrations increase further(2), with individual animal variation accounting for the range of values in serum copper at this point (7.9–18 𝛍mol/l).  相似文献   

17.
18.
A 9-year-old Bedlington Terrier was evaluated because of weight loss, inappetence, and hematemesis. Copper storage disease had been diagnosed previously on the basis of high hepatic copper concentration. Treatment had included dietary copper restriction and administration of trientine for chelation of copper. A CBC revealed microcytic hypochromic anemia. High serum activities of liver enzymes, high bile acid concentrations, and low BUN and albumin concentrations were detected. Vomiting resolved temporarily with treatment, but the clinicopathologic abnormalities persisted. Results of transcolonic portal scintigraphy suggested an abnormal shunt fraction. Results of liver biopsy and copper quantification revealed glycogen accumulation and extremely low hepatic copper concentration. Serum and hair copper concentrations were also low. Chelation and dietary copper restriction were tapered and discontinued. Clinical signs and all clinicopathologic abnormalities improved during a period of several months.  相似文献   

19.
Two experiments were conducted to study effects of high-level Cu supplementation on measures of Cu status and forage utilization in beef cattle. In Exp. 1, eight steers randomly received an intraruminal bolus containing 12.5 g of CuO needles (n = 4) or no bolus (n = 4). Steers were individually offered free-choice ground limpograss (Hemarthria altissima) hay. On d 12 (Period 1) and d 33 (Period 2) steers were placed in metabolism crates, and total forage refused and feces produced were collected for 7 d. Daily samples of forage offered and refused and of feces excreted for each steer within period were analyzed for DM, ash, NDF, ADF, and CP. Liver biopsies were collected on d 0, 12, and 33. Copper oxide bolus administration resulted in greater (P < 0.03) liver Cu (DM basis) accumulation in Period 1 (556 vs. 296 mg/kg) and Period 2 (640 vs. 327 ppm). Apparent digestibilities of NDF and CP were greater (P < 0.04) for steers receiving no bolus in Period 2 (62.2 vs. 57.1% and 50.2 vs. 43.4% for NDF and CP digestibility, respectively). In Exp. 2, 24 crossbred heifers were assigned to individual pens and received a molasses-cottonseed meal supplement fortified with 0, 15, 60, or 120 ppm of supplemental Cu (Cu sulfate; six pens per treatment). All heifers were offered free-choice access to ground stargrass (Cynodon spp.) hay. Heifer BW and liver biopsies were collected on d 0, 42, and 84. Forage refusal was determined daily, and diet DM digestibility was estimated over a 21-d period beginning on d 42. Heifers consuming 120 ppm of supplemental Cu gained less (P < 0.05; 0.04 kg/d) than heifers consuming 15 (0.19 kg/d) and 60 ppm of Cu (0.22 kg/d), but their ADG did not differ from that by heifers consuming no supplemental Cu (0.14 kg/d; pooled SEM = 0.07). Heifers supplemented with 15 ppm of Cu had greater (P < 0.05) liver Cu concentrations on d 84 than those on the 0-ppm treatment and the high-Cu treatments (60 and 120 ppm). Forage intake was less (P = 0.07) by heifers receiving no supplemental Cu than by heifers on all other treatments (6.6 vs. 5.8 +/- 0.37 kg/d). Apparent forage digestibility was not affected by Cu treatment. These data suggest that high rates of Cu supplementation (Cu sulfate; > 60 ppm of total Cu) resulted in less liver Cu accumulation by beef heifers compared with heifers consuming diets supplemented with moderate dietary Cu concentrations (i.e., 15 ppm). As well, the administration of CuO boluses might depress the digestibility of forage nutrient fractions in steers.  相似文献   

20.
OBJECTIVE: To assess the effectiveness of intramuscular injection of copper heptonate (CuHep) and an oral dose of copper oxide wire particles (COWP) in preventing Cu inadequacy in adult and young sheep on pasture of high Mo content. DESIGN: Field experiments with flocks of mature Merino wethers and crossbred weaners. PROCEDURE: Adult wethers were given 25 or 37.5 mg Cu as CuHep, 2.5 g COWP or no Cu treatment. The weaners were given 12.5 or 25 mg Cu as CuHep, 1.25 g COWP or no Cu treatment. At intervals over the next 12 (adults) or 8 (weaners) months the sheep were weighed and samples of blood and liver were collected for trace element assay. Wool samples collected from the adults at the end of the experiment were assessed for physical characteristics. RESULTS: The higher dosage of CuHep raised liver Cu above control group values for at least 9 months in adults and 3 months in weaners. The lower dosage of CuHep was similarly effective for 3 months in adults but was without effect in weaners. In adults the response to COWP matched that to the higher dosage of CuHep; in weaners it was greater, lasting at least 5 months. No changes indicative of Cu deficiency, apart from a depressed body weight in adults, were seen. CONCLUSIONS: In sheep on pasture of high Mo content a single intramuscular injection of CuHep providing 37.5 mg Cu to adults or 25 mg Cu to weaners will raise liver Cu reserves for at least 9 and 3 months respectively and may be an acceptable alternative to COWP for preventing seasonal Cu deficiency in sheep in southern Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号