首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
水分是小麦整个生育期最重要的营养液,不同生育期充足的水分供应可实现粒大增产的效果,因此土壤贮水量的多少在一定程度上决定冬小麦是否丰产。基于此,本研究分析土壤贮水量的变化对冬小麦产量的影响,以期为提高小麦产量提供科学依据。  相似文献   

4.
几种农作物节水灌溉方式   总被引:1,自引:0,他引:1  
天农 《今日农村》2006,(4):23-23
⒈田间地面灌水田间地面灌水改土渠为防渗渠输水灌溉,可节水20%。推广宽畦改窄畦,长畦改短畦,长沟改短沟,控制田间灌水量,提高灌溉水的有效利用率,是节水灌溉的有效措施。⒉管灌管灌是利用低压管道(埋设地下或铺设地面)将灌溉水直接输送到田间,常用的输水管多为硬塑管或软塑管。该技术具有投资少、节水、省工、节地和节省能耗等优点。与土渠输水灌溉相比管灌可省水30%~50%。⒊微灌微灌有微喷灌、滴灌、渗灌、微管灌等,是将灌溉水加压、过滤,经各级管道和灌水器具灌水于作物根系附近,微灌属于局部灌溉,只湿润部分土壤。对部分密播作物不适宜…  相似文献   

5.
作者通过观测分析旱地土壤贮水量的差异和自然调节的变化过程,初步掌握了旱地土壤贮水量的差异和自然调节的规律。  相似文献   

6.
本文对水稻在保持水层与连续灌溉条件下的土壤有效N,N吸收量及稻谷产量进行比较。结果表明:间歇灌溉较保水层降低了土壤中氨态N含量,N吸收量及稻谷产量,而P与K的水平对土壤中氨态N,N吸收量及稻谷产量没有显著影响。  相似文献   

7.
基于BP神经网络的土壤贮水量预报模型研究   总被引:1,自引:0,他引:1  
武文红  杜贞栋  刘现伟  黄静  刘兵 《安徽农业科学》2010,38(15):8211-8212,8224
[目的]为实现作物的实时灌溉提供科学依据。[方法]利用实测气象资料、桓台县节水灌溉试验站2008~2009冬小麦试验资料等建立BP神经网络预报模型,应用Matlab神经网络工具箱,采用Trainlm算法进行模型训练,对试验田的土壤贮水量进行预测。[结果]基于BP神经网络的土壤贮水量预报模型的泛化能力较强;在冬小麦日耗水量较大的拔节、扬花、灌浆3个时期,该模型的预报精度较高,稳定性较好。[结论]基于BP神经网络的土壤贮水量预报模型在冬小麦耗水较大时期的模拟值具有较高的精度。  相似文献   

8.
[目的]研究干旱条件下膜上灌对玉米地土壤贮水量的影响。[方法]以当地主栽玉米品种为试材,以露地畦灌为对照,采用不同宽度地膜覆盖进行膜上灌,通过对比分析研究了不同土层及不同生育期土壤贮水量的变化。[结果]0~120cm土层,处理Ⅰ(膜上灌处理覆膜宽度为0.75m)的土壤贮水量比播前降低了24.6%,处理Ⅱ(膜上灌处理覆膜宽度为1.25m)的土壤贮水量比播前降低了25.1%,对照的土壤贮水量比播前降低了33%。各生育期膜上灌处理和对照0~40cm土层的土壤贮水量低于40~80和80—120cm土层。40~80cm土层的土壤贮水量介于0~40和80~120cm.抽雄开花期,处理Ⅰ和Ⅱ的0~40cm土层的土壤贮水量分别比对照增加了7%和10.5%。在玉米成熟期,膜上灌处理的土壤贮水量高于对照。[结论]该研究为中国西部地区的灌溉农业的发展提供了理论支持.  相似文献   

9.
根据植物生长规律,提出了1个适于半干旱地区的草原植物生长与水分关系的模型。模型中植物的生长动态与生长进程及水分条件呈指数关系,以中国科学院内蒙古草原生态系统定位研究站的资料为基础。对模型进行了验证,并给出了效果较好而又比较简单的可用于植物与土壤水分关系分析及估测植物现存生物量的具体模型。  相似文献   

10.
对东峡林区灌木林地遭牲畜践踏的轻、中、重度3种土壤类型测定其贮水量,结果表明:随着牲畜践踏土壤的程度不同,灌木林地贮水量有所差别,轻度践踏土壤贮水量为592.0 t/hm2,中度践踏为412.0 t/hm2,重度践踏为298.4 t/hm2,轻、中、重度践踏土壤之间贮水量依次递减。  相似文献   

11.
掌握农田土壤水分的动态变化,采取相应措施,根据土壤水分变化和作物需水规律实行优化灌溉,可以达到合理用水,节约水资源,提高经济效益的目的。灌溉量预报在指导农业合理灌溉,最大限度的发挥水资源优势和总体效益,夺取丰产丰收,促进农业发展等方面有重要的参考价值。  相似文献   

12.
水稻优化灌溉制度的土壤水分调节   总被引:2,自引:0,他引:2  
  相似文献   

13.
滴(渗)灌土壤水分移动规律研究初报   总被引:6,自引:2,他引:6  
对地埋式滴(渗)灌和地表式滴(渗)灌水分移动规律的研究表明,滴(渗)灌水分在土壤中的移动分为两个阶段,第一阶段为水分等速移动阶段,水峰呈现圆形扩散;第二阶段为水分不等速移动阶段,呈现立卵形移动,水分下移速度最快,上移速度最慢,前者为后者的2.2~2.55倍。在本试验条件下,地表式滴(渗)灌的土壤水分蒸发量较地埋式大33%~39.7%,如果滴(渗)灌与地膜覆盖相结合,可减少土壤水分蒸发量的76%~86.8%,能进一步提高水分利用率。  相似文献   

14.
[目的]研究不同灌水定额条件下土壤含水率变化。[方法]在4个田间试验小区布设间距为2m的3个点,使用人工手钻,钻成深度200cm、孔径44.3mm的探管孔。1试验小区不灌水,2试验小区灌水量为0.02999m3/m2,3试验小区灌水量为0.08996m3/m2,4试验小区灌水量为0.05997m3/m2,灌水方法采取畦灌。利用时域反射仪,对不同灌水定额入渗的土壤含水率进行测定。时间上,探测土壤含水率时间为灌水后4、20、28和44h;深度上,探测深度间距分别设为180、160、140、120、100、90、80、70、60、50、40、30、20、10cm。结合土壤质地特性,分析不同灌水定额下的土壤含水率随深度变化的曲线特征。[结果]不同土层深度土壤水分变化因灌溉水量不同而不同。①不灌水时,0~70cm土层土壤含水率为9.88%;70~100cm土层土壤含水率逐渐增大,达17.00%;100~120cm土层含水率达25.00%;120~180cm土层土壤含水率为24.45%。②灌水量为0.02999m3/m2时,0~30cm土层土壤含水率逐渐增大,达30.00%;30~60cm土层土壤含水率逐渐下降,降至25.00%;60~180cm土层土壤含水率为25.00%。该灌水定额适合农田灌溉节约用水。③灌水量为0.05997m3/m2时,0~30cm土层土壤含水率逐渐增大,达26.00%;30~100cm土层土壤含水率为32.50%,120~180cm土层土壤含水率恢复到未灌溉前状态。该灌水定额对农田节水和保墒具有重要意义。④灌水量为0.08996m3/m2时,0~180cm土层土壤含水率为25.86%。该灌水定额不利于农田灌溉节约用水。[结论]该研究结果对经济合理地利用水资源具有重要意义。  相似文献   

15.
为了在有机葡萄栽培中实施精量灌溉,提高果实品质,尝试利用土壤墒情监测系统技术。土壤墒情监测系统综合集成了先进的监测设备、网络技术和专家知识经验,能够完成对土壤墒情的实时监测与灌溉决策。将这项技术在上海市奉贤区的1个有机葡萄种植园进行示范,取得了良好的效果,平均每亩增收26%,葡萄可溶性固形物提高了2~3Brix,水分利用效率提高40%,同时劳动生产率提高40%,经济效益显著。本文介绍了该系统的结构、工作原理、布设和调试方法等内容,并结合葡萄各生长期的需水量,对1个大棚1年内的土壤墒情监测数据进行了简要分析。  相似文献   

16.
利用地统计学方法,研究了核桃在滴灌条件下田间土壤水分的时间异质性规律,以便为核桃滴灌自动化灌溉系统中的墒情预测提供理论依据。结果表明,在不同的时间尺度上,实验区土壤水分表现出不同程度的时间异质性,15 d尺度总的时间相关性程度远小于1 d尺度。1 d尺度基本可以揭示土壤水分时间上的微观变化结构特征,而15 d尺度不能全面揭示更微观变化的结构特征。  相似文献   

17.
灌溉条件下河南省土壤墒情变化规律初探   总被引:4,自引:0,他引:4  
在豫东潮土区进行了5a的土壤墒情与旱情监测工作,探索土壤墒情变化规律。结果表明,灌溉条件下,不同栽培模式土壤墒情总的变化规律是:6、7、8月份土壤墒情充足,其他月份欠缺,特别是4、5月份,正是农作物需水量大的时期,土壤水分含量不能满足农作物的需求。从单个栽培模式看,青砂土果园,从4月份到10月份,各层土壤水分含量比较高,其他月份则整体下降,20~40cm土层含水量低于适宜含水量;夹壤淤土大蒜-玉米(西瓜)栽培模式,随着土体深度的增加含水量逐渐降低,土壤含水量最高时段出现在雨季的8月份,最低时段出现在来年的3月份;体砂小两合土小麦-玉米栽培模式,各土层水分随时间变化波动较大,特别在4、5月份和8、9月份,小麦、玉米需水量大,而土壤水分却供应不足;底壤砂土花生(西瓜套玉米)-冬休闲(小麦)栽培模式,各土层含水量随时间变化不大,0~20cm土层墒情不足;夹黏青砂土小麦-胡萝卜(花生)栽培模式,7、8、9月份各土层水分充足。4-5月份各种栽培模式下,土壤水分亏缺时,均应加强水分管理。  相似文献   

18.
在玉米盆栽试验条件下,采用二次回归正交设计,建立了沙土苗期土壤水分与株高和干重等参数关系的数学模型,得出了各参数最高条件下的最适宜底墒和最优灌水量。试验结果表明:底墒为13.3%,苗期灌水量为76.6 mm时,株高最高;底墒为11.8%,苗期灌水量为76.3 mm时,总干重最高;底墒为10.3%,苗期灌水量为70.2 mm时,根部干重重量最高;底墒为13.7%,苗期灌水量为138.3 mm时,茎端干重重量最高。  相似文献   

19.
在额尔齐斯河流域地下水位浅埋条件下薄层砂性土壤的灌区内,2002—2003年进行两年田间试验,采用田间垂直入渗试验法计算分层土壤蓄水量,研究大水漫灌下薄层砂性土壤水分变化的规律,分析当地大水漫灌是否合理。试验结果表明,大水漫灌下田间水分利用率为30%~40%,田间土壤水分变化主要发生在根区土壤0~-50cm深度,根区土壤层的蓄水能力为100-125mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号